
Citation: Um, D.; Nethala, P.; Shin, H.

Hierarchical DDPG for Manipulator

Motion Planning in Dynamic

Environments. AI 2022, 3, 645–658.

https://doi.org/10.3390/ai3030037

Academic Editors: Phivos Mylonas,

Katia Lida Kermanidis and Manolis

Maragoudakis

Received: 26 May 2022

Accepted: 26 July 2022

Published: 3 August 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

Article

Hierarchical DDPG for Manipulator Motion Planning in
Dynamic Environments
Dugan Um 1, Prasad Nethala 2,* and Hocheol Shin 3

1 School of Engineering & Computing Sciences, Texas A&M University-Corpus Christi, TX 78412, USA;
dugan.um@tamucc.edu

2 Geospatial Systems Engineering, Texas A&M University, Corpus Christi, TX 78412, USA
3 Nuclear Robot and Diagnosis Team, Korea Atomic Energy Research Institute, Daejeon 34057, Korea;

smarthc@kaeri.re.kr
* Correspondence: snethala@islander.tamucc.edu

Abstract: In this paper, a hierarchical reinforcement learning (HRL) architecture, namely a “Hierar-
chical Deep Deterministic Policy Gradient (HDDPG)” has been proposed and studied. A HDDPG
utilizes manager and worker formation similar to other HRL structures. However, unlike others,
the HDDPG enables sharing an identical environment and state among workers and managers,
while a unique reward system is required for each Deep Deterministic Policy Gradient (DDPG)
agent. Therefore, the HDDPG allows easy structural expansion with probabilistic action selection
of a worker by the manager. Due to its innate structural advantage, the HDDPG has a merit in
building a general AI to deal with a complex time-horizon tasks with various conflicting sub-goals.
The experimental results demonstrated its usefulness with a manipulator motion planning problem
in a dynamic environment, where path planning and collision avoidance conflict each other. The
proposed HDDPG is compared with an HAM and a single DDPG for performance evaluation. The
result shows that the HDDPG demonstrated more than 40% of reward gain and more than two times
the reward improvement rate. Another important feature of the proposed HDDPG is the biased
manager training capability. By adding a preference factor to each worker, the manager can be trained
to prefer a certain worker to achieve better success rate for a specific objective if needed.

Keywords: RL reinforcement learning; HRL hierarchical reinforcement learning; DDPG Deep
Deterministic Policy Gradient; HDDPG Hierarchical Deep Deterministic Policy Gradient; HAM
Hierarchical Abstract Machines

1. Introduction

The human brain is still traditionally seen as a black box in many analogies for research.
The challenge for theorists is to incorporate novel theories into hierarchical decision models
to improve our understanding of human decision-making [1]. However, while many
fundamental concerns as to how the brain works remain unresolved, there are several well-
founded hypotheses that support hierarchical models. Humans use hierarchical structure to
perceive visual motion [2], which is the primary motivation behind choosing a hierarchical
architecture to address temporal and spatial abstraction. By addressing subgoals in a
hierarchical manner, the size of state space is reduced, allowing for transfer learning and
the possibility of policy reuse.

In complex task planning, HRL (Hierarchical Reinforcement Learning) is a feasible ar-
chitecture to be implemented for achieving long-term goals by breaking them into subgoals.
A complex task, in our study, is defined as a task with subdividable multiple tasks or with
tasks demanding sequential execution. An RL agent must learn how to recognize these
subgoals and objectives on its own in a holistic HRL paradigm as well as how to build a
policy hierarchy that makes use of them to accomplish the overall objective. Hierarchical
reinforcement learning methods are supposed to offer a decision-making capability in

AI 2022, 3, 645–658. https://doi.org/10.3390/ai3030037 https://www.mdpi.com/journal/ai

https://doi.org/10.3390/ai3030037
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/ai
https://www.mdpi.com
https://orcid.org/0000-0002-7489-2991
https://doi.org/10.3390/ai3030037
https://www.mdpi.com/journal/ai
https://www.mdpi.com/article/10.3390/ai3030037?type=check_update&version=1

AI 2022, 3 646

complex environments, especially at solving depth of planning horizon problems. Andrei
Nica et al. [3] proposed a model-free algorithm to learn affordances that can be used to
further learn subgoal options. The concept of affordances in Gibson et al. [4] suggests that
only certain actions are feasible in certain states.

End-to-end HRL methods by Shubham et al. [5] accomplishes hierarchical manage-
ment capability by using a higher-level policy in the hierarchy to search the database
directly in a continuous subgoal space learning. However, when the subgoal space is
large, such a policy may be difficult to implement. They offer an integrated approach in
identifying important subgoals, an integrated subgoal discovery technique with an end-to-
end HRL method, which is a heuristic approach for narrowing down the search space for
higher-level policies. During this process, it concentrates on the subgoals with the greatest
impact occurrence probability on distinct state-transition trajectories, which will finally
lead to the desired outcome. The end-to-end HRL, also known as learning with Integrated
Discovery of Salient Subgoals (LIDOSS), outperformed Hierarchical Actor Critic (HAC) [6]
on a series of continuous control tasks in a physics simulation domain. The Hierarchical
Abstract Machine (HAM) by Parr et al. [7], a non-deterministic finite state machine with
the ability to activate lower-level machines through their transitions, is another interesting
Hierarchical RL technique. Policies in HAM can be viewed as programs that select the best
state to achieve the overall goal.

Another classical HRL approach called the MAXQ method by Dietterich [8] is a
hierarchical learning algorithm in which the hierarchy of a task is obtained by decomposing
the Q value of state–action pair into the sum of two components of V (a, s) and C (p, s, a).
Where, V (a, s) is the total expected reward received when executing the action ‘a’ in state
‘s’ (classic Q value function) and C is the total reward expected from the performance of
the parent-task, noted by ‘p’, after taking the action a. In fact, the action ‘a’ may not only
contain a primitive action, but also a sequence of actions.

In essence, one can understand the MAXQ framework as decomposing the value
function of an MDP into combinations of value functions of smaller constituent MDPs.
Each MDP is a finite set of sub-tasks, where each sub-task is formalized as a termination
predicate, set of actions, and a pseudo reward. In the Feudal RL method by Dayan et al. [9],
the managers only need to know the state of the system at the granularity of their own
task choices, which is a notable result of information and reward concealment. They
also have no idea what decisions their personnel made to fulfill their orders because the
system is not set up to learn. They have two advantages; the first is information hiding (at
different resolutions, the managerial hierarchy observes the surroundings) and the second
is reward hiding (goals are used to communicate between managers and “employees”, and
employees are rewarded if they are met).

The most well-known HRL approach is probably the options framework by Bacon et al. [10].
From the options-framework-based HRL method, a Markov option is defined as a triple
option of <Io, πo, βo>, where Io: the initiation set, πo: S × A→ [0,1]: the option’s policy,
βo: S→ [0,1]: the termination condition. Unlike feudal learning, an algorithm adopting
the options framework demonstrates its ability of convergence to an optimal policy if the
action space contains both primitive actions and options. Otherwise, it will converge, but
to a policy that is hierarchically optimal. Moreover, options itself can be used to define
option hierarchies. However, due to its innate nature, options increase the complexity of
the MDP. They also do not explicitly address the problem of task segmentation.

Many new hierarchical approaches have been developed recently, many of which are
inspired by these pioneering hierarchical structures (feudal, options, HAM, and MAXQ
of HRL). Wang, Zi et al. [11] used hierarchical DRL (HDRL) to study cell migrations
using images of cells and tissues with a ubiquitous nuclear label, which provides detailed
information regarding dynamic cell movements. Kulkarni, Tejas et al. [12] presents a h-
DQN (Hierarchical- Deep Q Network) framework that consists of hierarchically arranged
deep reinforcement learning modules that operate at various time scales, and the model
makes decisions at two levels of hierarchy: a top-level module (meta-controller) takes in the

AI 2022, 3 647

current state and selects a new goal, and a lower-level module (controller) chooses actions
until the goal is reached or the episode ends.

Siyuan Li et al. [13] propose an HRL framework that uses the advantage function of the
high-level policy to create auxiliary rewards for low-level skill training while maintaining
reward design generality. This auxiliary reward allows for efficient, concurrent acquisition
of high-level policy and low-level skills without the need for task-specific knowledge.
Unlike existing hierarchical multitask RL, Sungryull Sohn et al. [14] proposed a neural
subtask graph solver (NSGS) that encodes the subtask graph using a recursive neural
network embedding, where the agent must generalize to a previously unseen environment
characterized by a subtask graph that describes a set of subtasks and their dependencies.

Given the review of the short history of HRL, we envision the DDPG as a building
component of a novel HRL architecture. The capability of a single DDPG is proven well for
solving goal-oriented tasks, but it is insufficient to address complex multi-tasking or se-
quential tasking problems. In addition, since DDPG is prone to the curse of dimensionality
as state grows and is born to be a single-goal oriented architecture, it is not suitable for a
large-scale AI.

In this paper, we examine an HRL architecture using the DDPG as a building block for
a large-scale AI. We envision a well-trained DDPG for a specific task as a reusable transfer
component to constitute a larger group of DDPG to solve more complex tasks. Later, a
well-trained group of DDPGs can also be adopted for another larger group, and so on. In
the following section, we explain a general approach of constructing an HRL architecture
via multiple DDPGs, followed by some experimental results in Section 3.

2. Methods
2.1. Reinforcement Learning

Reinforcement learning is known to be an effective solution provider for specific
domain problems such as game or machine control. However, agents face a challenging
task if they are to successfully apply reinforcement learning in scenarios that resemble the
complexity of real-world problems: they must create accurate representations of their envi-
ronment from high-dimensional sensory inputs and then generalize their prior knowledge
to novel situations. Interestingly, reinforcement learning, and hierarchical sensory process-
ing systems seem to work in harmony to help humans and other animals solve this problem.
This is supported by a wealth of neural data that shows notable similarities between the
phasic signals emitted by dopaminergic neurons and temporal difference reinforcement
learning algorithms [15]. Therefore, we use the Reinforcement Learning as a building block
of a large-scale AI. Reinforcement learning (RL) algorithm is born on the framework of
Markov Decision Process (MDP) [16], whereby, for a given state, an admissible action takes
place to maximize a reward. In more detail, an agent observes a system’s state ‘s’, contained
in a finite set of state space ϕ, and executes an action ‘a’ selected from a finite, not-empty
set of admissible actions A at each state in a sequence of stages (Bertsekas et al. [17]). Once
the agent receives an immediate reward for a pair of state ‘s’ and action ‘a’, the current state
s will change to the next state of s′ with probability P (s′|s, a). The name, “one-step model”
of action a is from the fact that the expected immediate rewards, R (s, a) accompanies with
the state transition probabilities, P (s′|s, a), s, and s′ε ϕ. The action a is chosen from a
stochastic policy π: ϕ × Us ε ϕ, As → [−1,1], with π (s, a) = 0 for a! ε As. For a given policy
π, s (ε ϕ, Vπ(s)) represents the expected infinite-horizon discounted return from state s, or
simply the value of s given the condition that the agent uses policy π such that,

Vπ(s) = E
{

rt+1 +

AI 2022, 3, FOR PEER REVIEW 3

DQN (Hierarchical- Deep Q Network) framework that consists of hierarchically arranged deep
reinforcement learning modules that operate at various time scales, and the model makes
decisions at two levels of hierarchy: a top-level module (meta-controller) takes in the
current state and selects a new goal, and a lower-level module (controller) chooses actions
until the goal is reached or the episode ends.

Siyuan Li et al. [13] propose an HRL framework that uses the advantage function of
the high-level policy to create auxiliary rewards for low-level skill training while maintaining
reward design generality. This auxiliary reward allows for efficient, concurrent acquisition
of high-level policy and low-level skills without the need for task-specific knowledge.
Unlike existing hierarchical multitask RL, Sungryull Sohn et al. [14] proposed a neural
subtask graph solver (NSGS) that encodes the subtask graph using a recursive neural
network embedding, where the agent must generalize to a previously unseen environment
characterized by a subtask graph that describes a set of subtasks and their dependencies.

