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ABSTRACT

Uncrewed aircraft systems (UAS), commonly known as drones, underwent significant advancements

in recent years, particularly in the development of improved sensors and cameras that enabled high-

resolution imagery and precise measurements. This study utilized a UAS to capture aerial imagery

of Texas A & M University-Corpus Christi (TAMUCC) main campus, which was then processed

using Structure-from-Motion (SfM) photogrammetric software to generate orthomosaic imagery.

The primary purpose of this study was to utilize the orthomosaic imagery acquired from UAS to

detect, map, and quantify the number of palm trees. Initially, three deep-learning models were

trained using the same set of training samples. The model exhibiting the highest performance in

terms of precision, recall, and F1-Score was selected as the optimal model. The model obtained

through the fine-tuning of a pre-trained GIS-based model with additional training samples was

identified as the optimal choice, yielding the following values: precision=0.88, recall=0.95, and

F1-score=0.91. This model successfully detected a total of 1414 sabal palm trees within our study

area. The chosen optimal model was employed to examine the impact of ground sampling distance

(GSD) on the deep learning model. GSD values were varied, namely 5 cm, 10 cm, 20 cm, and 40

cm. The findings revealed that the model’s performance deteriorated as the resolution decreased.

Furthermore, the optimal model was subjected to an additional test using multi-temporal datasets

with approximately the same GSD (1.5 cm). These datasets included one acquired a year prior

to the model’s training datasets, and another obtained three months after the training datasets.

Remarkably, the results demonstrated that the model maintained a comparable level of accuracy

across all three testing datasets. The obtained results were verified using ground truth values taken

in a small portion of the study area. This study concludes that deep learning models for object

detection exhibit superior performance when fine-tuned with training samples specific to the area of

interest. Furthermore, it is evident that the optimal model’s effectiveness diminishes significantly

when the imagery resolution is reduced. Additionally, the performance of the deep learning model

remains relatively consistent when applied to datasets acquired at different time frames, as long as
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the resolution of the testing data remains the same. In summary, the application of deep learning

demonstrates its efficacy, user-friendliness, and time-saving capabilities for object detection. This

study shows how we can use UAS and deep learning to detect palm trees. It helps us develop better

ways to monitor and manage palm trees.
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1. INTRODUCTION

1.1 Background

Uncrewed Aircraft System (UAS), commonly known as drones, have seen significant advance-

ments in recent years. One of the main areas of advancement has been in the development of

improved sensors and cameras, which have allowed for higher-resolution imagery and more accu-

rate measurements (Colomina & de la Tecnologia (2008)). This has made UAS particularly useful

for applications such as mapping, surveying, inspection, agriculture, etc (Gupta et al. (2013)).

In addition to the hardware improvements, there have also been significant advancements in soft-

ware and algorithms for processing the data collected by UAS. One such example is Structure-from-

Motion(SfM)/multi-view stereo (MVS) photogrammetry, which is a technique that uses multiple

images taken from different viewpoints to create 3D models and maps of objects or environments

(Starek & Wilkinson (2022)). SfM algorithms are able to automatically identify common features

in the images and use them to align the images and create a 3D model. This process has been greatly

improved in recent years, allowing for more accurate and efficient 3D modeling using UAS. Overall,

the advancements in UAS-SfM photogrammetry have greatly increased the capabilities of these

technologies and have led to their widespread adoption in a variety of industries and applications

(Bäumker et al. (2013)).

The use of UAS, combined with SfM photogrammetry (referred to as UAS-SfM) has several

benefits in surveying and mapping for geospatial data acquisition. Among these benefits, cost

savings stand out as a primary advantage, as using UAS often proves to be more cost-effective

than traditional surveying and mapping techniques, particularly at localized geographic scales.

Additionally, UAS technology enables the inspection of hazardous environments or structures

without exposing human personnel to risk, while also facilitating efficient coverage of large areas.

Furthermore, these technologies have the capability to generate highly accurate 3D models, maps,

videos, and other outputs, thus rendering them valuable for a diverse range of applications. Lastly,

the application of UAS photogrammetry contributes to the reduction of environmental impact

associated with geospatial data collection (Berra & Peppa (2020)).
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One way to further improve the georeferencing accuracy of 3D models and maps created using

UAS and SfM is to use Ground Control Points (GCPs). GCPs are physical markers placed on

the ground at known locations, and their positions are precisely measured using survey-grade

equipment. By including GCPs in the images taken by the drone, it is possible to improve the

accuracy of the resulting 3D model by using the known positions of the GCPs as reference points.

Using GCPs can help to overcome errors and distortions that may be present in the images, such

as those caused by camera lens distortion or the movement of the drone. The use of GCPs can

therefore further enhance the benefits of using UAS and SfM photogrammetry, such as cost savings,

speed, and accuracy, making them even more useful for a wide range of applications (Awasthi et

al. (2020)).

Direct georeferencing using Real Time Kinematics(RTK) or Post-Processing Kinematics(PPK)

enabled onboard GNSS receivers on UAS provides precise positioning and accurate georeferenc-

ing. Integration of RTK/PPK on UAS allows the reconstruction of highly detailed and precise

outputs without using GCPs (Famiglietti et al. (2021)). The evolution from the use of the indi-

rect georeferencing method to direct georeferencing has come a long way with the advancement

in UAS technology. Initially, the indirect georeferencing method used to be employed, and now

it has evolved towards direct georeferencing. Direct georeferencing enabled with high-quality

GNSS receivers gives very accurate photogrammetric products (Regmi et al. (2023)). Although

the autonomous UAS equipped with GNSS receivers it gives mapping-grade data. To use UAS for

accurate applications such as surveying, survey grade accuracy is required. So, RTK/PPK meth-

ods are enabled along with high-quality GNSS receivers. Although direct georeferencing using

RTK/PPK enabled with GNSS gives survey-grade data we need to verify whether accuracy is in an

acceptable range or not. To check the accuracy of photogrammetric products it is recommended to

use GCPs as check points. They will be used to access the horizontal and vertical accuracy of prod-

ucts for Quality Assurance/Quality Control(QA/QC) of the obtained output (Starek & Wilkinson

(2022)).

Segmentation, image classification, and object detection are fundamental tasks in computer
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vision. Segmentation involves partitioning an image into distinct regions or objects, enabling

pixel-level understanding of the scene (Long et al. (2015)). Image classification aims to assign pre-

defined labels or classes to an entire image, determining the presence of specific objects or scenes

(Krizhevsky et al. (2017)). On the other hand, object detection focuses on localizing and classifying

multiple objects within an image, providing bounding boxes and class labels for each detected object

(Ren et al. (2015)). These techniques can be applied to photogrammetric products ie. orthomosaic

imagery created using UAS-SfM methods for segmentation, image classification, and object detec-

tion (Yuheng & Hao (2017)). There are many potential applications for image segmentation and

object detection in UAS-SfM-derived photogrammetric mapping products, including infrastructure

inspection, agriculture, natural resources management, environmental monitoring, and disaster

response (Hoeser & Kuenzer (2020); Mejias & Fitzgerald (2013)). These techniques can help to

extract useful information from the 3D models and orthomosaics created using UAS-SfM pho-

togrammetry, allowing for more effective decision-making and resource management (Hoeser &

Kuenzer (2020)). Semantic segmentation is a computer vision task that involves assigning specific

labels or categories to each pixel or object in an image while preserving the georeferencing location

of the elements (L.-C. Chen et al. (2017)). Unlike object detection or classification, which focuses

on identifying and categorizing objects, semantic segmentation provides a pixel-level understand-

ing of the scene by assigning meaningful labels to individual pixels (Cordts et al. (2016)). This

fine-grained level of analysis enables detailed and accurate mapping of objects and regions in the

image, facilitating applications such as autonomous driving, remote sensing, and urban planning

(LeCun et al. (2015)).

Machine learning and deep learning techniques can be used to improve the accuracy and

efficiency of object detection in photogrammetric products created using UAS and SfM methods.

These techniques involve training a computer program to recognize patterns and features in data,

allowing it to automatically classify and identify objects in images (Singh (2019)). One way in

which machine learning and deep learning can be used for object detection in UAS-SfM-derived

photogrammetric products is by training a model to recognize specific objects of interest, such as
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infrastructure defects or types of vegetation. The model can then be applied to the images from the

UAS and SfM photogrammetry to automatically locate and classify these objects.

In recent years, the utilization of deep learning techniques has experienced a significant surge

across a wide range of applications, including the geospatial sector. Deep learning models have

exhibited remarkable performance, surpassing traditional machine learning methods in numerous

domains (LeCun et al. (2015)). These models, with their ability to learn hierarchical representations

from data, have demonstrated superior capabilities in tasks such as image recognition, object

detection, and natural language processing (Goodfellow et al. (2016)). The geospatial sector has

also witnessed the benefits of deep learning, as it enables improved analysis and understanding of

geospatial data, leading to enhanced mapping, land cover classification, and geospatial information

extraction (Ma et al. (2019)). The increased adoption of deep learning signifies its potential to

revolutionize geospatial data analysis and open new avenues for geospatial applications (Pashaei et

al. (2020)).

