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SSP (simulation-based sampling protocol) is an R package that uses simulations of 
ecological data and dissimilarity-based multivariate standard error (MultSE) as an esti-
mator of precision to evaluate the adequacy of different sampling efforts for studies 
that will test hypothesis using permutational multivariate analysis of variance. The 
procedure consists in simulating several extensive data matrixes that mimic some of 
the relevant ecological features of the community of interest using a pilot data set. For 
each simulated data, several sampling efforts are repeatedly executed and MultSE cal-
culated. The mean value, 0.025 and 0.975 quantiles of MultSE for each sampling effort 
across all simulated data are then estimated and standardized regarding the lowest 
sampling effort. The optimal sampling effort is identified as that in which the increase 
in sampling effort does not improve the highest MultSE beyond a threshold value (e.g. 
2.5%). The performance of SSP was validated using real data. In all three cases, the 
simulated data mimicked the real data and allowed to evaluate the relationship MultSE 
– n beyond the sampling size of the pilot studies. SSP can be used to estimate sample 
size in a wide variety of situations, ranging from simple (e.g. single site) to more com-
plex (e.g. several sites for different habitats) experimental designs. The latter constitutes 
an important advantage in the context of multi-scale studies in ecology. An online ver-
sion of SSP is available for users without an R background.

Keywords: community ecology, dissimilarities, multivariate analyses, PERMANOVA, 
resampling, sampling design, simulation, standard error

Background

Defining sample size is a key decision in the planning of ecological research. In the 
context of hypothesis testing, a decision to take too few samples could produce mis-
leading information about the statistical population, imprecise statistics or a high prob-
ability of retaining a false null hypothesis. Instead, increasing sampling size improves 
the precision of estimations and the power of statistical tests, but will also increase 
its costs (Mapstone 1995, Underwood 1997, Underwood and Chapman 2003). 
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There is a wide variety of methodologies aimed at optimiz-
ing the use of resources to obtain the best possible sampling 
design at the lowest cost (a.k.a. cost–benefit optimization). 
However, most methods used for this purpose are based on 
statistical theories that consider only one response variable; 
that is when the variable of interest can be represented as a 
single descriptor. In early ecological studies at community 
level, the sample size was usually determined based on single 
merging variables such as species richness or some diversity 
index (Green 1979, Clarke and Green 1988). However, the 
study of communities has evolved from the use of univariate 
descriptors to the use of multivariate/dissimilarity-based sta-
tistics (Clarke 1993, Anderson et al. 2006, Legendre and De 
Cáceres 2013). Therefore, the analytical methods for estima-
tion of sample size should consider the highly-dimensional 
structure of ecological data (Anderson and Santana-Garcon 
2015, Blanchet et al. 2016).

Most of the conventional approaches in experimental and 
sampling design consist in evaluating the precision of the 
arithmetic mean of a response variable obtained in a previous 
pilot study, which allows one to estimate the number of repli-
cates that are needed to improve that precision. These strate-
gies consider the expected random error, a previous estimate 
of the natural variability of the variable, the effort with which 
such information was obtained, and some theoretical distri-
bution as a reference (e.g. standardized normal distribution) 
(Quinn and Keough 2002). Statistical precision refers to the 
level of concordance between multiple estimators of the same 
parameter under the same sampling procedure (Underwood 
1997). To estimate the precision of a mean obtained from 
a random sample, the standard error of the mean must be 
calculated ( s s nx = / ), where s represents the standard 
deviation of the sample and n the number of sampling units. 
Data from a previous pilot study providing such information 
is often required. Because the denominator of the standard 
error is the sample size, the standard error will always decrease 
(and precision will improve) as the sampling effort increases.