Given the review of the short history of HRL, we envision the DDPG as a building
component of a novel HRL architecture. The capability of a single DDPG is proven well
for solving goal-oriented tasks, but it is insufficient to address complex multi-tasking or
sequential tasking problems. In addition, since DDPG is prone to the curse of
dimensionality as state grows and is born to be a single-goal oriented architecture, it is not
suitable for a large-scale AI.

In this paper, we examine an HRL architecture using the DDPG as a building block
for a large-scale AI. We envision a well-trained DDPG for a specific task as a reusable
transfer component to constitute a larger group of DDPG to solve more complex tasks.
Later, a well-trained group of DDPGs can also be adopted for another larger group, and
so on. In the following section, we explain a general approach of constructing an HRL
architecture via multiple DDPGs, followed by some experimental results in Section 3.

2. Methods
2.1. Reinforcement Learning

Reinforcement learning is known to be an effective solution provider for specific
domain problems such as game or machine control. However, agents face a challenging
task if they are to successfully apply reinforcement learning in scenarios that resemble the
complexity of real-world problems: they must create accurate representations of their
environment from high-dimensional sensory inputs and then generalize their prior
knowledge to novel situations. Interestingly, reinforcement learning, and hierarchical
sensory processing systems seem to work in harmony to help humans and other animals
solve this problem. This is supported by a wealth of neural data that shows notable
similarities between the phasic signals emitted by dopaminergic neurons and temporal
difference reinforcement learning algorithms [15]. Therefore, we use the Reinforcement
Learning as a building block of a large-scale AI. Reinforcement learning (RL) algorithm is born on
the framework of Markov Decision Process (MDP) [16], whereby, for a given state, an admissible
action takes place to maximize a reward. In more detail, an agent observes a system’s state ‘s’,
contained in a finite set of state space φ, and executes an action ‘a’ selected from a finite, not-empty
set of admissible actions A at each state in a sequence of stages (Bertsekas et al. [17]). Once the agent
receives an immediate reward for a pair of state ‘s’ and action ‘a’, the current state s will change to
the next state of s’ with probability P (s’|s, a). The name, “one-step model” of action a is from the
fact that the expected immediate rewards, R (s, a) accompanies with the state transition
probabilities, P (s’|s, a), s, and s’ϵ φ. The action a is chosen from a stochastic policy π: φ × Us ϵ φ, As

→ [−1,1], with π (s, a) = 0 for a! ϵ As. For a given policy π, s (ϵ φ, Vπ(s)) represents the expected
infinite-horizon discounted return from state s, or simply the value of s given the condition that the
agent uses policy π such that, 𝑉 (𝑠) = 𝐸 𝑟 + ϒ · 𝑟 + ϒ · 𝑟 + ⋯ |𝑠 = 𝑠, 𝜋 (1)·rt+2 +

AI 2022, 3, FOR PEER REVIEW 3

DQN (Hierarchical- Deep Q Network) framework that consists of hierarchically arranged deep
reinforcement learning modules that operate at various time scales, and the model makes
decisions at two levels of hierarchy: a top-level module (meta-controller) takes in the
current state and selects a new goal, and a lower-level module (controller) chooses actions
until the goal is reached or the episode ends.

Siyuan Li et al. [13] propose an HRL framework that uses the advantage function of
the high-level policy to create auxiliary rewards for low-level skill training while maintaining
reward design generality. This auxiliary reward allows for efficient, concurrent acquisition
of high-level policy and low-level skills without the need for task-specific knowledge.
Unlike existing hierarchical multitask RL, Sungryull Sohn et al. [14] proposed a neural
subtask graph solver (NSGS) that encodes the subtask graph using a recursive neural
network embedding, where the agent must generalize to a previously unseen environment
characterized by a subtask graph that describes a set of subtasks and their dependencies.

Given the review of the short history of HRL, we envision the DDPG as a building
component of a novel HRL architecture. The capability of a single DDPG is proven well
for solving goal-oriented tasks, but it is insufficient to address complex multi-tasking or
sequential tasking problems. In addition, since DDPG is prone to the curse of
dimensionality as state grows and is born to be a single-goal oriented architecture, it is not
suitable for a large-scale AI.

In this paper, we examine an HRL architecture using the DDPG as a building block
for a large-scale AI. We envision a well-trained DDPG for a specific task as a reusable
transfer component to constitute a larger group of DDPG to solve more complex tasks.
Later, a well-trained group of DDPGs can also be adopted for another larger group, and
so on. In the following section, we explain a general approach of constructing an HRL
architecture via multiple DDPGs, followed by some experimental results in Section 3.

2. Methods
2.1. Reinforcement Learning

Reinforcement learning is known to be an effective solution provider for specific
domain problems such as game or machine control. However, agents face a challenging
task if they are to successfully apply reinforcement learning in scenarios that resemble the
complexity of real-world problems: they must create accurate representations of their
environment from high-dimensional sensory inputs and then generalize their prior
knowledge to novel situations. Interestingly, reinforcement learning, and hierarchical
sensory processing systems seem to work in harmony to help humans and other animals
solve this problem. This is supported by a wealth of neural data that shows notable
similarities between the phasic signals emitted by dopaminergic neurons and temporal
difference reinforcement learning algorithms [15]. Therefore, we use the Reinforcement
Learning as a building block of a large-scale AI. Reinforcement learning (RL) algorithm is born on
the framework of Markov Decision Process (MDP) [16], whereby, for a given state, an admissible
action takes place to maximize a reward. In more detail, an agent observes a system’s state ‘s’,
contained in a finite set of state space φ, and executes an action ‘a’ selected from a finite, not-empty
set of admissible actions A at each state in a sequence of stages (Bertsekas et al. [17]). Once the agent
receives an immediate reward for a pair of state ‘s’ and action ‘a’, the current state s will change to
the next state of s’ with probability P (s’|s, a). The name, “one-step model” of action a is from the
fact that the expected immediate rewards, R (s, a) accompanies with the state transition
probabilities, P (s’|s, a), s, and s’ϵ φ. The action a is chosen from a stochastic policy π: φ × Us ϵ φ, As

→ [−1,1], with π (s, a) = 0 for a! ϵ As. For a given policy π, s (ϵ φ, Vπ(s)) represents the expected
infinite-horizon discounted return from state s, or simply the value of s given the condition that the
agent uses policy π such that, 𝑉 (𝑠) = 𝐸 𝑟 + ϒ · 𝑟 + ϒ · 𝑟 + ⋯ |𝑠 = 𝑠, 𝜋 (1)2·rt+3 + . . .

∣∣∣st = s, π
}

(1)

where Reward R(s, a) = ∑ (rt+1 +

AI 2022, 3, FOR PEER REVIEW 3

DQN (Hierarchical- Deep Q Network) framework that consists of hierarchically arranged deep
reinforcement learning modules that operate at various time scales, and the model makes
decisions at two levels of hierarchy: a top-level module (meta-controller) takes in the
current state and selects a new goal, and a lower-level module (controller) chooses actions
until the goal is reached or the episode ends.

Siyuan Li et al. [13] propose an HRL framework that uses the advantage function of
the high-level policy to create auxiliary rewards for low-level skill training while maintaining
reward design generality. This auxiliary reward allows for efficient, concurrent acquisition
of high-level policy and low-level skills without the need for task-specific knowledge.
Unlike existing hierarchical multitask RL, Sungryull Sohn et al. [14] proposed a neural
subtask graph solver (NSGS) that encodes the subtask graph using a recursive neural
network embedding, where the agent must generalize to a previously unseen environment
characterized by a subtask graph that describes a set of subtasks and their dependencies.

Given the review of the short history of HRL, we envision the DDPG as a building
component of a novel HRL architecture. The capability of a single DDPG is proven well
for solving goal-oriented tasks, but it is insufficient to address complex multi-tasking or
sequential tasking problems. In addition, since DDPG is prone to the curse of
dimensionality as state grows and is born to be a single-goal oriented architecture, it is not
suitable for a large-scale AI.

In this paper, we examine an HRL architecture using the DDPG as a building block
for a large-scale AI. We envision a well-trained DDPG for a specific task as a reusable
transfer component to constitute a larger group of DDPG to solve more complex tasks.
Later, a well-trained group of DDPGs can also be adopted for another larger group, and
so on. In the following section, we explain a general approach of constructing an HRL
architecture via multiple DDPGs, followed by some experimental results in Section 3.

2. Methods
2.1. Reinforcement Learning

Reinforcement learning is known to be an effective solution provider for specific
domain problems such as game or machine control. However, agents face a challenging
task if they are to successfully apply reinforcement learning in scenarios that resemble the
complexity of real-world problems: they must create accurate representations of their
environment from high-dimensional sensory inputs and then generalize their prior
knowledge to novel situations. Interestingly, reinforcement learning, and hierarchical
sensory processing systems seem to work in harmony to help humans and other animals
solve this problem. This is supported by a wealth of neural data that shows notable
similarities between the phasic signals emitted by dopaminergic neurons and temporal
difference reinforcement learning algorithms [15]. Therefore, we use the Reinforcement
Learning as a building block of a large-scale AI. Reinforcement learning (RL) algorithm is born on
the framework of Markov Decision Process (MDP) [16], whereby, for a given state, an admissible
action takes place to maximize a reward. In more detail, an agent observes a system’s state ‘s’,
contained in a finite set of state space φ, and executes an action ‘a’ selected from a finite, not-empty
set of admissible actions A at each state in a sequence of stages (Bertsekas et al. [17]). Once the agent
receives an immediate reward for a pair of state ‘s’ and action ‘a’, the current state s will change to
the next state of s’ with probability P (s’|s, a). The name, “one-step model” of action a is from the
fact that the expected immediate rewards, R (s, a) accompanies with the state transition
probabilities, P (s’|s, a), s, and s’ϵ φ. The action a is chosen from a stochastic policy π: φ × Us ϵ φ, As

→ [−1,1], with π (s, a) = 0 for a! ϵ As. For a given policy π, s (ϵ φ, Vπ(s)) represents the expected
infinite-horizon discounted return from state s, or simply the value of s given the condition that the
agent uses policy π such that, 𝑉 (𝑠) = 𝐸 𝑟 + ϒ · 𝑟 + ϒ · 𝑟 + ⋯ |𝑠 = 𝑠, 𝜋 (1)·rt+2 +

AI 2022, 3, FOR PEER REVIEW 3

DQN (Hierarchical- Deep Q Network) framework that consists of hierarchically arranged deep
reinforcement learning modules that operate at various time scales, and the model makes
decisions at two levels of hierarchy: a top-level module (meta-controller) takes in the
current state and selects a new goal, and a lower-level module (controller) chooses actions
until the goal is reached or the episode ends.

Siyuan Li et al. [13] propose an HRL framework that uses the advantage function of
the high-level policy to create auxiliary rewards for low-level skill training while maintaining
reward design generality. This auxiliary reward allows for efficient, concurrent acquisition
of high-level policy and low-level skills without the need for task-specific knowledge.
Unlike existing hierarchical multitask RL, Sungryull Sohn et al. [14] proposed a neural
subtask graph solver (NSGS) that encodes the subtask graph using a recursive neural
network embedding, where the agent must generalize to a previously unseen environment
characterized by a subtask graph that describes a set of subtasks and their dependencies.

Given the review of the short history of HRL, we envision the DDPG as a building
component of a novel HRL architecture. The capability of a single DDPG is proven well
for solving goal-oriented tasks, but it is insufficient to address complex multi-tasking or
sequential tasking problems. In addition, since DDPG is prone to the curse of
dimensionality as state grows and is born to be a single-goal oriented architecture, it is not
suitable for a large-scale AI.

In this paper, we examine an HRL architecture using the DDPG as a building block
for a large-scale AI. We envision a well-trained DDPG for a specific task as a reusable
transfer component to constitute a larger group of DDPG to solve more complex tasks.
Later, a well-trained group of DDPGs can also be adopted for another larger group, and
so on. In the following section, we explain a general approach of constructing an HRL
architecture via multiple DDPGs, followed by some experimental results in Section 3.