1.2 Study purpose and objectives

The study purpose of this study is to utilize a high-resolution three-band (RGB) digital camera-

equipped UAS to obtain aerial imagery of the Texas A&M University-Corpus Christi (TAMU-CC)

campus for the purpose of semantically segmenting the imagery to classify and locate Texas sabal

palm trees within UAS-SfM generated orthomosaic imagery. Sabal palm trees, scientifically known

as Sabal Mexicana (Ramp (1989)), are native to South Texas and are an iconic part of the region’s

flora. These palm trees are characterized by their tall and slender trunks, topped with a crown

of large fan-shaped leaves. They are well adapted to the subtropical climate of South Texas,

thriving in moist and well-drained soil, particularly along riverbanks and coastal areas (Everitt et

al. (2002)). Sabal palm is a common species of palm found in our study area. The aerial imagery

obtained using UAS will be processed and the orthomosaic image will be analyzed in order to

assess the effectiveness and efficiency of geospatial artificial intelligence (Geo-AI) tools for palm

tree detection/classification using hyperspatial resolution (¡ decimeter) UAS imagery. In the end,

this project seeks to determine the most effective and efficient deep-learning method for detecting
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palm trees using UAS-SfM orthomosaic imagery acquired over the campus area. This information

will be valuable for various applications, such as maintenance and planning for campus landscaping.

Objectives:

1) Evaluate the effectiveness and efficiency of a commercial GIS-based deep learning model

(toolkit built into the software) versus customizable deep learning models for detecting sabal palm

trees. And select the optimal model which performs better.

2) Evaluate the effect of the image’s ground sampling distance (GSD), which is a function of the

UAS altitude above ground level and sensor resolution, on the overall performance of the optimal

model obtained from objective 1 for palm tree detection.

3) Apply the most effective Geo-AI model(optimal model), based on results from objective 1,

to UAS imagery acquired on a different flight date than the flight used for model development. This

allows assessment of the model’s generalizability and its utility for palm tree change detection via

future UAS-SfM surveys.

1.3 Motivation

This study aligns with a project named the campus survey project. In this project, UAS-SfM

surveys of the campus are performed on a biannual and quarterly basis to derive 2D/3D mapping

products. The TAMUCC Historic Imagery Geoportal(https://arcg.is/1ir0Wy0), which is funded

by TAMUCC Operations and implemented by the Measurement Analytics Lab (MANTIS) of the

Conrad Blucher Institute for Surveying and Science, is also a product of this project. The primary

goal of this initiative is to track changes on the TAMUCC campus in order to enhance and accelerate

campus maintenance efforts.

The application of GeoAI techniques for semantic segmentation, classification, and detection

of the trees in UAS imagery brings forth numerous advantages. Specifically, detecting palm trees

within our area of interest serves as a valuable use case. These techniques play a pivotal role in

enhancing efficiency by automating the process of locating and classifying objects, particularly

in UAS orthomosaic images, eliminating the need for manual inspection. The scalability of

object detection algorithms enables efficient and accurate analysis of extensive areas, while their
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versatility extends their applicability to various industries and applications. By leveraging these

GeoAI techniques, we can unlock significant improvements in the efficiency and effectiveness of

palm tree detection and mapping processes. In this study, the performance of the deep learning

model was evaluated by downsampling high-resolution imagery and testing it on larger GSD values.

This approach aimed to assess the model’s efficiency over larger areas solely by adjusting the flying

altitude while assuming consistent camera settings such as resolution and focal length.

This study can also be used to monitor changes in palm trees, loss of palm trees after storms or

due to disease (if they fall over), and monitor planted palms. This information can be valuable for

resource management and conservation efforts. In addition, palm tree detection can inform urban

planning decisions on campus, such as the placement of new palm trees or the removal of existing

ones. Finally, palm tree detection can be used to create maps and guides for tourists visiting the

university, highlighting the locations and types of palm trees on campus. The results obtained from

this study have several potential uses in a university setting. One application is in landscaping

and maintenance, where palm tree detection can be used to identify and map the locations of palm

trees on campus, allowing for more efficient landscaping and maintenance efforts. Another use is

in emergency preparedness, where accurate mapping of palm tree locations can help to predict the

potential damage that may be caused by natural disasters such as hurricanes eg. Hurricane Harvey

and to plan accordingly.

1.4 Literature review

The growth and advancement of UAS technology have been remarkable in recent years. The

combination of technological developments, cost reductions, and improved regulations has led to

increased adoption of UAS across diverse sectors. The most common applications of UAS are in

geospatial data acquisition, urban planning development (Vanderhorst et al. (2021)), agroforestry

(Pádua et al. (2017)), crop biomass monitoring (Wang et al. (2021)), forest ecosystems monitoring

(Tomljanović et al. (2022)), facility condition monitoring (Jeong et al. (2022)), etc. The utilization of

UAS has proven beneficial in facility management, allowing for efficient inspection and monitoring

of various infrastructure assets. UAS enables facility managers to assess the condition of buildings,
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roofs, and other structures, enhancing maintenance and decision-making processes (Yasin et al.

(2016)).

Using SfM/MVS photogrammetry techniques on overlapping UAS images, it becomes possible

to generate precise and detailed 3D point cloud data representing land cover and terrain characteris-

tics within the captured scene (Sturdivant et al. (2017)). Conventional photogrammetry necessitates

the use of expensive and precisely calibrated metric cameras, which limits the widespread appli-

cation of UAS for mapping purposes. In contrast, SfM takes advantage of multiple overlapping

images to extract three-dimensional object information, eliminating the requirement for precise

camera calibration. By analyzing the camera movement and capturing different perspective views

of the scene, SfM reconstructs the three-dimensional structure from the two-dimensional image

sequences (Starek & Wilkinson (2022)). The SfM image processing workflow involves key steps

such as inputting image sequences, extracting features using algorithms like the scale-invariant

feature transform(SIFT), performing bundle block adjustment for error minimization and sparse

point cloud generation, introducing GCPs and initial camera positions for georeferencing, and using

MVS algorithms for densifying the point cloud (Strecha et al. (2012); Slocum & Parrish (2017)).

The output obtained from UAS-SfM photogrammetric method can be used to perform some

tasks like image segmentation, object detection, land cover classification, change detection, etc.

(Yao et al. (2019)). Object detection, a problem in computer vision that involves identifying and

locating objects in images or videos, has been a subject of significant research in recent years. It is

considered to be one of the most fundamental and challenging problems in computer vision, and

its development over the past two decades can be seen as a representation of the overall progress of

the field of computer vision Zou et al. (2019)). The commonly used application of object detection

algorithms is pedestrian detection (Dollar et al. (2011)), video surveillance (Sharma & Lohan

(2019)), tree detection (Yang et al. (2009)), fault detection, and condition monitoring (Reddy &

Banerjee (1990)), etc.

Object detection algorithms are often used to identify trees in images or videos by looking for

objects with characteristics that are typical of trees. The use of object detection algorithms for palm

7



tree detection in high-resolution aerial imagery has become increasingly popular in recent years

(Malek et al. (2014)). These methods are now widely used for this purpose due to their effectiveness

and ease of use (Wuest et al. (2016)). This can involve training a machine learning model on a

dataset of labeled images that include palm trees so that the model can learn to recognize the visual

characteristics of palm trees. Once the model has been trained, it can be used to identify palm

trees in new images by detecting objects that have similar characteristics to the palm trees in the

training dataset. There are a number of different object detection algorithms that can be used for

this purpose, including machine learning-based approaches such as convolutional neural networks

(CNNs) (Mubin et al. (2019)) and traditional computer vision approaches such as Haar cascades

(Rahmat et al. (2019)).

GeoAI refers to the integration of AI and machine learning techniques with geospatial data

and GIS. It involves leveraging advanced algorithms and models to analyze and extract insights

from spatial data. Traditional machine learning methods in GeoAI typically involve manual feature

extraction and the application of statistical models for geospatial data analysis (Gehrmann et al.

(2018)). In contrast, deep learning, a subset of machine learning, employs artificial neural networks

to automatically learn hierarchical representations from data, eliminating the need for explicit

feature engineering (LeCun et al. (2015)). Deep learning models, such as CNNs have shown

superior performance in GeoAI tasks like image classification, object detection, and semantic

segmentation. The ability of deep learning to handle complex spatial patterns and extract high-

level features contributes to its prominent role in advancing GeoAI capabilities (Guo et al. (2020)).

Specifically, in UAS semantic image segmentation, Geo-AI plays a crucial role in accurately

delineating and categorizing objects and regions within UAS imagery, facilitating applications

such as land cover mapping and environmental monitoring (Li & Hsu (2022)). The adoption of

GeoAI has gained significant momentum in GIS software, such as Esri’s ArcGIS Pro platform,

enabling users to incorporate AI capabilities for spatial analysis, image classification, and predictive

modeling (Janowicz et al. (2020)).

In 2016, Li et al. (2016) proposed a deep learning-based framework for oil palm tree detection
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and counting using high-resolution images for Malaysia. The trees in the study area were crowded

and had overlapping crowns, which have not been well-studied in previous palm tree detection

research. It detected more than 96% of the trees in the study area, compared to manual interpretation.