Anderson and Santana-Garcon (2015) developed a com-
putationally intensive statistical approach that allows the esti-
mation of a multivariate pseudo standard error (MultSE) as 
a proxy of precision to identify an optimal sample size (Eq. 
3 Anderson and Santana-Garcon 2015). Their procedure 
consists of a double resampling (with and without replace-
ment) of a data matrix obtained during a pilot study. For 
each resampling, the dissimilarities between each pair of 
samples of a randomly chosen subset of the main matrix are 
estimated, and the MultSE is calculated. The procedure is 
repeated several times with ni = 2, 3, 4 to n, where n refers 
to the original sample size in the pilot study. The behavior of 
MultSE is projected on a plot of means and error bars, with 
the abscissa showing the sampling effort and the ordinate 
showing MultSE values (Fig. 1 in Anderson and Santana-
Garcon 2015). The plot shows the way precision relates to 
sample size, thereby helping to identify the sampling effort 
for an acceptable measure of standard error. The R scripts 
for this approach are available as supplementary material in 
Anderson and Santana-Garcon (2015).

The method proposed by Anderson and Santana-Garcon 
(2015) is pioneer in assessing sample size in community 
studies where the variability in the composition of species 
or structure of the assemblage is the focus of the research. 
This method has recently been proposed as a framework to 
define sampling effort in coastal dunes and coral reefs moni-
toring programs (Maccherini  et  al. 2020, Montilla  et  al. 
2020). However, we identified two limitations in the original 
approach: 1) this method cannot extrapolate the MultSE – n 
relationship beyond the sampling effort used during the pilot 
study (i.e. by definition, the chosen n may only be less than 
or equal to that used in the pilot study), and 2) any random 
deviation of estimates obtained with the original sampling 
will be reiteratively reflected on the MultSE because permuta-
tions are restricted to the same sampling space delimited by 
the pilot survey. SSP addressed these limitations using simu-
lations. Furthermore, to define the magnitude of the MultSE 
at which variation in species composition is ecologically sig-
nificant is challenging because of the complexity involved in 
interpreting change in a multivariate context. Whilst such 
difficulty is both intrinsic and sensitive to each case study, 
deciding sample size on the basis of precision (as measured by 
MultSE) provides a standardized, hence repeatable procedure 
that leads to cost–benefit optimization.

We present SSP ver. 1, an R package (<www.r-project.org>) 
designed to estimate sample effort in studies of ecological com-
munities using intensive sampling over several sets of simulated 
data. SSP can also be accessed from a web application, designed 
for users without R skills. Our procedure is based on the previ-
ous definition of MultSE but eludes the double resampling over 
a unique pilot data set (Anderson and Santana-Garcon 2015). 
In general, the protocol consists of 1) simulating several data 
matrixes that retain observed properties of the community of 
interest, 2) obtaining independent estimates of MultSE from 
those simulated data matrixes, for different sample sizes and 
number of sites and 3) a quantitative identification of the opti-
mal sampling effort as well as the graphic representation of the 
MultSE – n relationship and the optimal effort. Data collected 
in a standard pilot survey are used to simulate the data matrixes 
but are not included in the resampling procedure. With SSP, 
users will be able to objectively identify the number of samples 
and sites necessary to characterize the community of interest 
with sufficient precision at a reasonable cost. The use of sev-
eral simulated larger data matrixes as a central element of the 
procedure will assure a better appreciation of the MultSE – n 
relationship over a wider range of sample sizes. SSP was evalu-
ated using three sets of real data: 1) micromollusk of marine 
shallow sandy bottoms, 2) coral reef sponges and 3) epibenthic 
assemblages on Caribbean mangrove roots.

Methods and features

Workflow of SSP

SSP was divided into seven stages: 1) extrapolation of assem-
blage parameters using pilot data, 2) simulation of several 
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data sets based on extrapolated parameters, 3) evaluation 
of plausibility of simulated data, 4) repeated estimations of 
MultSE for different sampling designs in simulated data sets, 
5) summary of the behavior of MultSE for each sampling 
design across all simulated data sets, 6) identification of the 
optimal sampling effort and 7) graphical representation of 
the MultSE and the sampling effort (Fig. 1). For each of these 
steps, we provide the following seven functions:

i.	 assempar: The following ecological properties of the 
assemblage are estimated: potential number of species, 
probability of occurrence of each species within and 
among sites, the pattern of abundance of each species and 
the pattern of spatial aggregation of species. The poten-
tial number of species in the assemblage (Sest) is estimated 
with any of the incidence-based nonparametric methods 
available in the specpool function of the vegan pack-
age (Oksanen et al. 2015). The probability of occurrence 
of each species is calculated between and within sites. The 
former is computed as the frequency of occurrence of each 
species against the number of sites sampled (fb); the latter 
is computed as the weighted average frequencies in sites 
where the species were present (fw, or just f if the pilot 
data is restricted to one site) (Gaston 1994, Magurran 
and Henderson 2011). The mean and variance ( x  and s2, 
respectively) of the abundance of each species are also esti-
mated. The degree of spatial aggregation of species (only 
for real counts of individuals) is identified with the index 
of dispersion D (Clarke et al. 2006). The corresponding 
properties of unseen species are approximated using the 
information on observed species: the probability of occur-
rence is assumed to be equal to the rarest species of pilot 
data. The mean (and variance) of species abundance are 
defined using random Poisson values with lambda as the 
overall mean. assempar returns an object of class list, to 
be used by simdata.

ii.	 simdata: The simulation starts by setting the dimensions 
of the data matrix Ŷ  (i.e. number of columns and rows). 
The number of columns was programmed to be equal to 
the potential number of species, while the number of rows 
(Nt) is defined arbitrarily as the potential number of sam-
pling units per site (N) multiplied by the potential num-
ber of sites. The presence/absence of each species at each 
site is simulated with Bernoulli trials where the probabil-
ity of success equals to the empirical frequency of occur-
rence of each species among sites in the pilot data (fb). For 
sites with the simulated presence of the species, Bernoulli 
trials are used again with the probability of success equal 
to the empirical frequency estimated within the sites in 
pilot data (fw). If required, the presence/absence matrixes 
are converted to matrixes of abundance replacing species 
presence with random values from an adequate statisti-
cal distribution and parameters equals to those estimated 
in the pilot data (McArdle and Anderson 2004). Counts 
of individuals are generated using Poisson or negative 
binomial distributions, depending on the degree of spe-
cies aggregation in the pilot data (McArdle and Anderson 

2004, Anderson and Walsh 2013). When abundances were 
measured as a continuous variable (i.e. coverage, biomass), 
data are generated using the lognormal distribution. The 
simulation procedure is repeated to create as many simu-
lated data matrixes as needed. It is important to highlight 
that the procedure assumes ‘similar environmental condi-
tions across samples; this is, that the multivariate struc-
ture of the assemblage is produced by intrinsic properties 
of species (e.g. patterns of gregariousness/dispersion) and 
is not influenced by environmental constraints. Whilst 
this assumption is common to other statistical methods 
examining community structure, it is rarely considered 
and its implications are often overlooked. The assumption 
of similar environmental conditions across samples, how-
ever, requires that simulations do not combine data from 
different habitats (e.g. mixing quadrats from high and low 
tides in a rocky shore, forest plots from different altitudes 
in a vegetation study). For these cases, simulations should 
be performed independently for each habitat or strata in 
the environmental gradient. simdata returns an object of 
class list that will be later used by sampsd and datquality.

iii.	datquality: The quality of the simulated data matrixes is 
assessed by their resemblance to the pilot data consider-
ing the following estimations: 1) the average number of 
species per sampling unit, 2) the average species diversity 
(Simpson diversity index) per sampling unit and 3) the 
multivariate dispersion (MVD), measured as the average 
dissimilarity from all sampling units to the main centroid 
in the space corresponding to the dissimilarity measure of 
interest (Anderson 2006). In general, 1), 2) and 3) should 
be similar in simulated and pilot data. datquality returns 
a table with these estimates.