2. Methods
2.1. Reinforcement Learning

Reinforcement learning is known to be an effective solution provider for specific
domain problems such as game or machine control. However, agents face a challenging
task if they are to successfully apply reinforcement learning in scenarios that resemble the
complexity of real-world problems: they must create accurate representations of their
environment from high-dimensional sensory inputs and then generalize their prior
knowledge to novel situations. Interestingly, reinforcement learning, and hierarchical
sensory processing systems seem to work in harmony to help humans and other animals
solve this problem. This is supported by a wealth of neural data that shows notable
similarities between the phasic signals emitted by dopaminergic neurons and temporal
difference reinforcement learning algorithms [15]. Therefore, we use the Reinforcement
Learning as a building block of a large-scale AI. Reinforcement learning (RL) algorithm is born on
the framework of Markov Decision Process (MDP) [16], whereby, for a given state, an admissible
action takes place to maximize a reward. In more detail, an agent observes a system’s state ‘s’,
contained in a finite set of state space φ, and executes an action ‘a’ selected from a finite, not-empty
set of admissible actions A at each state in a sequence of stages (Bertsekas et al. [17]). Once the agent
receives an immediate reward for a pair of state ‘s’ and action ‘a’, the current state s will change to
the next state of s’ with probability P (s’|s, a). The name, “one-step model” of action a is from the
fact that the expected immediate rewards, R (s, a) accompanies with the state transition
probabilities, P (s’|s, a), s, and s’ϵ φ. The action a is chosen from a stochastic policy π: φ × Us ϵ φ, As

→ [−1,1], with π (s, a) = 0 for a! ϵ As. For a given policy π, s (ϵ φ, Vπ(s)) represents the expected
infinite-horizon discounted return from state s, or simply the value of s given the condition that the
agent uses policy π such that, 𝑉 (𝑠) = 𝐸 𝑟 + ϒ · 𝑟 + ϒ · 𝑟 + ⋯ |𝑠 = 𝑠, 𝜋 (1)2·rt+3 + . . .) and Υ, 0 ≤ Υ < 1, is a discount

factor. The value of each state is independent of the history of state change; thus, it is MDP.
Since the objective of MDP is to maximize the value of each state, it is an optimization
problem of policy π, or action selection, given a state, s. This corresponds to the critic size

AI 2022, 3 648

of actor–critic-based reinforcement learning. In RL, the importance is on estimating action-
value function, that represents the value of each admissible action for each state. Given
a policy π, the value of (s, a) pair, or Qπ (s, a) is the expected infinite-horizon discounted
return for executing an action a in state s such that,

Qπ(s, a) = E
{

rt+1 +

AI 2022, 3, FOR PEER REVIEW 3

DQN (Hierarchical- Deep Q Network) framework that consists of hierarchically arranged deep
reinforcement learning modules that operate at various time scales, and the model makes
decisions at two levels of hierarchy: a top-level module (meta-controller) takes in the
current state and selects a new goal, and a lower-level module (controller) chooses actions
until the goal is reached or the episode ends.

Siyuan Li et al. [13] propose an HRL framework that uses the advantage function of
the high-level policy to create auxiliary rewards for low-level skill training while maintaining
reward design generality. This auxiliary reward allows for efficient, concurrent acquisition
of high-level policy and low-level skills without the need for task-specific knowledge.
Unlike existing hierarchical multitask RL, Sungryull Sohn et al. [14] proposed a neural
subtask graph solver (NSGS) that encodes the subtask graph using a recursive neural
network embedding, where the agent must generalize to a previously unseen environment
characterized by a subtask graph that describes a set of subtasks and their dependencies.

Given the review of the short history of HRL, we envision the DDPG as a building
component of a novel HRL architecture. The capability of a single DDPG is proven well
for solving goal-oriented tasks, but it is insufficient to address complex multi-tasking or
sequential tasking problems. In addition, since DDPG is prone to the curse of
dimensionality as state grows and is born to be a single-goal oriented architecture, it is not
suitable for a large-scale AI.

In this paper, we examine an HRL architecture using the DDPG as a building block
for a large-scale AI. We envision a well-trained DDPG for a specific task as a reusable
transfer component to constitute a larger group of DDPG to solve more complex tasks.
Later, a well-trained group of DDPGs can also be adopted for another larger group, and
so on. In the following section, we explain a general approach of constructing an HRL
architecture via multiple DDPGs, followed by some experimental results in Section 3.

2. Methods
2.1. Reinforcement Learning

Reinforcement learning is known to be an effective solution provider for specific
domain problems such as game or machine control. However, agents face a challenging
task if they are to successfully apply reinforcement learning in scenarios that resemble the
complexity of real-world problems: they must create accurate representations of their
environment from high-dimensional sensory inputs and then generalize their prior
knowledge to novel situations. Interestingly, reinforcement learning, and hierarchical
sensory processing systems seem to work in harmony to help humans and other animals
solve this problem. This is supported by a wealth of neural data that shows notable
similarities between the phasic signals emitted by dopaminergic neurons and temporal
difference reinforcement learning algorithms [15]. Therefore, we use the Reinforcement
Learning as a building block of a large-scale AI. Reinforcement learning (RL) algorithm is born on
the framework of Markov Decision Process (MDP) [16], whereby, for a given state, an admissible
action takes place to maximize a reward. In more detail, an agent observes a system’s state ‘s’,
contained in a finite set of state space φ, and executes an action ‘a’ selected from a finite, not-empty
set of admissible actions A at each state in a sequence of stages (Bertsekas et al. [17]). Once the agent
receives an immediate reward for a pair of state ‘s’ and action ‘a’, the current state s will change to
the next state of s’ with probability P (s’|s, a). The name, “one-step model” of action a is from the
fact that the expected immediate rewards, R (s, a) accompanies with the state transition
probabilities, P (s’|s, a), s, and s’ϵ φ. The action a is chosen from a stochastic policy π: φ × Us ϵ φ, As

→ [−1,1], with π (s, a) = 0 for a! ϵ As. For a given policy π, s (ϵ φ, Vπ(s)) represents the expected
infinite-horizon discounted return from state s, or simply the value of s given the condition that the
agent uses policy π such that, 𝑉 (𝑠) = 𝐸 𝑟 + ϒ · 𝑟 + ϒ · 𝑟 + ⋯ |𝑠 = 𝑠, 𝜋 (1)·rt+2 +

AI 2022, 3, FOR PEER REVIEW 3

DQN (Hierarchical- Deep Q Network) framework that consists of hierarchically arranged deep
reinforcement learning modules that operate at various time scales, and the model makes
decisions at two levels of hierarchy: a top-level module (meta-controller) takes in the
current state and selects a new goal, and a lower-level module (controller) chooses actions
until the goal is reached or the episode ends.

Siyuan Li et al. [13] propose an HRL framework that uses the advantage function of
the high-level policy to create auxiliary rewards for low-level skill training while maintaining
reward design generality. This auxiliary reward allows for efficient, concurrent acquisition
of high-level policy and low-level skills without the need for task-specific knowledge.
Unlike existing hierarchical multitask RL, Sungryull Sohn et al. [14] proposed a neural
subtask graph solver (NSGS) that encodes the subtask graph using a recursive neural
network embedding, where the agent must generalize to a previously unseen environment
characterized by a subtask graph that describes a set of subtasks and their dependencies.

Given the review of the short history of HRL, we envision the DDPG as a building
component of a novel HRL architecture. The capability of a single DDPG is proven well
for solving goal-oriented tasks, but it is insufficient to address complex multi-tasking or
sequential tasking problems. In addition, since DDPG is prone to the curse of
dimensionality as state grows and is born to be a single-goal oriented architecture, it is not
suitable for a large-scale AI.

In this paper, we examine an HRL architecture using the DDPG as a building block
for a large-scale AI. We envision a well-trained DDPG for a specific task as a reusable
transfer component to constitute a larger group of DDPG to solve more complex tasks.
Later, a well-trained group of DDPGs can also be adopted for another larger group, and
so on. In the following section, we explain a general approach of constructing an HRL
architecture via multiple DDPGs, followed by some experimental results in Section 3.

2. Methods
2.1. Reinforcement Learning

Reinforcement learning is known to be an effective solution provider for specific
domain problems such as game or machine control. However, agents face a challenging
task if they are to successfully apply reinforcement learning in scenarios that resemble the
complexity of real-world problems: they must create accurate representations of their
environment from high-dimensional sensory inputs and then generalize their prior
knowledge to novel situations. Interestingly, reinforcement learning, and hierarchical
sensory processing systems seem to work in harmony to help humans and other animals
solve this problem. This is supported by a wealth of neural data that shows notable
similarities between the phasic signals emitted by dopaminergic neurons and temporal
difference reinforcement learning algorithms [15]. Therefore, we use the Reinforcement
Learning as a building block of a large-scale AI. Reinforcement learning (RL) algorithm is born on
the framework of Markov Decision Process (MDP) [16], whereby, for a given state, an admissible
action takes place to maximize a reward. In more detail, an agent observes a system’s state ‘s’,
contained in a finite set of state space φ, and executes an action ‘a’ selected from a finite, not-empty
set of admissible actions A at each state in a sequence of stages (Bertsekas et al. [17]). Once the agent
receives an immediate reward for a pair of state ‘s’ and action ‘a’, the current state s will change to
the next state of s’ with probability P (s’|s, a). The name, “one-step model” of action a is from the
fact that the expected immediate rewards, R (s, a) accompanies with the state transition
probabilities, P (s’|s, a), s, and s’ϵ φ. The action a is chosen from a stochastic policy π: φ × Us ϵ φ, As

→ [−1,1], with π (s, a) = 0 for a! ϵ As. For a given policy π, s (ϵ φ, Vπ(s)) represents the expected
infinite-horizon discounted return from state s, or simply the value of s given the condition that the
agent uses policy π such that, 𝑉 (𝑠) = 𝐸 𝑟 + ϒ · 𝑟 + ϒ · 𝑟 + ⋯ |𝑠 = 𝑠, 𝜋 (1)2·rt+3 + . . .

∣∣∣st = s, at = a, π
}

(2)

The optimal action-value function, Q*, assigns to each admissible state- action pair
the expected infinite-horizon discounted return. By using dynamic programing in the
formalism of Bellman function [18], Vπ (s) and Qπ (s, a) are known to converge to the
maximum values of V* and Q* as shown in equations below.

V∗(s) = argmax
[

R(s, a) +

AI 2022, 3, FOR PEER REVIEW 3

DQN (Hierarchical- Deep Q Network) framework that consists of hierarchically arranged deep
reinforcement learning modules that operate at various time scales, and the model makes
decisions at two levels of hierarchy: a top-level module (meta-controller) takes in the
current state and selects a new goal, and a lower-level module (controller) chooses actions
until the goal is reached or the episode ends.

Siyuan Li et al. [13] propose an HRL framework that uses the advantage function of
the high-level policy to create auxiliary rewards for low-level skill training while maintaining
reward design generality. This auxiliary reward allows for efficient, concurrent acquisition
of high-level policy and low-level skills without the need for task-specific knowledge.
Unlike existing hierarchical multitask RL, Sungryull Sohn et al. [14] proposed a neural
subtask graph solver (NSGS) that encodes the subtask graph using a recursive neural
network embedding, where the agent must generalize to a previously unseen environment
characterized by a subtask graph that describes a set of subtasks and their dependencies.

Given the review of the short history of HRL, we envision the DDPG as a building
component of a novel HRL architecture. The capability of a single DDPG is proven well
for solving goal-oriented tasks, but it is insufficient to address complex multi-tasking or
sequential tasking problems. In addition, since DDPG is prone to the curse of
dimensionality as state grows and is born to be a single-goal oriented architecture, it is not
suitable for a large-scale AI.