This accuracy was higher than the accuracies of the other three tree detection methods used in a

similar study. The study by Li et al. (2018) used a two-stage convolutional neural network-based oil

palm detection method in high-resolution imagery and their proposed approach achieved a much

higher F1 score of 94.99% compared to existing methods such as single-stage CNN, Support Vector

Machine (SVM), Random forest and Artificial neural Network(ANN).

In the ongoing exploration of land cover classification and object detection through high-

resolution remote sensing, recent studies have revealed the promising potential of deep learning

methods. A study done in 2020, (Zhang et al. (2020)) demonstrated that these advanced models

outperform traditional pixel-based methods, especially in the classification of varied vegetation

types. Furthermore, these deep learning approaches have achieved remarkable accuracies of over

98% in object detection tasks, thereby substantially reducing the labor intensity associated with

traditional methodologies (Zhang et al. (2020)). Another study carried out to classify landcover

classification in high-resolution imagery addresses the challenge of scarce labeled data in the

remote sensing domain. It employs two strategies: transfer learning (TL) with fine-tuning and

remote sensing-specific data augmentation. Using these techniques on the UC Merced dataset, it

achieves land-cover classification accuracies of 97.8 ± 2.3%, 97.6 ± 2.6%, and 98.5 ± 1.4% with

CaffeNet, GoogLeNet, and ResNet, respectively (Scott et al. (2017)).

Some studies show that deep learning algorithms based on Faster-RCNN employed to build

the model extracts from images and detect palm trees are more effective, accurate detection, and

correctly count the number of palm trees from the UAS images (Liu et al. (2021)). A study shows

although Faster-RCNN performs well on well-known datasets for general object detection, it does

not show clear advantages over other classical machine learning-based methods for oil palm tree

detection (Zheng et al. (2019)). In this study, the authors mentioned that they tailored the Region

Proposal Network (RPN) and proposed simple empirical planting rules which achieved a higher
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average F1- score than the normal Faster-RCNN method. Despite achieving good results using

artificial intelligence(AI) techniques for smart palm tree detection in many studies, the effective

and efficient management of large-scale palm plantations still remains a challenge (Hajjaji et al.

(2022)).

In recent years, countries like Indonesia, Malaysia, and Columbia which are the largest producers

and exporters of palm oil (Potter (2015)) have been using artificial intelligence methods in UAS

imagery in recent years to research palm trees and increase production. Recently, one study carried

out by Khaled et al. (2022) shows AI was used for spectral classification to identify basal stem rot

disease in oil palm using dielectric spectroscopy measurements. They investigated the feasibility

of applying a genetic algorithm (GA) as a feature selection algorithm and their result showed that

the best classification accuracy was achieved using this approach. The Spread of the RED Weevil

(RPW) has become an existing threat to palm trees around the world (Hussain et al. (2013)). A

study by Kang et al. (2022) proposed a novel remote sensing approach to recognize and monitor

red palm weevil in date palm trees using a combination of vegetation indices, object detection, and

semantic segmentation techniques.

Recent research indicates that the application of deep learning techniques for classification and

detection using high-resolution aerial imagery, integrated into GIS-based software like ArcGIS

Pro, is gaining momentum. This surge in interest can be attributed to its user-friendly interface,

rapid processing speed, and the high-quality results it delivers (Abd-Elrahman et al. (2021)). The

increasing adoption of these methods is driven by several compelling benefits. For one, the

integration of deep learning with GIS is relatively seamless, reducing the barrier to entry for users

who are not necessarily experts in machine learning (Ma et al. (2019)).

A study conducted in 2020 by Pashaei et al. (2020) shows the efficiency of deep learning,

specifically deep CNNs, for land cover prediction tasks using hyper-spatial resolution images from

UAS, even in complex ecosystems like coastal wetlands. After reviewing and training several

recent deep CNN architectures on a limited labeled image set, it was found that some simpler

models perform comparably or even better than more complex, deeper architectures, and with
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fewer training epochs. This result is particularly significant in the realm of RS applications where

the availability of extensive training samples is typically limited (Pashaei et al. (2020)). Another

study in individual banana tree delineation in high-resolution UAS imagery shows that the CNN

algorithm outperformed SVM, object-based image analysis (OBIA), and Neural Network (NN)

techniques (Kuikel et al. (2021)).
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2. STUDY AREA AND DATASETS

2.1 Study area

The study took place at the main island campus of Texas A & M University-Corpus Christi

(TAMUCC), located in the South Texas region, Figure 1 shows the location map of TAMUCC. The

campus is situated in zone 9b on the plant hardiness zone map, which provides favorable conditions

for the growth of palm trees (Cathey (1990)). Palm trees are known for their distinct visual appeal

and diverse species that can flourish in hot weather environments. The primary aim of this study is

to conduct a comprehensive count of the palm trees, namely the sabal palm, present on the campus,

as they comprise a significant portion of the overall plant population within the campus grounds.

Nueces
Texas

Texas A & M University - Corpus Christi

±

±

±

0 0.5 10.25 km

0 500 1,000250 km 0 20 4010 Kilometers

Figure 1: Study area: Texas A & M University- Corpus Christi.
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2.2 Data collection

To obtain aerial imagery for this study, the WingtraOne drone (Figure 2), manufactured by

the Swiss company Wingtra, was utilized. The WingtraOne drone is renowned for its advanced

capabilities in capturing high-resolution aerial images with exceptional precision. Equipped with a

42-megapixel full-frame camera, the drone ensures the acquisition of detailed imagery for accurate

analysis. The flight control was facilitated by the WingtraPilot application, which offers intuitive

controls and enables precise mission planning and execution. Furthermore, for post-processing of

the acquired imagery, the WingtraHub platform was employed, utilizing PPK techniques to enhance

the geolocation accuracy of the imagery (Wingtra (n.d.). The combination of the WingtraOne

drone, WingtraPilot application, and WingtraHub platform provided a comprehensive solution for

acquiring and processing the aerial imagery required for this study (Wingtra (2022)). According

Figure 2: WingtraOne UAS platform (left) and captured UAS during the flight (right).

to the manufacturer’s manual, the WingtraOne UAS can achieve high levels of accuracy, with a

horizontal accuracy of 1 cm and vertical accuracy of 2-3 times that factor (Wingtra (2022)). This

UAS features vertical take-off and landing (VTOL) capabilities, which allows it to take off and land

vertically, reducing damage from belly landings and enabling operation in more confined spaces.

It is powered by a pair of UN3481 compliant, 99 Wh Li-ion batteries, and has an automatic landing

accuracy of less than 5 m. The UAS can handle wind speeds up to 8 m/s, but flying in stronger

winds is not recommended. The WingtraOne has three levels of speed: operational cruise speed

(16 m/s), sink cruise speed (3 m/s), and sink hover speed (2.5 m/s), and its current market price is
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around $30,000 without advanced add-ons (Wingtra (2022)). Table 1 shows the specifications of

WingtraOne UAS.

Table 1: WingtraOne UAS specifications.

SN Details
Classification VTOL

Battery Li-ion, UN3481 compliant
Weight (with batteries) 3.7 kg (8.1 lb)
Approximate flight time 59 minutes

Maximum winds sustained 43 km/h
Temperatures -10 to +40 °C

Receiver multi-frequency PPK GNSS receiver
Camera/Sensor Sony RX1R II, 42 MP

For this study, the mission was planned by using WingtraPilot software with side and front

overlaps of 80% and 75%, respectively. The transition height of UAS was 50m and the transition

degree of 37°. The flight direction of UAS was 292°and the height above ground was 120m. The

GSD setting at the flight planner was 1.6 cm/px. During this flight terrain following setting was

disabled. Figure 3 shows the screenshot of the flight plan used for this research. Details about the

flight are given in Table 2.

Table 2: Flight plan details.

SN Details
Location Texas A & M University-Corpus Christi

Transition Height 50m
Transition direction 37 degree

Height above ground 120 m
Ground sampling distance (GSD) 1.6 cm/px

Flight direction 292 degree
Flight time 57 minutes

Side overlap 80%
Front overlap 75%

Table 3 below displays the flight dates, platforms, flight height above ground level, and GSD

values for each flight utilized in the research. Notably, a substantial portion of the study relied on

the flight data collected on September 11, 2022, which served as the primary dataset for training
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Figure 3: Screenshot of flight plan during image acquisition.

the models. The first and second objectives focused specifically on this flight data, while the third

objective incorporated data from all three flights.

Table 3: Details of all UAS flights used for this study.

SN Platform Flight Date Altitude(m) GSD(cm/px)
1 Wingtra One Gen I 12/3/2022 120 1.6
2 Wingtra One 9/11/2022 120 1.6
3 Wingtra One 7/11/2021 120 1.6

The ground control data collection for this study involved conducting a survey using a Septentrio

NR3 GNSS receiver. The Septentrio NR3 GNSS receiver is a high-precision global navigation

satellite system (GNSS) device widely used for accurate positioning and data collection. It of-

fers centimeter-level accuracy and is equipped with advanced features such as multi-constellation

tracking and real-time kinematic (RTK) capabilities. The receiver operates on multiple satellite

constellations, including GPS, GLONASS, Galileo, and BeiDou, ensuring robust and reliable

positioning in various environments (Septentrio (n.d.)).