In this paper, we examine an HRL architecture using the DDPG as a building block
for a large-scale AI. We envision a well-trained DDPG for a specific task as a reusable
transfer component to constitute a larger group of DDPG to solve more complex tasks.
Later, a well-trained group of DDPGs can also be adopted for another larger group, and
so on. In the following section, we explain a general approach of constructing an HRL
architecture via multiple DDPGs, followed by some experimental results in Section 3.

2. Methods
2.1. Reinforcement Learning

Reinforcement learning is known to be an effective solution provider for specific
domain problems such as game or machine control. However, agents face a challenging
task if they are to successfully apply reinforcement learning in scenarios that resemble the
complexity of real-world problems: they must create accurate representations of their
environment from high-dimensional sensory inputs and then generalize their prior
knowledge to novel situations. Interestingly, reinforcement learning, and hierarchical
sensory processing systems seem to work in harmony to help humans and other animals
solve this problem. This is supported by a wealth of neural data that shows notable
similarities between the phasic signals emitted by dopaminergic neurons and temporal
difference reinforcement learning algorithms [15]. Therefore, we use the Reinforcement
Learning as a building block of a large-scale AI. Reinforcement learning (RL) algorithm is born on
the framework of Markov Decision Process (MDP) [16], whereby, for a given state, an admissible
action takes place to maximize a reward. In more detail, an agent observes a system’s state ‘s’,
contained in a finite set of state space φ, and executes an action ‘a’ selected from a finite, not-empty
set of admissible actions A at each state in a sequence of stages (Bertsekas et al. [17]). Once the agent
receives an immediate reward for a pair of state ‘s’ and action ‘a’, the current state s will change to
the next state of s’ with probability P (s’|s, a). The name, “one-step model” of action a is from the
fact that the expected immediate rewards, R (s, a) accompanies with the state transition
probabilities, P (s’|s, a), s, and s’ϵ φ. The action a is chosen from a stochastic policy π: φ × Us ϵ φ, As

→ [−1,1], with π (s, a) = 0 for a! ϵ As. For a given policy π, s (ϵ φ, Vπ(s)) represents the expected
infinite-horizon discounted return from state s, or simply the value of s given the condition that the
agent uses policy π such that, 𝑉 (𝑠) = 𝐸 𝑟 + ϒ · 𝑟 + ϒ · 𝑟 + ⋯ |𝑠 = 𝑠, 𝜋 (1)·∑s′ P(s′|s, a)·Vπ

(
s′
)]

(3)

Q∗(s, a) = R(s, a) +

AI 2022, 3, FOR PEER REVIEW 3

DQN (Hierarchical- Deep Q Network) framework that consists of hierarchically arranged deep
reinforcement learning modules that operate at various time scales, and the model makes
decisions at two levels of hierarchy: a top-level module (meta-controller) takes in the
current state and selects a new goal, and a lower-level module (controller) chooses actions
until the goal is reached or the episode ends.

Siyuan Li et al. [13] propose an HRL framework that uses the advantage function of
the high-level policy to create auxiliary rewards for low-level skill training while maintaining
reward design generality. This auxiliary reward allows for efficient, concurrent acquisition
of high-level policy and low-level skills without the need for task-specific knowledge.
Unlike existing hierarchical multitask RL, Sungryull Sohn et al. [14] proposed a neural
subtask graph solver (NSGS) that encodes the subtask graph using a recursive neural
network embedding, where the agent must generalize to a previously unseen environment
characterized by a subtask graph that describes a set of subtasks and their dependencies.

Given the review of the short history of HRL, we envision the DDPG as a building
component of a novel HRL architecture. The capability of a single DDPG is proven well
for solving goal-oriented tasks, but it is insufficient to address complex multi-tasking or
sequential tasking problems. In addition, since DDPG is prone to the curse of
dimensionality as state grows and is born to be a single-goal oriented architecture, it is not
suitable for a large-scale AI.

In this paper, we examine an HRL architecture using the DDPG as a building block
for a large-scale AI. We envision a well-trained DDPG for a specific task as a reusable
transfer component to constitute a larger group of DDPG to solve more complex tasks.
Later, a well-trained group of DDPGs can also be adopted for another larger group, and
so on. In the following section, we explain a general approach of constructing an HRL
architecture via multiple DDPGs, followed by some experimental results in Section 3.

2. Methods
2.1. Reinforcement Learning

Reinforcement learning is known to be an effective solution provider for specific
domain problems such as game or machine control. However, agents face a challenging
task if they are to successfully apply reinforcement learning in scenarios that resemble the
complexity of real-world problems: they must create accurate representations of their
environment from high-dimensional sensory inputs and then generalize their prior
knowledge to novel situations. Interestingly, reinforcement learning, and hierarchical
sensory processing systems seem to work in harmony to help humans and other animals
solve this problem. This is supported by a wealth of neural data that shows notable
similarities between the phasic signals emitted by dopaminergic neurons and temporal
difference reinforcement learning algorithms [15]. Therefore, we use the Reinforcement
Learning as a building block of a large-scale AI. Reinforcement learning (RL) algorithm is born on
the framework of Markov Decision Process (MDP) [16], whereby, for a given state, an admissible
action takes place to maximize a reward. In more detail, an agent observes a system’s state ‘s’,
contained in a finite set of state space φ, and executes an action ‘a’ selected from a finite, not-empty
set of admissible actions A at each state in a sequence of stages (Bertsekas et al. [17]). Once the agent
receives an immediate reward for a pair of state ‘s’ and action ‘a’, the current state s will change to
the next state of s’ with probability P (s’|s, a). The name, “one-step model” of action a is from the
fact that the expected immediate rewards, R (s, a) accompanies with the state transition
probabilities, P (s’|s, a), s, and s’ϵ φ. The action a is chosen from a stochastic policy π: φ × Us ϵ φ, As

→ [−1,1], with π (s, a) = 0 for a! ϵ As. For a given policy π, s (ϵ φ, Vπ(s)) represents the expected
infinite-horizon discounted return from state s, or simply the value of s given the condition that the
agent uses policy π such that, 𝑉 (𝑠) = 𝐸 𝑟 + ϒ · 𝑟 + ϒ · 𝑟 + ⋯ |𝑠 = 𝑠, 𝜋 (1)·∑s′ P(s′|s, a)·argmax Q∗

(
s′, a′

)
(4)

For practical use of above equations in RL formalism, two functions can be formulated
in iterative dynamic programming equations such as,

Vk+1(s) = argmax
[

R(s, a) +

AI 2022, 3, FOR PEER REVIEW 3

DQN (Hierarchical- Deep Q Network) framework that consists of hierarchically arranged deep
reinforcement learning modules that operate at various time scales, and the model makes
decisions at two levels of hierarchy: a top-level module (meta-controller) takes in the
current state and selects a new goal, and a lower-level module (controller) chooses actions
until the goal is reached or the episode ends.

Siyuan Li et al. [13] propose an HRL framework that uses the advantage function of
the high-level policy to create auxiliary rewards for low-level skill training while maintaining
reward design generality. This auxiliary reward allows for efficient, concurrent acquisition
of high-level policy and low-level skills without the need for task-specific knowledge.
Unlike existing hierarchical multitask RL, Sungryull Sohn et al. [14] proposed a neural
subtask graph solver (NSGS) that encodes the subtask graph using a recursive neural
network embedding, where the agent must generalize to a previously unseen environment
characterized by a subtask graph that describes a set of subtasks and their dependencies.

Given the review of the short history of HRL, we envision the DDPG as a building
component of a novel HRL architecture. The capability of a single DDPG is proven well
for solving goal-oriented tasks, but it is insufficient to address complex multi-tasking or
sequential tasking problems. In addition, since DDPG is prone to the curse of
dimensionality as state grows and is born to be a single-goal oriented architecture, it is not
suitable for a large-scale AI.

In this paper, we examine an HRL architecture using the DDPG as a building block
for a large-scale AI. We envision a well-trained DDPG for a specific task as a reusable
transfer component to constitute a larger group of DDPG to solve more complex tasks.
Later, a well-trained group of DDPGs can also be adopted for another larger group, and
so on. In the following section, we explain a general approach of constructing an HRL
architecture via multiple DDPGs, followed by some experimental results in Section 3.

2. Methods
2.1. Reinforcement Learning

Reinforcement learning is known to be an effective solution provider for specific
domain problems such as game or machine control. However, agents face a challenging
task if they are to successfully apply reinforcement learning in scenarios that resemble the
complexity of real-world problems: they must create accurate representations of their
environment from high-dimensional sensory inputs and then generalize their prior
knowledge to novel situations. Interestingly, reinforcement learning, and hierarchical
sensory processing systems seem to work in harmony to help humans and other animals
solve this problem. This is supported by a wealth of neural data that shows notable
similarities between the phasic signals emitted by dopaminergic neurons and temporal
difference reinforcement learning algorithms [15]. Therefore, we use the Reinforcement
Learning as a building block of a large-scale AI. Reinforcement learning (RL) algorithm is born on
the framework of Markov Decision Process (MDP) [16], whereby, for a given state, an admissible
action takes place to maximize a reward. In more detail, an agent observes a system’s state ‘s’,
contained in a finite set of state space φ, and executes an action ‘a’ selected from a finite, not-empty
set of admissible actions A at each state in a sequence of stages (Bertsekas et al. [17]). Once the agent
receives an immediate reward for a pair of state ‘s’ and action ‘a’, the current state s will change to
the next state of s’ with probability P (s’|s, a). The name, “one-step model” of action a is from the
fact that the expected immediate rewards, R (s, a) accompanies with the state transition
probabilities, P (s’|s, a), s, and s’ϵ φ. The action a is chosen from a stochastic policy π: φ × Us ϵ φ, As

→ [−1,1], with π (s, a) = 0 for a! ϵ As. For a given policy π, s (ϵ φ, Vπ(s)) represents the expected
infinite-horizon discounted return from state s, or simply the value of s given the condition that the
agent uses policy π such that, 𝑉 (𝑠) = 𝐸 𝑟 + ϒ · 𝑟 + ϒ · 𝑟 + ⋯ |𝑠 = 𝑠, 𝜋 (1)·∑s′ P(s′|s, a)·Vk

(
s′
)]

(5)

Qk+1(s, a) = R(s, a) +

AI 2022, 3, FOR PEER REVIEW 3

DQN (Hierarchical- Deep Q Network) framework that consists of hierarchically arranged deep
reinforcement learning modules that operate at various time scales, and the model makes
decisions at two levels of hierarchy: a top-level module (meta-controller) takes in the
current state and selects a new goal, and a lower-level module (controller) chooses actions
until the goal is reached or the episode ends.

Siyuan Li et al. [13] propose an HRL framework that uses the advantage function of
the high-level policy to create auxiliary rewards for low-level skill training while maintaining
reward design generality. This auxiliary reward allows for efficient, concurrent acquisition
of high-level policy and low-level skills without the need for task-specific knowledge.
Unlike existing hierarchical multitask RL, Sungryull Sohn et al. [14] proposed a neural
subtask graph solver (NSGS) that encodes the subtask graph using a recursive neural
network embedding, where the agent must generalize to a previously unseen environment
characterized by a subtask graph that describes a set of subtasks and their dependencies.

Given the review of the short history of HRL, we envision the DDPG as a building
component of a novel HRL architecture. The capability of a single DDPG is proven well
for solving goal-oriented tasks, but it is insufficient to address complex multi-tasking or
sequential tasking problems. In addition, since DDPG is prone to the curse of
dimensionality as state grows and is born to be a single-goal oriented architecture, it is not
suitable for a large-scale AI.

In this paper, we examine an HRL architecture using the DDPG as a building block
for a large-scale AI. We envision a well-trained DDPG for a specific task as a reusable
transfer component to constitute a larger group of DDPG to solve more complex tasks.
Later, a well-trained group of DDPGs can also be adopted for another larger group, and
so on. In the following section, we explain a general approach of constructing an HRL
architecture via multiple DDPGs, followed by some experimental results in Section 3.