In this study, the collection of accurate ground truth GNSS data was accomplished using a high-
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precision survey-grade Septentrio NR3 GNSS receiver, as demonstrated in Figure 4. This particular

GNSS receiver was chosen for its robustness, portability, and lightweight design, which make it a

suitable option for fieldwork. Additionally, the device is equipped with quad-constellation, multi-

frequency, and all-in-view Real-Time Kinematic (RTK) positioning, providing superior accuracy

and enhancing anti-jamming and monitoring capabilities.

Figure 4: Field capture during GNSS survey.

Furthermore, the Septentrio NR3 GNSS receiver is equipped with features such as one-touch

logging, an all-in-one base, rover operation, and 4G/LTE connectivity, which streamline data

collection and transmission. The table 4 presents the technical specifications of the device used. A

series of ground control targets were obtained and utilized as checkpoints to ensure the accuracy

of the collected data. The rover pole was set at a height of 2 meters, and the epoch was set to 10

seconds, in order to maintain consistency and reliability throughout the data collection process.

The base station was used for PPK image geotagging. The base station collected static GNSS data

for two hours using regular RTK. And, the raw positioning data were transmitted to the Online

Positioning User Service (OPUS) and underwent a correction in order to obtain the final location.
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The data was collected on 9/30/2021. The utilization of this survey-grade GNSS receiver and

careful data collection protocols ensured the acquisition of high-quality, accurate ground truth data

in this study.

Table 4: GNSS receiver specifications.

SN Details
Company Septentrio

Model Altus NR3
GNSS Technology NavIC: L5

RTK-INS Horizontal accuracy 0.6 cm
RTK-INS Vertical accuracy 1cm

Certificates CE, FCC6 Class B Part 15, ISO 9001-2015

2.3 Computing resources

In this study, the aerial imagery collected using UAS was processed using Agisoft Metashape

Professional version 2.0.1 software. ArcGIS Pro Version 2.9.0 was utilized for visualization, map

making, and the implementation of the GIS-based deep learning model. Python version 3.10.1 was

employed for the customizable model. The hardware specifications for carrying out these tasks

included an Intel(R) Core(TM) i9-10900X CPU @ 3.70GHz 3.70 GHz processor, 64 GB of RAM,

and an NVIDIA Quadro RTX 5000 GPU. These software tools and hardware specifications were

instrumental in facilitating the successful execution of the research tasks and analysis.
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3. METHODOLOGY

3.1 UAS image processing

The WingtraOne UAS platform was employed for conducting this study, utilizing three distinct

flights. Table 5 below displays the dates of each flight used in the study. Notably, the majority of

the study was conducted using the flight data collected on 09/11/2022, which served as the primary

dataset for training the models. Objectives one and two were based on this specific flight data,

while objective three incorporated all three flights.

Table 5: UAS flights used for this study

SN Date
1 12/3/2022
2 9/11/2022
3 7/11/2021

Following the collection of raw image data from a UAS flight, post-processing procedures were

conducted to generate orthomosaic imagery. The SfM photogrammetry technique was utilized in

this study to process the collected images. SfM employs similar features present in overlapping

images to extract a series of three-dimensional points, resulting in the generation of accurate

orthomosaic imagery. Several user-friendly, open-source SfM photogrammetry processing software

options are available for mapping data obtained from UAS. In this study, the Agisoft Metashape

Professional software (Agisoft (n.d.)) was utilized for processing the collected data. This software is

known for its reliability and accuracy in generating high-quality orthomosaics, making it a suitable

choice for processing the data obtained in this study.

SfM is a powerful technique for generating orthomosaics from UAS imagery. The process

begins with the collection of raw image data, which is then used by SfM photogrammetry software

to extract 3D points from overlapping images. The software refines the camera positions through

bundle adjustment, which improves accuracy. These points are then used to generate a dense

point cloud, which is filtered to remove noise and outliers. Next, a digital surface model (DSM)

is created by interpolating the point cloud to generate a continuous elevation model. The DSM
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is used to project the images and correct for terrain relief distortions, producing high-resolution

orthomosaic imagery by mosaicking the images together. The orthomosaic is georeferenced to a

specified coordinate system, and its output format is suitable for further analysis (Stanton et al.

(2017)). Figure 5 shows the summary of the SfM workflow. The orthomosaic obtained from SfM

is used later on for object detection.

Figure 5: Summary of SfM workflow (Starek et al. (2019)).

3.2 Deep learning methods

In this study, two types of deep learning methods were employed to detect objects in a specific

area of interest. One approach involved using a commercially available GIS-based pre-trained deep

learning model, specifically Esri’s pre-trained model for palm tree detection. The other method

relied on the customizable model, namely maskRCNN.

While the commercialized GIS-based object models are user-friendly and require minimal

modifications, they may not always be a perfect fit for our area of interest since they are trained

on representative datasets. Although these models can be fine-tuned to improve their accuracy for

specific applications, we may face limitations in modifying their architecture or parameters beyond

what has been programmed into the tool.

In contrast, the customizable models offer greater flexibility and control over the model’s
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parameters, making it possible to optimize the model’s accuracy, recall, and precision for our study

area. By tweaking the model’s parameters and adding new code, more specific and detailed results

were obtained that meet our needs. However, using these models may require more expertise and

time to implement effectively.

3.2.1 Esri’s pre-trained model for palm tree health detection

Esri’s pre-trained palm tree health detection object detection model has emerged as a promising

tool in the realm of remote sensing and precision agriculture, given its capacity to efficiently

identify the health status of palm trees within large-scale plantations. This model, built on a deep

learning architecture, is designed to detect and classify palm trees according to their health status,

specifically identifying whether they are healthy, diseased, or dead (Esri (2022)).

The model’s development is rooted in a robust deep learning framework that leverages convo-

lutional neural networks (CNN) (Figure 6) and transfer learning. Transfer learning allows for the

adaptation of pre-existing models trained on large-scale datasets to new applications with smaller

datasets, making it possible to optimize model performance for specific use cases. The Esri model,

in particular, was initially trained on a large dataset of images of palm trees, enabling it to accurately

detect and classify palm tree health with high levels of accuracy (Esri (2022)). To achieve accurate

Figure 6: CNN Architecture.

palm tree detection, the model uses a set of pre-defined features, including color, texture, and

shape. In addition, the model employs a region proposal network, which identifies potential palm

tree locations in the input image, followed by a classification network that labels each detected palm

tree according to its health status. The resulting output is a set of bounding boxes that indicate the

location of each identified palm tree (Esri (2022)).
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The utility of this pre-trained model has been demonstrated in a variety of scientific research

contexts, including crop monitoring, disease management, and conservation biology. For instance,

researchers have used the Esri model to analyze the health status of oil palm plantations, where

accurate identification of diseased trees can help prevent the further spread of disease and minimize

yield losses. Additionally, the model has been used to monitor the health of palm trees in natural

habitats, where it can aid in conservation efforts and help prevent the spread of invasive species

(Esri (2022)).

3.2.2 Fine tuned Esri’s pre-trained model

In this study, a fine-tuning approach was employed to adapt a pre-trained deep-learning model

for our area of interest, focusing on palm tree health detection. To this end, 350 new training

samples were collected by using the Label Object tool in ArcGIS Pro, allowing us to label and

annotate images of palm trees in our study area. Specifically, a new schema for the model was

created by drawing bounding boxes around each palm tree using a circle drawing tool as shown in

Figure 7 using ArcGIS Pro. These bounding boxes served as the training samples for the model,

which was then fine-tuned with the new data to improve its accuracy in identifying palm trees in

our area of interest.

Fine-tuning pre-existing deep learning models has emerged as an effective technique for op-

timizing their performance in specific applications. Although Esri’s pre-trained object detection

model has shown promise in identifying palm trees, fine-tuning can help enhance the model’s

accuracy and robustness for specific research questions and study areas. Here, the steps taken to

fine-tune the Esri model are described for the investigation of palm tree health in our area of interest.

Initially, additional labeled images of palm trees within the study area were collected and

annotated with bounding boxes to indicate the location and health status of each tree. Label Object

tool was utilized in ArcGIS Pro to facilitate this annotation process, creating a new schema that

was specific to our palm tree detection task.

Subsequently, the transfer learning capabilities of the Esri model were leveraged to fine-tune it

with our new training samples. To this end, the final classification layer of the model was replaced
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Figure 7: Training samples for Esri’s deep learning model.

with a new layer having the same number of outputs but specific to our area of interest. The model

was then retrained on the new dataset using stochastic gradient descent, adjusting the learning rate

and number of epochs as necessary to optimize its performance.

3.2.3 Mask R-CNN

Mask R-CNN (Mask Region-based Convolutional Neural Network) is a powerful deep learning

model that has made significant contributions to the field of object detection and instance segmen-

tation. It was introduced by He et al. in their influential paper titled ”Mask R-CNN” published

in 2017 (He et al. (2017)). The Mask R-CNN model builds upon the Faster R-CNN framework

(Figure 8), which combines region proposal networks (RPN) and convolutional neural networks

(CNN) for object detection. Mask R-CNN (Figure 9) extends this framework by incorporating an

additional branch for pixel-level segmentation, enabling the accurate generation of instance-level
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masks along with object detection.

Figure 8: Faster R-CNN framework architecture

Figure 9: Mask R-CNN framework architecture

The architecture of Mask R-CNN consists of several key components. Firstly, it includes a
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backbone CNN, such as ResNet or VGG, which extracts high-level features from input images.

These features capture important visual information necessary for accurate object detection and

segmentation. The second component is the region proposal network (RPN). The RPN generates

potential bounding box proposals by sliding a small network over the CNN feature map. These

proposals are then refined and classified to identify object instances. The third component involves

two sibling subnetworks. The first subnetwork performs object classification and bounding box

regression to precisely identify the class labels and refined bounding box coordinates for each

proposal. This subnetwork uses a region of interest (RoI) pooling operation to align the features

with the proposals. The second subnetwork is responsible for generating a binary mask for each

proposal, enabling pixel-level segmentation. This subnetwork applies RoIAlign, which preserves

spatial information, to extract region-specific features. The features are then passed through a small

fully convolutional network to predict the mask for each object instance (He et al. (2017)).

Mask R-CNN has achieved remarkable performance on various benchmark datasets, including

the widely-used COCO (Common Objects in Context) dataset. It has outperformed previous

methods in terms of accuracy and has become a fundamental tool in computer vision applications.

Since its introduction, several studies have further improved and extended the Mask R-CNN

framework. For example, Lin et al. proposed ”Panoptic FPN,” which combines Mask R-CNN with

panoptic segmentation for unified scene understanding (Lin et al. (2017)). Moreover, Chen et al.

introduced ”Cascade Mask R-CNN,” an improved version that utilizes a cascade of Mask R-CNN

models to enhance accuracy and robustness (K. Chen et al. (2019)).

3.3 Data preparation

3.3.1 Evaluate the model effectiveness

The completion of this task relied on orthomosaic imagery obtained from the flight date of

09/22/2022. Initially, training samples were created using the label object tool within ArcGIS Pro.

A total of 500 samples were generated, of which 350 were allocated for training and validation,

while the remaining 150 were designated for testing purposes across all deep-learning models. It

is important to note that for the pre-trained deep learning model, only the testing data were utilized
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since this model had already undergone training and validation by Esri.

Subsequently, the training and validation datasets were exported to generate image chips. The

following Figure 10 shows examples of image patches created in this study. A total of 19,630

image patches, each with a resolution of 448x448 pixels, were extracted for training and validation.

Following this, each deep learning model, except for the pre-trained one, underwent training and

validation procedures. After training and validation, the trained models were employed to detect

palm trees within the orthomosaic image from the same date. Subsequently, a non-maximum

suppression technique was applied to eliminate detected objects with an overlap exceeding 0.5.

Once the non-maximum suppression was performed, the obtained results were employed to compute

accuracy for object detection. Esri’s pre-trained model which was fine-tuned with extra training

samples of our study area was selected as an optimal model for this study.
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Figure 10: Examples of images patches

3.3.2 Evaluate the effect of the GSD

To conduct this study, the flight conducted on the same day as mentioned above, i.e., 09/22/2022

was utilized. The objective of the study was to assess the impact of different GSD values on the

performance of the optimal model selected from objective one. To achieve this objective, the

orthomosaic was resampled into multiple GSD values: 5 cm, 10 cm, 20 cm, and 40 cm. The

bilinear interpolation method was employed for resampling, as it allows for determining new cell

values based on the average of four neighboring cells, thereby facilitating data smoothing (Gupta

et al. (2013)). It is important to note that only the GSD values were modified, while all other

parameters remained constant for each GSD setting. By varying the GSD values, the study aimed
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to investigate the effect of resolution on the overall performance of the deep learning model.

To accomplish this objective, the same testing dataset used in objective one was employed.

The model that exhibited optimal performance, trained using the original GSD value imagery in

conjunction with Esri’s pre-trained model, was utilized for palm tree detection. Subsequently,

the detected results were evaluated to assess the model’s performance for specific GSD values,

generating an accuracy assessment table for each GSD setting. Consistency was ensured by

employing the same set of 150 testing samples, from which performance values were derived.

This systematic approach enabled a comprehensive evaluation of the model’s performance across

different GSD values, specifically for the task of palm tree detection.

3.3.3 Generalization of the optimal model performance on different flight dates

In the previous tasks, the imagery captured on 09/22/2022 served as the foundation for training,

testing, and evaluating various models, ultimately identifying the optimal model across different

GSD values. The optimal model was not trained on different time frame data. It was employed to

see its performance on different flight dates. Based on these findings from the above two findings,

the current task focuses on assessing the performance of the optimal model using data collected

on different dates. Initially, the model’s performance was evaluated using flight data captured a

few months later on 12/03/2022, utilizing the same testing data as before. Subsequently, the same

evaluation process was repeated with data collected approximately one year prior on 11/07/2021.

By analyzing these datasets, changes in the number of detected palm trees over time were observed,

allowing for insights into the dynamics of the palm tree population. Furthermore, the model’s

adaptability to varying temporal conditions was assessed by examining its performance across

different flight datasets. This comprehensive analysis sheds light on the model’s ability to detect

palm trees over time and its flexibility in handling diverse temporal scenarios.

To evaluate the realism of the optimal model, a small portion of the study area was selected as

shown in Figure 11. In this designated area, ground truth data regarding the number of palm trees

were meticulously digitized through manual digitization, ensuring that no palm tree was overlooked

within the defined region. The datasets captured on 09/22/2022 were employed to establish the
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ground truth. Subsequently, the optimal model was employed to detect palm trees within the same

area for three different flights. This step aimed to verify whether the optimal model produced

realistic results aligned with the ground truth data. By comparing the model’s detections with the

manually digitized ground truth, the study assessed the model’s accuracy and realism in accurately

identifying palm trees within the study area.

Figure 11: Area of campus selected for generalization of the optimal model on different flight
dates

3.4 Accuracy assessment

Precision, recall, and F1 score are crucial metrics for accurately assessing the performance of

object detection deep learning models. Precision measures the model’s ability to correctly identify

positive instances, recall evaluates its effectiveness in capturing all actual positives, and the F1 score

provides a balanced measure considering both metrics. These metrics play a vital role in evaluating

the accuracy of models across various domains, including medical imaging. Widely adopted in

object detection evaluations, precision, recall, and F1 score offer a comprehensive understanding

of the model’s performance and facilitate informed decision-making. By considering different

aspects of detection accuracy, these metrics provide reliable assessments of deep learning models

for object detection tasks (Powers (2020)).

In object detection, TP (true positive), TN (true negative), FP (false positive), and FN (false
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negative) are terms used to assess the accuracy of the model’s predictions. TP refers to correctly

identified positive instances, meaning the model correctly detects and classifies an object as present.

FN represents instances where an object is present, but the model fails to detect it. FP signifies

instances where the model incorrectly identifies an object that is not actually present, resulting in

a false alarm. TN, which stands for correctly identified negative instances, is not commonly used

in object detection evaluation as it pertains to correctly identifying the absence of objects. Since

the primary focus of object detection is to accurately detect positive instances, TP, FN, and FP are

the key metrics for evaluating the model’s performance in detecting objects of interest (Goutte &

Gaussier (2005)).

Precision measures the model’s capability to accurately identify positive instances among all

instances it classifies as positive. It is calculated as TP divided by the sum of TP and FP (Goutte &

Gaussier (2005)):

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑃

(𝑇𝑃+𝐹𝑃)

Recall, also referred to as sensitivity, quantifies the model’s ability to capture all true positive

instances in the dataset. It is calculated as TP divided by the sum of TP and FN (Goutte & Gaussier

(2005)):

𝑅𝑒𝑐𝑎𝑙𝑙 =
𝑇𝑃

(𝑇𝑃+𝐹𝑁)

While precision emphasizes the accuracy of positive predictions, recall highlights the model’s

capacity to identify all relevant positive instances. The F1 score integrates both precision and recall

into a unified metric, providing a balanced assessment of the model’s overall performance. It is the

harmonic mean of precision and recall, calculated using the formula (Goutte & Gaussier (2005)):

𝐹1𝑠𝑐𝑜𝑟𝑒 = 2∗ (𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 ∗ 𝑟𝑒𝑐𝑎𝑙𝑙)
(𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛+ 𝑟𝑒𝑐𝑎𝑙𝑙)
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4. RESULTS AND DISCUSSION

4.1 Results for evaluation of model performance

4.1.1 Qualitative results

In the imagery captured on 09/22/2022, our evaluation involved three deep learning models:

Esri’s pre-trained model, Esri’s fine-tuned model, and Mask R-CNN. Throughout the evaluation

process, we computed the average precision scores for each model, providing a quantitative measure

of their performance. Notably, the fine-tuned model achieved the highest average precision score

of 0.85, indicating superior performance in detecting and localizing palm trees. Mask R-CNN

exhibited a moderate average precision score of 0.75, showcasing its satisfactory performance.