2. Methods
2.1. Reinforcement Learning

Reinforcement learning is known to be an effective solution provider for specific
domain problems such as game or machine control. However, agents face a challenging
task if they are to successfully apply reinforcement learning in scenarios that resemble the
complexity of real-world problems: they must create accurate representations of their
environment from high-dimensional sensory inputs and then generalize their prior
knowledge to novel situations. Interestingly, reinforcement learning, and hierarchical
sensory processing systems seem to work in harmony to help humans and other animals
solve this problem. This is supported by a wealth of neural data that shows notable
similarities between the phasic signals emitted by dopaminergic neurons and temporal
difference reinforcement learning algorithms [15]. Therefore, we use the Reinforcement
Learning as a building block of a large-scale AI. Reinforcement learning (RL) algorithm is born on
the framework of Markov Decision Process (MDP) [16], whereby, for a given state, an admissible
action takes place to maximize a reward. In more detail, an agent observes a system’s state ‘s’,
contained in a finite set of state space φ, and executes an action ‘a’ selected from a finite, not-empty
set of admissible actions A at each state in a sequence of stages (Bertsekas et al. [17]). Once the agent
receives an immediate reward for a pair of state ‘s’ and action ‘a’, the current state s will change to
the next state of s’ with probability P (s’|s, a). The name, “one-step model” of action a is from the
fact that the expected immediate rewards, R (s, a) accompanies with the state transition
probabilities, P (s’|s, a), s, and s’ϵ φ. The action a is chosen from a stochastic policy π: φ × Us ϵ φ, As

→ [−1,1], with π (s, a) = 0 for a! ϵ As. For a given policy π, s (ϵ φ, Vπ(s)) represents the expected
infinite-horizon discounted return from state s, or simply the value of s given the condition that the
agent uses policy π such that, 𝑉 (𝑠) = 𝐸 𝑟 + ϒ · 𝑟 + ϒ · 𝑟 + ⋯ |𝑠 = 𝑠, 𝜋 (1)·∑s′ P(s′|s, a)·argmax Qk

(
s′, a′

)
(6)

RL (Reinforcement Learning) is one of many Dynamic Programming (DP) algorithms
that is unique in its use of Monte Carlo, stochastic approximation. First, it avoids exhaustive
sweeps by restricting computation to states or in the neighborhood of either real or simu-
lated. Second, it simplifies the basic DP backup by estimating a backup’s effect through
sampling from the appropriate distribution. Finally, it represents value functions and/or
policies more compactly than lookup-table representations by using non-linear function
approximation such as linear combination of basis function, neural networks, etc.

In the proposed HDDPG architecture, V∗ and Q∗ will be kept intact for each worker
after training, while V∗ and Q∗ of a manager will be created during the manager training.
Therefore, action of a manager will be dependent on that of each worker. That is,

a|πm = a ∈ {a1, a2, a3, ..an},
Qm

k+1(s, a) = R(s, a) +

AI 2022, 3, FOR PEER REVIEW 3

DQN (Hierarchical- Deep Q Network) framework that consists of hierarchically arranged deep
reinforcement learning modules that operate at various time scales, and the model makes
decisions at two levels of hierarchy: a top-level module (meta-controller) takes in the
current state and selects a new goal, and a lower-level module (controller) chooses actions
until the goal is reached or the episode ends.

Siyuan Li et al. [13] propose an HRL framework that uses the advantage function of
the high-level policy to create auxiliary rewards for low-level skill training while maintaining
reward design generality. This auxiliary reward allows for efficient, concurrent acquisition
of high-level policy and low-level skills without the need for task-specific knowledge.
Unlike existing hierarchical multitask RL, Sungryull Sohn et al. [14] proposed a neural
subtask graph solver (NSGS) that encodes the subtask graph using a recursive neural
network embedding, where the agent must generalize to a previously unseen environment
characterized by a subtask graph that describes a set of subtasks and their dependencies.

Given the review of the short history of HRL, we envision the DDPG as a building
component of a novel HRL architecture. The capability of a single DDPG is proven well
for solving goal-oriented tasks, but it is insufficient to address complex multi-tasking or
sequential tasking problems. In addition, since DDPG is prone to the curse of
dimensionality as state grows and is born to be a single-goal oriented architecture, it is not
suitable for a large-scale AI.

In this paper, we examine an HRL architecture using the DDPG as a building block
for a large-scale AI. We envision a well-trained DDPG for a specific task as a reusable
transfer component to constitute a larger group of DDPG to solve more complex tasks.
Later, a well-trained group of DDPGs can also be adopted for another larger group, and
so on. In the following section, we explain a general approach of constructing an HRL
architecture via multiple DDPGs, followed by some experimental results in Section 3.

2. Methods
2.1. Reinforcement Learning

Reinforcement learning is known to be an effective solution provider for specific
domain problems such as game or machine control. However, agents face a challenging
task if they are to successfully apply reinforcement learning in scenarios that resemble the
complexity of real-world problems: they must create accurate representations of their
environment from high-dimensional sensory inputs and then generalize their prior
knowledge to novel situations. Interestingly, reinforcement learning, and hierarchical
sensory processing systems seem to work in harmony to help humans and other animals
solve this problem. This is supported by a wealth of neural data that shows notable
similarities between the phasic signals emitted by dopaminergic neurons and temporal
difference reinforcement learning algorithms [15]. Therefore, we use the Reinforcement
Learning as a building block of a large-scale AI. Reinforcement learning (RL) algorithm is born on
the framework of Markov Decision Process (MDP) [16], whereby, for a given state, an admissible
action takes place to maximize a reward. In more detail, an agent observes a system’s state ‘s’,
contained in a finite set of state space φ, and executes an action ‘a’ selected from a finite, not-empty
set of admissible actions A at each state in a sequence of stages (Bertsekas et al. [17]). Once the agent
receives an immediate reward for a pair of state ‘s’ and action ‘a’, the current state s will change to
the next state of s’ with probability P (s’|s, a). The name, “one-step model” of action a is from the
fact that the expected immediate rewards, R (s, a) accompanies with the state transition
probabilities, P (s’|s, a), s, and s’ϵ φ. The action a is chosen from a stochastic policy π: φ × Us ϵ φ, As

→ [−1,1], with π (s, a) = 0 for a! ϵ As. For a given policy π, s (ϵ φ, Vπ(s)) represents the expected
infinite-horizon discounted return from state s, or simply the value of s given the condition that the
agent uses policy π such that, 𝑉 (𝑠) = 𝐸 𝑟 + ϒ · 𝑟 + ϒ · 𝑟 + ⋯ |𝑠 = 𝑠, 𝜋 (1)·∑s′ P(s′|s, a)·argmax Qm

k (s
′, a′) (7)

In Equation (7), Qm
k is the action-value function of a manager, πm is the trained policy

of the manager, and a1, a2, a3, ... an represent the action of each worker.

2.2. Deep Deterministic Policy Gradients (DDPG)

Deep Deterministic Policy Gradients (DDPG) proposed by Lillicrap et al. [19], also
known as the policy-gradient actor-critic algorithm, uses some of the deep learning tech-
niques from DQN and is both model-free and off-policy. Policy-gradient algorithms es-
timate a deterministic target policy, which is considerably simpler to learn, but uses a
stochastic behavior policy with enough amount of exploration experience. Using the Actor-
Critic learning technique, the policy function is represented separately from the value
function. The Actor is the policy function neural network, while the Critic is the value
function neural network. Given the environment’s present state s, the actor emits an action
a, and given the reward received, the critic generates a TD (Temporal-Difference) error
signal. The output of the Actor is also required if the Critic is to estimate the action-value
function Q (s, a). DDPG learning is influenced by the Critic’s output for both Actors and
Critics. Neural networks can be utilized in Deep Reinforcement Learning to represent the
Actor and Critic structures. The updating rule for the Actor network’s weights is provided
by the deterministic policy-gradient theorem. The gradients obtained from the TD error

AI 2022, 3 649

signal are used to update the Critic’s network. By breaking out the temporal correlations
among several training episodes, the replay buffer stores the agent’s experiences during
training followed by random sampling of events for learning. If the Actor and Critic neural
networks’ outputs are used to directly update the Actor and Critic neural network weights,
DDPG learning algorithm will diverge. In order to regularize the learning algorithm and
improve stability, a set of target networks are built to generate the targets for TD error
computation. Finally, the gradients acquired from the loss function can be used to update
the weights of the Critic network, and the Actor network can also be updated using the
gradient from the deterministic policy, the workflow of the DDPG agent can be observed in
manager agent in Figure in [3].

2.3. Hierarchical Reinforcement Learning

Due to its innate training process, RL is not efficient for solving general problems with
complexity or conflicting goals because sampling and scaling as the state and action spaces
are very large. To overcome such complexity, hierarchical RL is born to offer generalization
capability via transfer learning. As mentioned earlier, the most common hierarchical RL
structures such as options or macro framework approaches by Sutton et al. [20] incorporate
Semi-MDP, where the decision process not only depends on the sequential nature of the
decision process, but the amount of time τ that passes between decision stages (also
discussed by Puterman et al. [15] and Barto et al. [21]). The original state transition
probability will be changed to the joint probability of P (s′, τ|s, a). The reward, R (s, a), then,
gives the amount of discounted reward expected to accumulate over the waiting time.

Feudal RL provides a control hierarchy, in which a level of managers can control
sub-managers in pyramidal configuration, as mentioned in Dayan et al. [9]. The training
starts with each manager assigning sub goals to each sub-managers to perform actions to
achieve only the assigned goal. Generally, this occurs by dividing the environment into
equal amounts of spaces for each sub-manager. As a result, the higher levels work on a
broader granularity with much smaller state space. Although it advanced the idea of HRL,
it is known to be highly inefficient in some cases. FeUdal Networks (FUN) HRL proposed
by Vezhnevets et al. [22] responded with modular Neural Network, in which each manager
receives the state and reward from the environment and sends embedded states and sub-
goal to workers. Another type of HRL is option-critic architecture by Sutton et al. [23],
whereby learning occurs in both internal policy and termination conditions rather than
using a random variable for termination conditions. Therefore, options do not have to be
defined beforehand. However, the option-critic HRL still falls short of training a complex
time horizon task with conflicting goals. In this paper, we examine a novel HRL architecture
using the DDPG as a building block for a large-scale AI by which complex time–horizon
problems can be tackled. We explain the basic principles of HDDPG in the next section.

2.4. Hierarchical DDPG (HDDPG)

Hierarchical DDPG (HDDPG) is inspired by FUN HRL in that it is driven by manage-
worker relationships (Figure 1). HDDPG is similar to FUN, since it receives states and
rewards from the environment, but it is different in handling the workers. Direct access to
the state of the environment enables the manager to understand the changing circumstances
and select works to achieve a dynamic task. This is especially efficient when tasks are
conflicting to each other in their goals. For instance, path planning, and collision avoidance
have two mutually conflicting goals since a planner intends to direct an agent to the goal
while a collision avoidance algorithm may prevent it from reaching the goal. Hierarchical
Abstract Machines (HAM) by Parr et al. [7] may be efficient to solve mutually conflicting
goals via multiple agents or policies. This is true when the problem domain is simple and
well defined. However, designing a state transition condition may be costly for multiple
tasks since manual design of state transition may not be optimal for the best performance
overall in complex environments. Therefore, we propose a HDDPG, whereby a manager-

AI 2022, 3 650

worker framework is employed with probabilistically trained action selection to trigger
each worker.

AI 2022, 3, FOR PEER REVIEW 6

to the goal while a collision avoidance algorithm may prevent it from reaching the goal.
Hierarchical Abstract Machines (HAM) by Parr et al. [7] may be efficient to solve mutually
conflicting goals via multiple agents or policies. This is true when the problem domain is
simple and well defined. However, designing a state transition condition may be costly
for multiple tasks since manual design of state transition may not be optimal for the best
performance overall in complex environments. Therefore, we propose a HDDPG, whereby
a manager-worker framework is employed with probabilistically trained action selection to
trigger each worker.

Figure 1. Hierarchical DDPG architecture.