On the other hand, the pre-trained model demonstrated the lowest average precision score of 0.51

among the three models, highlighting its comparatively weaker performance. Figure 12 illustrates

the Essential Model Details (EMD) files associated with each model to offer a deeper understanding

of these models. These files encompass essential information such as the model name, specific

parameters, and the corresponding average precision scores.

Figure 12: Emd files for Esri’s pre-trained model(a), Esri’s fine-tuned model(b) and mask R-CNN
model(c).

In Figure 13, the ground truth and prediction results obtained for all three models are presented.

The observations for Esri’s pre-trained model reveal instances where the model detected half palm
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trees as palm trees. Furthermore, the model exhibited false positives by identifying areas with only

grass as palm tree locations. Additionally, it demonstrated incorrect classifications, labeling objects

on the road as palm trees. Another notable misclassification occurred when the model identified

bush areas as palm trees, as illustrated in Figure 13.

On the other hand, the fine-tuned model showed significant improvements. It accurately

detected even partial palm trees, showcasing its ability to identify smaller portions of palm trees.

This outcome underscores the effectiveness of the fine-tuning process in enhancing the model’s

performance. Furthermore, in the ground truth section, the model correctly refrained from detecting

any palm trees in an area with grass that did not contain actual palm trees.

As for the mask R-CNN result, the model demonstrated commendable accuracy in detecting

palm trees. The predicted locations are closely aligned with the ground truth values, as depicted in

Figure 13. Notably, the model successfully detected both complete palm trees and partial portions

of palm trees. However, limitations were observed when it came to distinguishing between palm

trees and areas with grass. In certain instances, the model misclassified grassy areas as palm trees,

as evident in Figure 13. These observations highlight the overall effectiveness of Mask R-CNN in

accurately detecting palm trees, while also emphasizing the need for further refinement to address

misclassifications and false positive results.

In addition to assessing the model’s performance, another crucial factor in evaluating its ef-

fectiveness is training and validation loss. Figure 14 provides graphs that depict the training and

validation loss trends across the processed batches. The blue curve represents the training loss,

while the orange curve represents the validation loss. Analyzing the graph for Esri’s pre-trained

model, a noticeable misalignment between the validation loss and the training loss is observed.

This misalignment has contributed to the generation of false positive results, indicating a deviation

from the desired performance levels. Notably, the alignment between the two curves begins to im-

prove after approximately 70,000 batches are processed, suggesting a gradual convergence towards

optimal performance.

On the other hand, for Esri’s fine-tuned model, the graph demonstrates a remarkable alignment
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a)                                                                            b)                                                                                  c)                                                                                                                

Figure 13: Ground truth and predicted results results for Esri’s pre-trained model(a), Esri’s
fine-tuned model(b) and mask R-CNN model(c).

between the training and validation loss curves throughout the entire training process. This

substantial improvement in performance is evident from the graph, signifying the effectiveness

of fine-tuning. It is noteworthy that the training and validation loss quickly approach saturation

after processing approximately 1,200 batches, indicating significant progress in model convergence

and enhanced performance. Turning to the results for Mask R-CNN, the graph showcases a similar

trend. Initially, the training loss is relatively high but gradually decreases as the number of batches

increases, indicating the model’s learning from the training data. As more training data is processed,

the validation loss trend aligns more closely with the training loss trend, indicating the model’s

ability to generalize well to unseen data. After approximately 4,000 batches, both the validation

and training loss reach a point of saturation, signifying the convergence of the model.

Figure 14 presents the palm trees detected using the respective models, providing a clear visual

representation of the performance differences among all three models. Starting with the pre-trained
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Figure 14: Graphs showing training loss and validation loss for Esri’s pre-trained model(a), Esri’s
fine-tuned model(b), and mask R-CNN model(c).

model, the results indicate poor performance in palm tree detection. The model only identifies a

limited number of palm trees, disregarding the majority of them. Additionally, Figure 14 reveals

instances where the model mistakenly detects objects resembling palm trees, suggesting accidental

detections. As a result, the pre-trained model fails to yield satisfactory outcomes within our specific

area of interest. Hence, it becomes imperative to consider making changes or fine-tuning the model

to enhance its performance and achieve more accurate results.

In contrast, the fine-tuned model showcases significant improvements in performance, surpass-

ing its previous capabilities. The model demonstrates an impressive ability to accurately detect

almost all palm trees. Although there are a few exceptions, where the model misclassifies certain

portions of a parking lot as trees, overall, its performance is commendable. Figure 13 provides

evidence of the successful detection of palm trees in the given area, reaffirming the effectiveness of
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the fine-tuning process in enhancing the model’s performance and suitability for palm tree detection

tasks.

Turning to Mask R-CNN, the results depicted in Figure 15 demonstrate the accurate detection

of palm trees within the scene, with most of the palms being detected. The model exhibits a

commendable ability to precisely identify palm trees. Notably, it showcases a superior feature in

comparison to Esri’s pre-trained model, as it provides more detailed and precise segmentation, as

highlighted by the autonomous drawing of additional borders around the detected objects. However,

one limitation of the model is the occasional occurrence of the same palm tree being detected as

multiple distinct trees. This duplicative detection poses challenges in accurately quantifying the

total count of palm trees. Figure 16 shows maps of the whole campus area showing detected palm

trees from all three object detection models.

       

a)                                                                                                                        b)   

 

c) 

Figure 15: Detected palm trees for Esri’s pre-trained model(a), Esri’s fine-tuned model(b), and
mask R-CNN model(c).
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a)                                                                                                                       b) 

 

 

c) 

Figure 16: Map of detected palm trees for the whole study area for Esri’s pre-trained model(a),
Esri’s fine-tuned model(b), and mask R-CNN model(c).

4.1.2 Quantitative results

The performance of the three deep-learning models was evaluated using quantitative metrics

such as precision, recall, and F-score. Table 6 presents the obtained values for each model. Upon

examining the table, it becomes evident that the fine-tuned model has achieved superior performance

compared to the other two models. Mask R-CNN also demonstrates moderate results, while the

pre-trained model performed poorly in all evaluated metrics. The notable contrast in performance

among the models shows the effectiveness of fine-tuning in enhancing the model’s capabilities.

Figure 17 presents a graph that is plotted using the values obtained from Table 4. The graph

provides a visual representation of the performance comparison among the three models in terms

of precision, recall, and F-score. Notably, Esri’s fine-tuned model emerges as the top performer
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Table 6: Accuracy assessment results for all three models

SN Model Precision Recall F1-Score
1 Pre-trained model 0.51 0.56 0.53
2 Fine-tuned model 0.85 0.94 0.89
3 Mask R-CNN model 0.75 0.93 0.83

across all aspects, exhibiting superior performance in precision, recall, and F-score. While Mask

R-CNN demonstrates a comparable recall to the fine-tuned model, its performance in the other

two parameters falls short. On the other hand, the pre-trained model consistently exhibits the

lowest performance among the three models, underscoring its limitations in accurately detecting

and classifying palm trees.

Figure 17: Graph showing value of precision, recall and f1-Score for all three deep learning
models

After evaluating the results obtained from the three different methods, it is evident that the

most effective and efficient deep learning model for palm tree detection is Esri’s model after fine-

tuning it with datasets specific to our area of interest and making parameter adjustments during

object detection. This conclusion is based on the observation that the pre-trained model, although

convenient to use, failed to deliver satisfactory results in our area of interest. Despite its suitability

for the trained data, it did not meet our desired outcome. On the other hand, the model that was
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fine-tuned using training samples from our area of interest, along with adjustments to parameters

such as threshold, maximum, and minimum cell size, demonstrated satisfactory performance.

Finally, the Mask R-CNN model proved to be a powerful approach. While it successfully

detected most of the palm trees, it occasionally detected a single palm tree in multiple instances.

The notable aspect of this model was its ability to draw precise boundaries for each palm tree

based on its unique shape and it showed multiple palm trees in a single tree. However, this

characteristic may not be suitable for accurate palm tree counting since it could lead to inflated

counts. Considering all aspects, Esri’s model after fine-tuning with our area-specific data stands

out as the superior choice for palm tree detection in terms of overall performance.

After careful analysis, Esri’s fine-tuned model has been selected as the optimal choice for

detecting and counting palm trees on the island campus. In contrast, Esri’s pre-trained model ex-

hibited the lowest accuracy and weakest performance among the three models evaluated. However,

after undergoing the fine-tuning process, the model achieved a significantly improved accuracy,

surpassing the performance of the other models. Additionally, the fine-tuned model offers user-

friendly features compared to Mask R-CNN, making it easier to use. It also demonstrates faster

processing speed in comparison to Mask R-CNN. Even users with limited knowledge of object

detection models can employ this model after conducting preliminary research.

Thus, the fine-tuned model is considered easy to use, fast, and efficient, providing the highest

accuracy among the three models. Unlike Mask R-CNN, the fine-tuned model exhibits a lower

frequency of miscounting a single palm as multiple instances. While it is important to note that

the trained deep learning model is not perfect like a human, it remains the optimal model among

the models tested in this study. Figure 16(b) illustrates a map of our campus with the detected

palm trees, revealing a total of 1414 palm trees identified. Given these findings, we will continue

utilizing Esri’s fine-tuned model in further studies to test our results on GSD.
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4.2 Results for optimal model performance on increasing GSD

4.2.1 Qualitative results

In the results section, we utilized Esri’s fine-tuned model identified as the optimal choice in the

previous analyses to evaluate the impact of various GSD values on its performance. Initially, the

orthomosaic imagery had an original GSD value of 1.6 cm. To investigate different GSD values,

we resampled our study area to encompass four additional GSD values. Specifically, the model

was tested on GSD values of 5 cm, 10 cm, 20 cm, and 40 cm. Figure 18 presents the outcomes of

the detected palm trees using the aforementioned fine-tuned model, using the original GSD value

orthomosaic imagery. These results highlight the model’s effectiveness in detecting palm trees

across varying GSD values.

Figure 18(a) shows results obtained from the original GSD value, this result is the same as

above. This was taken to visualize and the comparison with other GSD values. Figure 18(b)

shows the detected palm trees for the orthomosaic with a 5 cm GSD value. The results indicate

that the majority of palm trees were successfully detected, resembling the outcomes obtained with

the original GSD value of 1.6 cm. However, there were a few areas where palm trees were not

detected, and in some instances, non-palm trees were misclassified as palm trees. This discrepancy

may arise because the model was trained on high-resolution data and is now being validated on

lower-resolution data. Despite these exceptions, the model exhibited favorable performance at this

GSD value overall. Therefore, we can conclude that the model performs well, even when the GSD

value is increased by approximately five times compared to the original resolution.

In Figure 18(c), the results of detected palm trees on a 10 cm GSD value are presented. It

is evident that while this model did not perform as well as it did on the original GSD value and

the 5 cm GSD value, it still managed to detect a significant number of palm trees. However, it is

important to note that the model also detected a considerable number of objects as trees that were

not present in the ground truth data. This indicates that the model might have a tendency to produce

false positive detections or exhibit challenges in accurately distinguishing between palm trees and

other objects for this GSD value.
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We applied the same model to evaluate the object detection performance on imagery with a

20 cm GSD value. However, the results demonstrated that the model was not effective for higher

GSD values. Figure 18(d) visually presents the detected palm trees, revealing a minimal number

of objects correctly identified as palm trees. Moreover, a majority of the objects classified as palm

trees were found to be false positives. The reduced resolution in the imagery posed a significant

challenge in accurately distinguishing palm trees from other objects. This outcome aligns with the

expected behavior, as the model was trained using specific resolution training samples, making it

difficult to adapt to different resolutions during feature detection.

Seeking further confirmation, we extended our investigation to an even lower resolution by

testing the model on a 40 cm GSD value orthomosaic. Regrettably, the results shown in Figure

18(e) highlighted that the model detected very few true palm trees, with a notable presence of false

positives. These consistent findings suggest that as the resolution of the imagery decreases, the

model’s performance gradually deteriorates. The limitations of the model became evident when

applied to imagery with lower resolutions. The model’s reduced accuracy in identifying palm trees

at lower resolutions reinforces the importance of utilizing appropriate training data and considering

the impact of varying resolutions on the model’s performance in object detection tasks.
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Figure 18: Detected palm trees for different GSD values using the optimal model: a) 1.6cm GSD;
b)5cm GSD; c)10cm GSD; d)20cm GSD; e)40cm GSD
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4.2.2 Quantitative results

Table 7 provides the precision, recall, and F-Score values obtained for each GSD value. Analysis

of the table reveals that the model exhibits good performance up to a GSD decrease of approximately

five times, and performs well up to a decrease of around 10 times. However, beyond these thresholds,

the model’s performance noticeably declines. In an effort to further assess its effectiveness, the

model was tested on even higher GSD values. Unfortunately, the results indicated that the model

is not effective for those GSD values. The findings emphasize the importance of considering the

GSD value and its impact on the model’s performance in object detection tasks.

Table 7: Accuracy assessment results for different GSD values

SN GSD(cm) Precision Recall F1-Score
1 Original(1.6) 0.88 0.95 0.91
2 5 0.91 0.88 0.89
3 10 0.91 0.85 0.87
4 20 0.42 0.12 0.18
5 40 0.11 0.03 0.05

Figure 19 displays a graph generated using the values obtained from Table 5, showcasing a

visual representation of the performance comparison across various GSD values, including 1.6 cm,

5 cm, 10 cm, 20 cm, and 40 cm. Notably, the model exhibits satisfactory performance up to 10 cm

GSD. However, its performance drastically declines at 20 cm and 40 cm GSD values. In fact, it can

be concluded that the model fails to effectively operate at these higher GSD values.
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Figure 19: Graphs showing value of precision, recall and f1-Score for all GSD values

4.3 Results for optimal model performance on different UAS flights at same altitude/GSD

4.3.1 Qualitative results

In this phase of the study, we employed Esri’s fine-tuned model, which emerged as the optimal

model, as demonstrated in section 4.1. Table 8 presents the number of detected palm trees across

three flight dates, offering insights into the model’s performance. Furthermore, Figure 19 provides

a graphical representation of the detected palm trees over these flight dates, facilitating visual

comprehension of the results.

Table 8: Number of palm trees detected in datasets collected in three different flight dates

Date Number of detected palm trees
12/3/2022 1256
9/11/2022 1414
7/11/2021 1589

The findings reveal a difference of 168 fewer detected trees in the datasets collected after the

flight used for training the optimal model. Conversely, for the datasets gathered one year prior to

the training datasets, the model detected an additional 175 trees. These results highlight the impact

of training data on the model’s performance and its ability to accurately detect palm trees in varying

temporal contexts.
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Figure 20: Graphs showing the number of palm trees detected on three different flight dates.

4.3.2 Quantitative results

Table 9 presents the precision, recall, and F-Score values obtained for all three flight dates. The

results demonstrate comparable accuracy parameters across the different dates. However, when

considering precision, recall, and F1-score, it becomes evident that the model tested on datasets

collected a few months after the training datasets exhibit superior performance compared to the

model used to detect objects in the datasets collected one year prior.

Table 9: Accuracy assessment results for different flight dates.

SN Flight date Precision Recall F1-Score
1 12/03/2022 0.89 0.93 0.90
2 9/11/2022 0.88 0.95 0.91
3 7/11/2021 0.87 0.92 0.89

To provide a visual representation of these results, Figure 21 showcases a graphical depiction

of the performance obtained for the three different flight dates. The graph allows for a clearer

understanding of the variations in model performance across the specified timeframes.
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Figure 21: Graphs showing the value of precision, recall, and f1-Score for three different flight
dates.

4.4 Verification of optimal model performance with the ground truth data

To verify the performance of the optimal model, ground truth data were utilized. A small

portion of the study area designated for verification was carefully digitized. The optimal model was

employed to detect palm trees within the same area. The findings are presented in Table 10, ground

truth data, and the detected palm trees using the optimal model. It is important to acknowledge that

no model is flawless, and slight deviations are expected. In this context, the detection of 2 extra

palm trees is within a reasonable margin. Moreover, the results demonstrate a realistic trend as no

additional palm trees have been planted after 2021. Furthermore, the model’s detections align with

the reduced number of palm trees observed in the imagery captured on later dates. Overall, these

findings provide confidence in the model’s performance and its ability to effectively detect and

track changes in the palm tree population over time. Figure 22 visually demonstrates significant

observations regarding the palm tree population within the study area. Within the yellow box in

the imagery captured on 11/07/2021, a palm tree is clearly visible. However, in the subsequent

imagery shown within the red box, which was taken at later dates, no palm tree exists in the same

location. Furthermore, the yellow box highlights the presence of palm trees in both the imagery
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Table 10: Ground truth data, predicted palm trees, and percentage of correctly detected palm trees
for different flight dates.

SN Flight date Ground Truth Counted Predicted Palms % Correct
1 12/03/2022 186 184 98.92
2 9/11/2022 191 190 99.47
3 7/11/2021 194 191 98.45

from 11/07/2021 and 09/11/2022. However, in the imagery taken on 12/03/2022, depicted by the

two red boxes, there are no palm trees at those specific locations. These findings suggest that certain

palm trees were removed from the study area, potentially due to factors such as natural decay or

intentional replacement with alternative features.

Figure 22: Change in the number of detected palm trees for three different flight dates in the small
area designated for verification of the detected results with the ground truth.

4.5 Discussion

In this study, three deep learning models were tested: Esri’s pre-trained model for palm tree

health detection, Esri’s model fine-tuned with our study area data, and the Mask-RCNN object

detection model. The performance of these models was evaluated based on precision, recall, and

F1-score. After carefully evaluating these models, we found that Esri’s pre-trained model, when

fine-tuned by adjusting the parameters and incorporating training samples from our specific area

of interest, outperformed the other model. It exhibited superior results in terms of accuracy and

efficiency. One of the key challenges encountered during the testing phase was determining the
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appropriate number of training samples for the model. Initially, testing with over seven hundred

training samples led to overfitting, while using only fifty samples resulted in underfitting. To

overcome this, extensive training and testing were conducted to identify the optimal number of

training samples that would yield the best results for the model.