For instance, a robotic path-planning task can be framed in a simple HDDPG structure
as shown in Figure 1. Action selection takes place, and the set of state, next state, reward,
and action are separately learned by the top-level DDPG. In this framework, each worker
is trained beforehand so that each worker is tailored to achieve a specifically assigned goal.
The goal preferred DDPG agent is trained for path planning to reach the goal, while the
obstacle avoidance preferred DDPG agent is trained to avoid dynamic obstacles. The idea
behind the HDDPG is that this basic structure can be expanded in a pyramidal
configuration as much as it is required. Therefore, a complex task, once carefully divided
into smaller tasks with specifically assigned goals, can be solved. The design specification
of the hierarchical DDPG includes the following

1. Each DDPG will share the same environment.
2. A DDPG group is composed of a DDPG at a higher layer and multiple DDPGs at a

lower layer.
3. Each DDPG or a DDPG group can become a sub layer of another DDPG.
4. Each DDPG will receive selected states from total states and reward from a tailored

reward system for each DDPG.
First, unlike the FUN architecture, by sharing the same environment, there is no need

for creating another environment or simpler version for each layer. Second, A DDPG
assembly can be a group of workers and manage to achieve a complex task. Third, the
HDDPG is flexible and expandable since each DDPG or a DDPG assembly can be added
in the existing structure. In the same token, a DDPG can be divided into multiple DDPG
for faster convergence to a goal. Finally, while sharing the environment, each DDPG in
the HDDPG architecture needs to select specific states from the total state pool and a
tailored reward system for optimal performance. The design specification of HDDPG
enables transfer learning for multiple task execution with minimal learning period in a
complex environment.

Figure 1. Hierarchical DDPG architecture.

For instance, a robotic path-planning task can be framed in a simple HDDPG structure
as shown in Figure 1. Action selection takes place, and the set of state, next state, reward,
and action are separately learned by the top-level DDPG. In this framework, each worker
is trained beforehand so that each worker is tailored to achieve a specifically assigned
goal. The goal preferred DDPG agent is trained for path planning to reach the goal,
while the obstacle avoidance preferred DDPG agent is trained to avoid dynamic obstacles.
The idea behind the HDDPG is that this basic structure can be expanded in a pyramidal
configuration as much as it is required. Therefore, a complex task, once carefully divided
into smaller tasks with specifically assigned goals, can be solved. The design specification
of the hierarchical DDPG includes the following

1. Each DDPG will share the same environment.
2. A DDPG group is composed of a DDPG at a higher layer and multiple DDPGs at a

lower layer.
3. Each DDPG or a DDPG group can become a sub layer of another DDPG.
4. Each DDPG will receive selected states from total states and reward from a tailored

reward system for each DDPG.

First, unlike the FUN architecture, by sharing the same environment, there is no need
for creating another environment or simpler version for each layer. Second, A DDPG
assembly can be a group of workers and manage to achieve a complex task. Third, the
HDDPG is flexible and expandable since each DDPG or a DDPG assembly can be added
in the existing structure. In the same token, a DDPG can be divided into multiple DDPG
for faster convergence to a goal. Finally, while sharing the environment, each DDPG in
the HDDPG architecture needs to select specific states from the total state pool and a
tailored reward system for optimal performance. The design specification of HDDPG
enables transfer learning for multiple task execution with minimal learning period in a
complex environment.

The Hierarchical DDPG algorithm (Algorithm 1) provides a control architecture coined
for expansion towards a generalized AI, utilizing its flexibility and expandability. It
is a human mimicry of one’s growth process in that a baby learns how to move the
muscles of arm, of foot, and of leg so that he or she can walk or run later. Basic muscle
movement trained earlier will help develop further complex moves later in a harmonic
fashion. Therefore, the HDDPG architecture enables accumulation of smaller policies to
build a larger policy by transfer learning and object-oriented training. The object-oriented
training enables reuse of already trained components via transfer learning.

AI 2022, 3 651

Algorithm 1 HDDPG.

Randomly initialize critic and actor networks for training Goal and Obstacle preferred tasks.
Obtain the DDPG Worker_1 trained model for goal touch preferred task.
Obtain the DDPG Worker_2 trained model for Obstacle avoidance preferred task.

:
Obtain the DDPG Worker_n trained model for Obstacle avoidance preferred task.
Randomly initialize critic and actor networks of Manager_HDDPG agent model for managerial
level tasks to deploy best worker action ‘a’ for the current state ‘s’ to achieve maximum reward.
Initialize target
Initialize replay buffer RB
for maximum Episode do

Initialize a random process N for action exploration.
Receive initial observation state s1.
for maximum step do

Retrieve action probability of manager from the manage policy:
From given action probability range:

Range 1: execute worker_1 action ‘a1’
Range 2: execute worker_2 action ‘a2’

:
Range n: execute worker_n action ‘an’
Store reward rt and new state st+1 transitions in RB.

If buffer is full, train the model
N transitions (si, ai, ri, si+1) are randomly sampled from RB.
Update all the networks and compute the loss function.

end
end

Therefore, a worker must be trained earlier than a manager associated with it. In addi-
tion, a larger HDDPG can be created via a systematic expansion in the following procedure.

(1) Primitive DDPGs interact with an environment via system dynamics in the environ-
ment.

(2) Multiple HDDPGs can be grouped into a new HDDPG for synergy and complex goal
creation.

(3) A manager’s action is a probabilistic selection of a worker.
(4) All DDPGs in the totality of HDDPG interact with the same environment.
(5) The reward of all managers is the numeric sum of all the normalized rewards from its

worker DDPGs.
(6) A new state can be added for superior performance at any level if needed.

3. Experiment

The purpose of a series of experiments is to test and validate the proposed HDDPG
architecture. The selected task is a robotic path planning in a dynamic environment with
moving goals and obstacles. That is, a robot needs to reach a random walking goal, while, at
the same time, avoiding collision with multiple dynamic obstacles. To that end, a simulation
environment is created with a snake robot (six vertical and six horizontal joints) with a
dynamic goal and three moving obstacles (Figure 2). In order to facilitate training, we
constrained the snake robot motion to planar motion. Therefore, six vertical joints of the
snake robot are activated for training. The goal is to train six vertical joints of the snake
robot to reach a dynamic goal, and, at the same time, to avoid collision with obstacles
that are walking randomly in the workspace. This scenario is common for a collaborative
robot in a smart shop floor, or in a collaborative working environment where the robot is
directed to perform tasks while avoiding dynamic objects. We assume that the robot is
equipped with a sensitive skin to measure distances to all obstacles in its workspace, while
the end effector can evaluate the distance vector to the goal. The detailed architecture of

AI 2022, 3 652

the HDDPG is illustrated in Figure 3 while the basic structure of each DDPG is kept intact
from Guo et al. [24].

AI 2022, 3, FOR PEER REVIEW 8

The purpose of a series of experiments is to test and validate the proposed HDDPG
architecture. The selected task is a robotic path planning in a dynamic environment with
moving goals and obstacles. That is, a robot needs to reach a random walking goal, while,
at the same time, avoiding collision with multiple dynamic obstacles. To that end, a
simulation environment is created with a snake robot (six vertical and six horizontal
joints) with a dynamic goal and three moving obstacles (Figure 2). In order to facilitate
training, we constrained the snake robot motion to planar motion. Therefore, six vertical
joints of the snake robot are activated for training. The goal is to train six vertical joints of
the snake robot to reach a dynamic goal, and, at the same time, to avoid collision with
obstacles that are walking randomly in the workspace. This scenario is common for a
collaborative robot in a smart shop floor, or in a collaborative working environment where
the robot is directed to perform tasks while avoiding dynamic objects. We assume that the
robot is equipped with a sensitive skin to measure distances to all obstacles in its
workspace, while the end effector can evaluate the distance vector to the goal. The detailed
architecture of the HDDPG is illustrated in Figure 3 while the basic structure of each
DDPG is kept intact from Guo et al. [24].

Figure 2. Training environment for goal-touch and obstacle-avoidance.

Figure 3. HDDPG architecture with manager–worker strategy.

The basic building block is the actor-critic DDPG, where the action selection and state
evaluation take place. Soft update copies the weights learned from the training from
current policies to the target policies to avoid bias by sequential transition of states. Each
DDPG, whether a manager or a worker, has their own replay memory where the set of

Figure 2. Training environment for goal-touch and obstacle-avoidance.

AI 2022, 3, FOR PEER REVIEW 8

The purpose of a series of experiments is to test and validate the proposed HDDPG
architecture. The selected task is a robotic path planning in a dynamic environment with
moving goals and obstacles. That is, a robot needs to reach a random walking goal, while,
at the same time, avoiding collision with multiple dynamic obstacles. To that end, a
simulation environment is created with a snake robot (six vertical and six horizontal
joints) with a dynamic goal and three moving obstacles (Figure 2). In order to facilitate
training, we constrained the snake robot motion to planar motion. Therefore, six vertical
joints of the snake robot are activated for training. The goal is to train six vertical joints of
the snake robot to reach a dynamic goal, and, at the same time, to avoid collision with
obstacles that are walking randomly in the workspace. This scenario is common for a
collaborative robot in a smart shop floor, or in a collaborative working environment where
the robot is directed to perform tasks while avoiding dynamic objects. We assume that the
robot is equipped with a sensitive skin to measure distances to all obstacles in its
workspace, while the end effector can evaluate the distance vector to the goal. The detailed
architecture of the HDDPG is illustrated in Figure 3 while the basic structure of each
DDPG is kept intact from Guo et al. [24].

Figure 2. Training environment for goal-touch and obstacle-avoidance.

Figure 3. HDDPG architecture with manager–worker strategy.

The basic building block is the actor-critic DDPG, where the action selection and state
evaluation take place. Soft update copies the weights learned from the training from
current policies to the target policies to avoid bias by sequential transition of states. Each
DDPG, whether a manager or a worker, has their own replay memory where the set of

Figure 3. HDDPG architecture with manager–worker strategy.

The basic building block is the actor-critic DDPG, where the action selection and
state evaluation take place. Soft update copies the weights learned from the training from
current policies to the target policies to avoid bias by sequential transition of states. Each
DDPG, whether a manager or a worker, has their own replay memory where the set of
state transition and action with the reward will be saved and used for training. In HDDPG,
unlike FUN, there is no need to create a tailored environment for each level, but the single
environment will serve for all DDPGs. In addition, the action from a manager will not
interact directly with the environment, but it selects a worker whose action will interact
with the environment. Therefore, the action of a manager is a probability of action selection.
For instance, the probability of selecting a DDPG with two workers will be 0.5 for each
action and the probability of selecting a DDPG with four workers, for instance, will be 0.25.

3.1. HDDPG Architecture

To build an HDDPG architecture as shown in Figure 3, two primitive DDPGs are
developed: a goal touching DDPG and a collision avoidance DDPG. First, each primitive
DDPG (worker) is trained independently. State variables and reward systems for each
DDPG are described in Tables 1 and 2, respectively. Notice that the total state variables

AI 2022, 3 653

are 20 tuples for all DDPG, therefore each individual DDPG, either a manager or a worker
in the totality of the HDDPG architecture, shares the environment and state variables.
However, the reward system for a manager will be an algebraic summation of that of all
worker DDPGs associated with it.

Table 1. State variables.

Vector variables
1. Normalized 5-joint location vectors (axis 2–axis 6): 5 variables
2. Distance vectors from the end-effector to the goal: 1 variable
3. Distance vectors from each joint to the closest nearby obstacle: 5 variables

Scalar variables
1. Distance from each joint to the closest nearby obstacle (axis 2–axis6): 4 variables
2. Boolean variable indicating if goal is touched by the end-effector
3. Boolean variable indicating if the closest nearby obstacle is touch by each joint: 5 variables

Total state variables: 20 tuples

Table 2. Reward system.