To assess the performance of the fine-tuned model across different GSD values, we initially

worked with an orthomosaic that had an original GSD value of 1.6 cm. To explore the impact of

varying GSD values, we resampled a portion of our study area, starting with a GSD value of 10 cm.

This allowed us to evaluate the performance of the fine-tuned model, which had been identified as

the best model among the three tested in this study. One of the primary challenges we faced during

this task involved resampling the orthomosaic into various GSD values. This process proved to be

time-consuming and resource-intensive. In future endeavors, it may be more efficient to consider

utilizing different flight data instead of resampling the imagery. This approach would eliminate the

need for resampling and potentially streamline the workflow, saving valuable time and resources.

Moreover, the performance of the optimal model was evaluated on datasets from different flight

dates, examining the changes in the number of palm trees (i.e., removal or plantation) within the

given time frame. When the optimal model was applied to the flight datasets captured three months

after the training datasets, it detected fewer palm trees. There are two possible explanations for

this observation: either there was significant plantation activity between the flights, resulting in

new palm trees that the model failed to detect, or the model’s performance was optimal for this

particular dataset.

In summary, this study was subject to several limitations. First, training the deep learning

model using high-resolution datasets proved to be time-consuming. Additionally, the model’s

limited flexibility in terms of modifications posed a constraint compared to more customizable

models. Moreover, the process of resampling the orthomosaic into higher GSD values was found

to be time-consuming. These limitations should be taken into consideration when interpreting the

findings and planning future research in this area.
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5. CONCLUSION AND FUTURE WORK

5.1 Conclusion

In this project, a UAS was utilized to collect high-resolution imagery, while GNSS technology

was employed to acquire accurate checkpoints. The primary objective of this study was to evaluate

the performance of deep-learning models in detecting palm trees. To achieve this, the imagery

of the Ward Island campus was captured and processed using the SfM technique. The resulting

output, known as the orthomosaic, obtained from the SfM photogrammetric software, was then

utilized for palm tree detection using deep learning methods.

Flights were conducted using the VTOL fixed-wing Wingtra One UAS to capture the necessary

imagery. As mentioned earlier, the collected images were processed using SfM photogrammetric

software, specifically the metashape software. This software played a crucial role in the processing

and analysis of the imagery data, enabling the generation of accurate and detailed outputs for further

investigation and evaluation.

The orthomosaic imagery obtained from the previous stage of this study served as the basis for

creating training samples. The process involved utilizing a create label tool, where the boundary

of each palm tree was delineated by drawing a circle around it. These training samples were

strategically collected in a distributed manner to ensure the representation of all palm trees within

the study area. Various types of training samples were carefully gathered, encompassing the full

range of palm tree characteristics. Subsequently, the training samples underwent a training process,

and the resulting models were thoroughly analyzed to assess their performance and effectiveness.

Upon analysis, it was determined that the fine-tuned model outperformed the other two models

in several key aspects. This decision was based on various factors, including precision, recall,

F1-score, and compatibility with new users. The three models tested in this study were Esri’s

pre-trained model for palm tree health detection, the fine-tuned Esri model using training data

specific to our area of interest, and the customizable Mask R-CNN model.

Among the three models, the pre-trained model by Esri exhibited the poorest performance,

while the Mask R-CNN model showed better results than the pre-trained model. However, the fine-
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tuned Esri model emerged as the top-performing model among the three. This superiority could

be attributed to the fact that the Esri pre-trained model was initially trained on a broader range of

palm tree data, while the fine-tuning process integrated training samples from our specific area of

interest. Additionally, certain parameters were adjusted, such as the cell size and threshold value, to

optimize the model’s performance for our particular dataset. The fine-tuned Esri model showcased

its capability to accurately detect palm trees within our study area, surpassing the performance

of both the pre-trained Esri model and the Mask R-CNN model. These findings highlight the

importance of fine-tuning deep learning models using localized training data, as it enables the

model to adapt and excel in specific geographical contexts.

The optimal model obtained in the previous stage of this study was utilized to evaluate the impact

of various GSD values, namely 5cm, 10cm, 20cm, and 40cm. The findings demonstrate that the

model performs satisfactorily up to a resolution of 10cm. However, its performance deteriorates

significantly at higher GSD values. This result highlights the importance of considering the

resolution of imagery when utilizing the model. If the intention is to apply the model to lower-

resolution imagery, it is necessary to retrain the model using training samples specifically obtained

from lower-resolution imagery. This adjustment ensures that the model is optimized and aligned

with the characteristics of the imagery it will be applied to.

Moreover, the results lead to the conclusion that deep learning models demonstrate superior

performance when applied to testing samples possessing comparable resolution values. Models

trained and evaluated on imagery with similar resolutions consistently produce more accurate

and reliable outcomes. Hence, it is crucial to take into account the compatibility between the

resolution of the training data and that of the testing data to ensure optimal model performance.

This consideration greatly influences the model’s ability to generalize effectively and make accurate

predictions on new data. By aligning the resolutions of the training and testing datasets, the model

can better adapt to the specific characteristics and features present in the target imagery, ultimately

enhancing its overall performance.

The optimal model obtained from this study was evaluated using different temporal datasets.
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As the resolution of all three datasets was approximately the same, the performance accuracy of

the model was found to be comparable. Notably, the model exhibited similar performance values

for the datasets collected three months apart. However, it displayed slightly lower accuracy values

for the datasets collected more than a year apart. This discrepancy could be attributed to various

factors, including the dissimilarity between the training data and the new datasets, differences

in lighting conditions during image capture, variations in weather conditions, and distinct flight

settings. Despite these considerations, the results indicate that the optimal model performs well on

datasets with the same resolution, even when collected at different periods.

In conclusion, the utilization of UAS-derived orthomosaic imagery proved to be valuable for

the detection of palm trees using deep learning models. The optimal model developed in this

study exhibited promising performance in detecting sabal palm trees on the TAMUCC campus.

This research successfully demonstrated the application of UAS-derived orthomosaic imagery in

evaluating deep learning models, identifying the optimal model, and employing it to detect and

map palm trees within our study area.

5.2 Future work

In future studies, it is recommended to broaden the scope of data sources by incorporating

elevation data, such as a DSM, canopy height, etc. in addition to the orthomosaic obtained from

processing UAS imagery. The inclusion of this information might improve the performance and

generalizability, as it provides valuable information about the vertical distribution and structural

characteristics of palm trees.

Expanding the range of tested models is also advisable. While this study focused on evaluating

three specific models, there is room for improvement by considering a more diverse set of data.

This includes not only using images from the orthomosaic but also incorporating training samples

obtained by capturing palm trees from different angles. By diversifying the dataset, the model can

be exposed to a wider range of variations and complexities, leading to improved performance and

robustness.

Furthermore, it is important to explore and evaluate other deep learning models that offer
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greater customization options. While the GIS-based deep learning model used in this study

provided satisfactory results, there may be alternative models that can offer enhanced performance

by leveraging additional features and capabilities. Exploring and comparing different models can

help identify the most suitable and effective approach for palm tree detection.

In this study, to test the results on GSD, the original orthomosaic imagery was resampled to get

lower-resolution datasets. So, in future research, it is recommended to collect data from multiple

flights and process them separately instead of relying on resampling the original orthomosaic

imagery to obtain lower-resolution datasets. This approach would allow for the acquisition of

diverse datasets with varying resolutions, better representing real-world scenarios. By utilizing

separate flights for different resolution levels, the data collection process can be tailored to capture

imagery specifically suited to each resolution, avoiding the potential loss of information or artifacts

introduced by resampling.

For future research, it is recommended to consider various temporal settings when evaluating

the model’s performance. Accounting for factors such as lighting conditions, weather conditions,

wind speed, and direction, consistent flight settings, the machine used for imagery processing,

and maintaining the same settings during image processing might lead to improved model perfor-

mance. By considering these factors, the model can be better aligned with the specific conditions

encountered during different flights, thereby enhancing its overall effectiveness.

In conclusion, future research should consider incorporating elevation data such as canopy

height, expanding the range of tested models, exploring alternative deep-learning models, taking

different flight height data, and training the optimal model using a diverse set of testing data

including the images taken from different camera angles on UAS, doing model performance test

not only in sabal palms but also in other species of palm and considering weather conditions

and consistent image processing settings and devices. By doing so, the accuracy, adaptability,

generalizability, and overall performance of palm tree detection can be further enhanced, providing

valuable insights for the effective management and monitoring of palm tree populations.

50



REFERENCES

Abd-Elrahman, A., Britt, K., & Liu, T. (2021). Deep learning classification of high-resolution

drone images using the arcgis pro software: For374/fr444, 10/2021. EDIS, 2021(5).

Agisoft. (n.d.). [web page]. St. Petersburg, Russia. Retrieved from https://www.agisoft.com/

features/professional-edition/

Awasthi, B., Karki, S., Regmi, P., Dhami, D. S., Thapa, S., & Panday, U. S. (2020). Analyzing the

effect of distribution pattern and number of gcps on overall accuracy of uav photogrammetric

results. In International conference on unmanned aerial system in geomatics (pp. 339–354).
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