Goal touch DDPG
Reward = −(distance between the end-effector and the goal)
Reward = Reward + 1 (if the end-effector touches the goal)

Collision avoidance DDPG
Reward = +(sum of distances between each joint and the closest nearby obstacle × rbf)
Reward = Reward − 1 (if a joint touch the closest nearby obstacle)

Higher level (manage) DDPG
Reward = Total reward of goal touch DDPG + total reward of collision avoidance DDPG

Figure 3 describes the architecture of the HDDPG. The manager DDPG agent shown
with detailed workflow diagram with both Actor and Critic network structures. The DDPG
algorithm uses the knowledge about the initial state as its input and calculates one or more
action strategies as its output. The final output action is, then, obtained by adding the
random noise to the action strategy, µ(St); this is a typical end-to-end learning mode. The
agent emits an action when the task is initiated in accordance with the current state St in
order to determine whether the output action is valid or not. This yields a feedback reward
Rt of the environment. Rewards or penalty are given depending on whether the action is
beneficial to the agent in achieving the goal.

In addition, the experience buffer pool is used to hold the current state information,
the action, the reward, and the state information of the next time sequence as a training
set (St, a, Rt, St+1). In order to further improve the stability and accuracy of the algorithm,
the neural network simultaneously trains experience and continuously modifies action
strategy by randomly selecting sample data from the experience buffer pool N*(St, a, Rt,
St+1), using the gradient descent approach to update and iterate network parameters.

θµ and θQ are the parameters of the Actor and Critic networks, while θµ ′ and θQ ′

are the parameters of the target Actor and the target Critic networks, respectively. In the
same manner, at the worker agents’ level, the Goal Preferred DDPG agent and the Obstacle
Avoidance preferred DDPG agent are shown in black box view of the DDPG explained
above as the Manager DDPG agent. The actions from both the workers are effective on the
environment. The updated states are observed by the manager, which obtains the resultant
reward from the environment and probabilistically chooses the right worker for the current
state of the environment with the action, a of the manager. State variables and reward
systems are described in Tables 1 and 2, respectively.

AI 2022, 3 654

3.2. Reward System Design

In addition, reward system design is a crucial task for any RL problem. Singh et al. [25]
mentioned the criteria for an appropriate reward system and studied how to derive it while
keeping its generality. The following two training criteria will be applicable for a HDDPG
architecture.

Training criteria: reward maximum of a worker DDPG while training its manager
DDPG cannot exceed that of its own maximum reward achieved during the individual
worker training. Therefore, if RbT

max(Wn) is the maximum reward of a worker, n, before
training, and RaT

max(Wn) is the maximum reward of a worker, n, after training, then,

RaT
max(Wn) < RbT

max(Wn) (8)

The necessary condition of the above criteria is the reward balancing by normalization.
The reward range of each worker must be normalized between zero and one; otherwise,
the manager is not trainable due to reward bias. The most challenging part of HDDPG
design is building a model by combining different DDPGs or HDDPGs as a group of a
new HDDPG. In addition, the reward system designed for each DDPG must be carefully
considered for the best performance in training a real-world agent. While the reward of
each worker is from the environment as detailed in Table 2, the reward of the manager
DDPG is an algebraic sum of all worker’s rewards as below.

Rmanager = ∑n R(Wn) (9)

However, the reward system for the worker DDPG that are interacting with the
environment directly must be carefully designed to achieve a specific objective.

3.3. Results

To estimate the performance of the novel HDDPG architecture, HAM is first used
for the same motion planning task. While simple in implementation, HAM needs a state
machine for a state transition. In our experiment, a simple state transition condition is
designed with the sum of distances from the robot to all obstacles as a transition condition.
With a threshold value on the sum of distances, the manager triggers a specific worker. As
shown in Figure 4, no training occurs in the manager via HAM.

AI 2022, 3, FOR PEER REVIEW 11

With a threshold value on the sum of distances, the manager triggers a specific worker.
As shown in Figure 4, no training occurs in the manager via HAM.

Second, a single DDPG is trained for comparison with the same reward system
described in Table 2. That is, a single DDPG is trained for two conflicting goals of path
planning and collision avoidance. In Figure 5, the single DDPG demonstrates the reward
gradually increasing from 14,250 to 14,500 on average during the first 3000 episodes. Now,
for HDDPG training, two individual DDGPs are first configured and trained
independently. Figure 6 shows the training results of the goal touch DDPG and collision
avoidance DDPG, respectively. The training of each DDPG is terminated in 250 episodes
since no significant improvement is gained afterward. The manager DDPG is trained in
the same environment with the same state variables, but with the reward system outlined in
Table 2. The reward of each worker was normalized to ensure the trainability of the
manager. As shown in Figure 7, the manager demonstrated its performance gain from the
average total reward converging from 19,500 to 20,200. While two DDPGs are competing
each other for the first 1200 episodes, both DDPGs are stabilized increasing their rewards
steadily thereafter. The main reason is that the workers are competing to maximize their
rewards, but the manager selectively activate each worker depending on the
environmental change.

In Figure 8, all three training results are illustrated for performance comparison. As
mentioned earlier, no training is observed for HAM, but rewards are improved for both
DDPG and HDDPG. While the average reward of the single DDPG for the first 3000
episode is 14,390, the average reward of the HDDPG was 38% more (19,868) than that of
the single DDPG with twice as much as the reward improvement rate.

Figure 4. Path planning and obstacle avoidance by HAM.

Figure 5. Single DDPG training results with 2 conflicting goals (path planning and collision
avoidance).

Figure 4. Path planning and obstacle avoidance by HAM.

Second, a single DDPG is trained for comparison with the same reward system
described in Table 2. That is, a single DDPG is trained for two conflicting goals of path
planning and collision avoidance. In Figure 5, the single DDPG demonstrates the reward
gradually increasing from 14,250 to 14,500 on average during the first 3000 episodes. Now,
for HDDPG training, two individual DDGPs are first configured and trained independently.
Figure 6 shows the training results of the goal touch DDPG and collision avoidance DDPG,
respectively. The training of each DDPG is terminated in 250 episodes since no significant
improvement is gained afterward. The manager DDPG is trained in the same environment

AI 2022, 3 655

with the same state variables, but with the reward system outlined in Table 2. The reward
of each worker was normalized to ensure the trainability of the manager. As shown in
Figure 7, the manager demonstrated its performance gain from the average total reward
converging from 19,500 to 20,200. While two DDPGs are competing each other for the first
1200 episodes, both DDPGs are stabilized increasing their rewards steadily thereafter. The
main reason is that the workers are competing to maximize their rewards, but the manager
selectively activate each worker depending on the environmental change.

AI 2022, 3, FOR PEER REVIEW 11

With a threshold value on the sum of distances, the manager triggers a specific worker.
As shown in Figure 4, no training occurs in the manager via HAM.

Second, a single DDPG is trained for comparison with the same reward system
described in Table 2. That is, a single DDPG is trained for two conflicting goals of path
planning and collision avoidance. In Figure 5, the single DDPG demonstrates the reward
gradually increasing from 14,250 to 14,500 on average during the first 3000 episodes. Now,
for HDDPG training, two individual DDGPs are first configured and trained
independently. Figure 6 shows the training results of the goal touch DDPG and collision
avoidance DDPG, respectively. The training of each DDPG is terminated in 250 episodes
since no significant improvement is gained afterward. The manager DDPG is trained in
the same environment with the same state variables, but with the reward system outlined in
Table 2. The reward of each worker was normalized to ensure the trainability of the
manager. As shown in Figure 7, the manager demonstrated its performance gain from the
average total reward converging from 19,500 to 20,200. While two DDPGs are competing
each other for the first 1200 episodes, both DDPGs are stabilized increasing their rewards
steadily thereafter. The main reason is that the workers are competing to maximize their
rewards, but the manager selectively activate each worker depending on the
environmental change.

In Figure 8, all three training results are illustrated for performance comparison. As
mentioned earlier, no training is observed for HAM, but rewards are improved for both
DDPG and HDDPG. While the average reward of the single DDPG for the first 3000
episode is 14,390, the average reward of the HDDPG was 38% more (19,868) than that of
the single DDPG with twice as much as the reward improvement rate.

Figure 4. Path planning and obstacle avoidance by HAM.

Figure 5. Single DDPG training results with 2 conflicting goals (path planning and collision
avoidance).

Figure 5. Single DDPG training results with 2 conflicting goals (path planning and collision avoid-
ance).

AI 2022, 3, FOR PEER REVIEW 12

Figure 6. Individual worker training: rewards of obstacle avoidance worker
(Obstacle_preferred_worker_tr_reward) and goal touch worker
(Goal_preferred_worker_tr_reward).

Figure 7. HDDPG training results.

Figure 8. HDDPG demonstrated more than 35% of reward gain and more than 2 times of
reward improvement rate (the slop of the linear regression).

The result demonstrates that the proposed HDDPG-based hierarchical reinforcement
learning architecture outperforms a general reinforcement learning algorithm, or other
hierarchical learning platform, such as HAM. In summary, with a higher average reward
and a steeper trend slope than the others, the HDDPG outperforms the HAM and a single
DDPG, as shown in Figure 9. The average reward for HAM was 12,500, and the flat trend
indicates no evidence of reward gain. The single DDPG improved its reward, with an

Figure 6. Individual worker training: rewards of obstacle avoidance worker (Obsta-
cle_preferred_worker_tr_reward) and goal touch worker (Goal_preferred_worker_tr_reward).

AI 2022, 3, FOR PEER REVIEW 12

Figure 6. Individual worker training: rewards of obstacle avoidance worker
(Obstacle_preferred_worker_tr_reward) and goal touch worker
(Goal_preferred_worker_tr_reward).

Figure 7. HDDPG training results.

Figure 8. HDDPG demonstrated more than 35% of reward gain and more than 2 times of
reward improvement rate (the slop of the linear regression).

The result demonstrates that the proposed HDDPG-based hierarchical reinforcement
learning architecture outperforms a general reinforcement learning algorithm, or other
hierarchical learning platform, such as HAM. In summary, with a higher average reward
and a steeper trend slope than the others, the HDDPG outperforms the HAM and a single
DDPG, as shown in Figure 9. The average reward for HAM was 12,500, and the flat trend
indicates no evidence of reward gain. The single DDPG improved its reward, with an

Figure 7. HDDPG training results.

In Figure 8, all three training results are illustrated for performance comparison. As
mentioned earlier, no training is observed for HAM, but rewards are improved for both
DDPG and HDDPG. While the average reward of the single DDPG for the first 3000 episode

AI 2022, 3 656

is 14,390, the average reward of the HDDPG was 38% more (19,868) than that of the single
DDPG with twice as much as the reward improvement rate.

AI 2022, 3, FOR PEER REVIEW 12

Figure 6. Individual worker training: rewards of obstacle avoidance worker
(Obstacle_preferred_worker_tr_reward) and goal touch worker
(Goal_preferred_worker_tr_reward).

Figure 7. HDDPG training results.

Figure 8. HDDPG demonstrated more than 35% of reward gain and more than 2 times of
reward improvement rate (the slop of the linear regression).

The result demonstrates that the proposed HDDPG-based hierarchical reinforcement
learning architecture outperforms a general reinforcement learning algorithm, or other
hierarchical learning platform, such as HAM. In summary, with a higher average reward
and a steeper trend slope than the others, the HDDPG outperforms the HAM and a single
DDPG, as shown in Figure 9. The average reward for HAM was 12,500, and the flat trend
indicates no evidence of reward gain. The single DDPG improved its reward, with an

Figure 8. HDDPG demonstrated more than 35% of reward gain and more than 2 times of reward
improvement rate (the slop of the linear regression).

The result demonstrates that the proposed HDDPG-based hierarchical reinforcement
learning architecture outperforms a general reinforcement learning algorithm, or other
hierarchical learning platform, such as HAM. In summary, with a higher average reward
and a steeper trend slope than the others, the HDDPG outperforms the HAM and a single
DDPG, as shown in Figure 9. The average reward for HAM was 12,500, and the flat trend
indicates no evidence of reward gain. The single DDPG improved its reward, with an
average reward of 14,500 and a 0.09 slope. However, the HDDPG outperformed both
approaches, with an average reward of 20,000 and a reward trend slope of 0.2, indicating
that the reward gain is about 20% over time.

AI 2022, 3, FOR PEER REVIEW 13

average reward of 14,500 and a 0.09 slope. However, the HDDPG outperformed both
approaches, with an average reward of 20,000 and a reward trend slope of 0.2, indicating
that the reward gain is about 20% over time.

Figure 9. Comparing the average total reward (red dot) and its trend slope (blue star) of
the HAM, DDPG, and HDDPG methods.

3.4. Biased Training
Another important feature of the proposed HDDPG is the biased manager training

capability. By adding a preference factor to each worker, the manager can be trained to
prefer a certain worker to achieve a specific objective more preferably than other objectives
if needed. For instance, the manager can be trained to be stricter for collision avoidance in
a human–robot collaboration task to minimize collision with preference factor applied to
the obstacle avoidance. In a mission critical task, however, the preference factor can be
applied to the path planning worker. In Figure 10, biased manage training results are
demonstrated with 15% preference factor for each worker. As illustrated, the goal reward
demonstrates dominance compared to that of the obstacle reward in biased training for
goal touch preferred case and, in the same manner, the obstacle reward is dominant for
biased training for obstacle avoidance preferred case.

Figure 10. Biased manager training.

4. Conclusions
This paper demonstrates the idea of a novel hierarchical reinforcement learning

architecture, namely Hierarchical DDPG (HDDPG). The new architecture is demonstrated
with the goal of expanding a reinforcement learning scheme towards a generalized AI
through flexibility and expandability. The motivation of the study is from the idea that

Figure 9. Comparing the average total reward (red dot) and its trend slope (blue star) of the HAM,
DDPG, and HDDPG methods.

3.4. Biased Training

Another important feature of the proposed HDDPG is the biased manager training
capability. By adding a preference factor to each worker, the manager can be trained to
prefer a certain worker to achieve a specific objective more preferably than other objectives
if needed. For instance, the manager can be trained to be stricter for collision avoidance

AI 2022, 3 657

in a human–robot collaboration task to minimize collision with preference factor applied
to the obstacle avoidance. In a mission critical task, however, the preference factor can
be applied to the path planning worker. In Figure 10, biased manage training results are
demonstrated with 15% preference factor for each worker. As illustrated, the goal reward
demonstrates dominance compared to that of the obstacle reward in biased training for
goal touch preferred case and, in the same manner, the obstacle reward is dominant for
biased training for obstacle avoidance preferred case.

AI 2022, 3, FOR PEER REVIEW 13

average reward of 14,500 and a 0.09 slope. However, the HDDPG outperformed both
approaches, with an average reward of 20,000 and a reward trend slope of 0.2, indicating
that the reward gain is about 20% over time.

Figure 9. Comparing the average total reward (red dot) and its trend slope (blue star) of
the HAM, DDPG, and HDDPG methods.

3.4. Biased Training
Another important feature of the proposed HDDPG is the biased manager training

capability. By adding a preference factor to each worker, the manager can be trained to
prefer a certain worker to achieve a specific objective more preferably than other objectives
if needed. For instance, the manager can be trained to be stricter for collision avoidance in
a human–robot collaboration task to minimize collision with preference factor applied to
the obstacle avoidance. In a mission critical task, however, the preference factor can be
applied to the path planning worker. In Figure 10, biased manage training results are
demonstrated with 15% preference factor for each worker. As illustrated, the goal reward
demonstrates dominance compared to that of the obstacle reward in biased training for
goal touch preferred case and, in the same manner, the obstacle reward is dominant for
biased training for obstacle avoidance preferred case.

Figure 10. Biased manager training.

4. Conclusions
This paper demonstrates the idea of a novel hierarchical reinforcement learning

architecture, namely Hierarchical DDPG (HDDPG). The new architecture is demonstrated
with the goal of expanding a reinforcement learning scheme towards a generalized AI
through flexibility and expandability. The motivation of the study is from the idea that

Figure 10. Biased manager training.

4. Conclusions

This paper demonstrates the idea of a novel hierarchical reinforcement learning ar-
chitecture, namely Hierarchical DDPG (HDDPG). The new architecture is demonstrated
with the goal of expanding a reinforcement learning scheme towards a generalized AI
through flexibility and expandability. The motivation of the study is from the idea that
most complex tasks are composed of multiple conflicting goals staked from simple tasks
to highly complex tasks. The proposed HDDPG uses the DDPG as a building block of a
generalized AI, sharing the same environment and selected states, but with a designated
reward system for each DDPG to create the entirety of a hierarchical structure. Therefore, it
is simple in implementation, but powerful to solve a complex task, especially with conflict-
ing sub-goals. In this paper, we use a manager and two conflicting workers to demonstrate
the performance of the HDDPG; one worker works to reach a dynamic goal, while another
worker works to avoid multiple dynamic obstacles.

The proposed HDDPG is compared to HAM and single DDPG algorithms for perfor-
mance evaluation. The results show the HDDPG demonstrated more than 38% of reward
gain and more than two times the reward improvement rate. Another important feature of
the proposed HDDPG is the biased manager training capability. By adding a preference
factor to each worker, the manager can be trained to prefer a certain worker to achieve a
better success rate for a specific objective if needed. For instance, the manager can be trained
to be stricter for collision avoidance in a human–robot collaboration task to improve safety,
while, in a mission-critical task, the preference factor can be applied to the path-planning
worker.

Author Contributions: Investigation, D.U.; Methodology, P.N.; Resources, H.S.; Validation, D.U.;
Visualization, P.N.; Writing—original draft, D.U.; Writing—review & editing, P.N. All authors have
read and agreed to the published version of the manuscript.

Funding: This research received no external funding.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Conflicts of Interest: The authors declare no conflict of interest.

AI 2022, 3 658

References
1. Isabelle, B.; Juan, C. The Brain as a Hierarchical Organization. Am. Econ. Rev. 2008, 4, 1312–1346. [CrossRef]
2. Bill, J.; Pailian, H.; Gershman, S.J.; Drugowitsch, J. Hierarchical structure is employed by humans during visual motion perception.

Proc. Natl. Acad. Sci. USA 2020, 117, 24581–24589. [CrossRef] [PubMed]
3. Andrei, N.; Khimy, K.; Precup, D. The Paradox of Choice: Using Attention in Hierarchical Reinforcement Learning. arXiv 2022,

arXiv:2201.09653.
4. Gibson, J.J. The Theory of Affordances; Laurence Erlbaum Associates Inc.: Hilldale, NJ, USA, 1977.
5. Shubham, P.; Budhitama, S.; Hwee, T.A. End-to-End Hierarchical Reinforcement Learning with Integrated Subgoal Discovery.

IEEE Trans. Neural Netw. Learn. Syst. 2021. [CrossRef]
6. Levy, A.; Robert, P.; Kate, S. Hierarchical actor-critic. arXiv 2017, arXiv:1712.00948.
7. Parr, R.; Russell, S. Reinforcement Learning with Hierarchies of Machines; MIT Press: Cambridge, MA, USA, 1997; pp. 1043–1049.
8. Dietterich, T.G. Hierarchical reinforcement learning with the MAXQ value function decomposition. J. Artif. Intell. 2000, 13,

227–303. [CrossRef]
9. Dayan, P.; Hinton, G.E. Feudal Reinforcement Learning. In Advances in Neural Information Processing Systems 5, NIPS Conference;

Morgan Kaufmann Publishers Inc.: San Francisco, CA, USA, 1992; pp. 271–278.
10. Bacon, P.L.; Harb, J.; Precup, D. The Option-Critic Architecture. In Proceedings of the 31st Association for the Advancement of

Artificial Intelligence conference, San Francisco, CA, USA, 4–9 February 2017.
11. Wang, Z.; Xu, Y.; Wang, D. Hierarchical deep reinforcement learning reveals a modular mechanism of cell movement. Nat. Mach.

Intell. 2022, 4, 73–83. [CrossRef]
12. Kulkarni, T.D. Hierarchical deep reinforcement learning: Integrating temporal abstraction and intrinsic motivation. In Proceed-

ings of the 30th International Conference on Neural Information Processing Systems, Barcelona, Spain, 5–10 December 2016;
pp. 3682–3690.

13. Siyuan, L.; Rui, W.; Tang, M.; Zhang, C. Hierarchical reinforcement learning with advantage-based auxiliary rewards. In
Proceedings of the 33rd International Conference on Neural Information Processing Systems, Red Hook, NY, USA, 8–14 December
2019; Volume 126, pp. 1409–1419.

14. Sungryull, S. Multi-Task Hierarchical Reinforcement Learning for Compositional Tasks. Ph.D. Thesis, University of Michigan,
Ann Arbor, MI, USA, 2020.

15. Mnih, V.; Kavukcuoglu, K.; Silver, D. Human-level control through deep reinforcement learning. Nature 2015, 518, 529–533.
[CrossRef] [PubMed]

16. Puterman, M.L. Finite-Horizon Markov Decision Processes. Markov Decision Processes: Discrete Stochastic Dynamic Programming;
Wiley-Interscience: New York, NY, USA, 1994; pp. 78–79.

17. Bertsekas, D.P. Dynamic Programming: Deterministic and Stochastic Models; Prentice-Hall, Inc.: Hoboken, NJ, USA, 1987.
18. Bellman, R.E. Dynamic Programming; Princeton University Press: Princeton, NJ, USA, 1957.
19. Lillicrap, T.; Jonathan, H.; Pritz, A.; Heess, N.; Erez, T.; Yuval, T.; Silver, D.; Wierstra, D. Continuous control with deep

reinforcement learning. arXiv 2015, arXiv:1509.02971.
20. Sutton, R.; Doina, P.; Satinder, S. Between MDPs and Semi-MDPs: A Framework for Temporal Abstraction in Reinforcement

Learning. J. Artif. Intell. 1999, 112, 1–2. [CrossRef]
21. Barto, A.; Sridhar, M. Recent Advances in Hierarchical Reinforcement Learning. Discret. Event Dyn. Syst. 2003, 13, 341–375.

[CrossRef]
22. Vezhnevets, A.; Osindero, S.; Schaul, T.; Heess, N.; Jaderberg, M.; Silver, D.; Kavukcuoglu, K. FeUdal Networks for Hierarchical

Reinforcement Learning. In Proceedings of the 34th International Conference on Machine Learning, Sydney, Australia, 6–11
August 2017; Volume 70, pp. 3540–3549.

23. Sutton, R.; McAllester, D.; Satinder, S.; Mansour, Y. Policy gradient methods for reinforcement learning with function approxima-
tion. In Proceedings of the 12th International Conference on Neural Information Processing Systems (NIPS’99), Cambridge, MA,
USA; 1999; pp. 1057–1063.

24. Guo, S.; Zhang, X.; Zheng, Y.; Du, Y. An Autonomous Path Planning Model for Unmanned Ships Based on Deep Reinforcement
Learning. Sensors 2020, 20, 426. [CrossRef] [PubMed]

25. Singh, S.; Lewis, R.L.; Barto, A.G. Where Do Rewards Come From? In Proceedings of the International Symposium on AI-Inspired
Biology, AISB Convention 2010, De Montfort University, Leicester, UK, 31 March–1 April 2010; pp. 2601–2606.

http://doi.org/10.1257/aer.98.4.1312
http://doi.org/10.1073/pnas.2008961117
http://www.ncbi.nlm.nih.gov/pubmed/32938799
http://doi.org/10.1109/TNNLS.2021.3087733
http://doi.org/10.1613/jair.639
http://doi.org/10.1038/s42256-021-00431-x
http://doi.org/10.1038/nature14236
http://www.ncbi.nlm.nih.gov/pubmed/25719670
http://doi.org/10.1016/S0004-3702(99)00052-1
http://doi.org/10.1023/A:1025696116075
http://doi.org/10.3390/s20020426
http://www.ncbi.nlm.nih.gov/pubmed/31940855

	Introduction
	Methods
	Reinforcement Learning
	Deep Deterministic Policy Gradients (DDPG)
	Hierarchical Reinforcement Learning
	Hierarchical DDPG (HDDPG)

	Experiment
	HDDPG Architecture
	Reward System Design
	Results
	Biased Training

	Conclusions
	References