iv.	 sampsd: If several virtual sites have been simulated, subsets 
of sites of size 2 to m are sampled, followed by the selec-
tion of sampling units (from 2 to n) using inclusion prob-
abilities and self-weighted two-stage sampling (Tillé 2011). 
Each combination of sampling effort (number of sample 
units and sites) is repeated several times (e.g. 100) for all 
simulated matrixes. If simulated data correspond to a single 
site, sampling without replacement is performed for each 
sample size (from 2 to n) within each simulated matrix. 
This approach is computationally intensive, especially when 
k is high (e.g. 100), and should be considered when time 
availability and computational resources are scarce. For 
each sample, suitable pre-treatments are applied and dis-
tance/similarity matrixes estimated using the appropriate 
coefficient. When simulations are done for a single site, the 
MultSE is calculated as V n/ , being V the pseudo vari-
ance measured at each sample of size n. When several sites 
are generated, MultSE are calculated using estimates of the 
pseudo component of variation of residuals ( CV nresidual / ) 
and sites ( CV msite / ) from a distance-based multivariate 
analysis of variance (Anderson 2017).

v.	 summary_ssp: This function is required to estimate an 
average of all MultSE obtained with the k repetitions for 
each sampling effort within each simulated data. It also 
estimates an overall mean, together with the lower and 
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Figure 1. Flowchart of SSP v1. The procedure begins with the estimation of the parameters using a pilot data and assempar. The pilot data 
may correspond to a single (a) or many sites (b). Simulations are done with simdata. The output is evaluated with datquality. The resam-
pling and MultSE estimations are generated with sampsd. Summary of results are obtained with summary_ssp, and the cut-off points are 
identified with ioptimum. The plot showing the behavior of the MultSE is generated with plot_ssp.



565

upper intervals of means (0.025 and 0.975 quantiles) for 
each sampling effort among all simulated data. To evalu-
ate the rate of change of the averaged MultSE according 
to the sampling effort, a relative measure of the maximum 
MultSE value (obtained with the lowest sampling effort: 
2) is calculated; then, a standard forward finite derivation 
is computed. All results are summarised in a table (object 
of class data frame) used later to plot MultSE and the sam-
pling effort.

vi.	ioptimum: This function identifies three cut-off points 
based on the finite derivatives between the standard-
ized MultSE and the sampling effort (as the percentage 
of improvement in precision per sample unit, by default 
10%, 5% and 2.5%), thus allowing to identify: 1) the mini-
mum improvement required, 2) sub-optimal improvement 
and 3) optimal improvement. It is possible that the cut-
off points defined by the default settings are not achieved 
(e.g. if the arguments n or m of sampsd were set low). In 
such cases, a warning message will specifically indicate 
which cut-off point was not achieved and the current maxi-
mum effort will be returned. Functions sampsd and sum-
mary_ssp must then be run with higher values of n or m. 
Alternatively, the cut-off points can be made flexible by set-
ting it to for example 15, 10, 5%, respectively, or higher.

vii.	ssp_plot: This function allows the user to visualize the 
behavior of the MultSE as sampling effort increases. 
When the simulation involves two sampling scales, a plot 
for samples and a plot for sites are generated. Above the 
MultSE ~ sampling effort projection, two shaded areas are 
shown. These areas reflect the sampling effort that improves 
the precision to acceptable (light gray) or desirable levels 
(dark grey), but gains beyond the latter could be consid-
ered unnecessary. In addition, the relative improvement 

(considering the MultSE estimated with the lower sampling 
effort) is presented for each sampling effort as a cumula-
tive percentage. This feature is especially useful because it 
indicates quantitative measure of how much the precision 
is improved per increase in sampling unit. The plot is gener-
ated with ggplot2, and the resulting object can be fur-
ther modified using the functions of that package.

Examples

1. Micromollusks of marine shallow sandy bottoms: The 
presence/absence of 68 species were recorded using six cores 
of 10 cm diameter and 10 cm deep taken in sandy bottoms 
at Cayo Nuevo, Gulf of Mexico, Mexico (a small reef cay 
located 240 km off the North-Western coast of Yucatan). 
Data correspond to a study on the biodiversity of marine 
benthic reef habitats off the Yucatan shelf (Ortigosa  et  al. 
2018). The main objective was to estimate an adequate sam-
pling effort for further quantitative studies to characterize 
temporal changes in species composition. To speed up the 
process, only 20 data sets were simulated. Each data matrix 
consisted of N = 100 potential sampling replicates in one site, 
and subsets ranging in size from 2 to 50 were repeated 10 
times. The Jaccard index was used as the similarity measure 
between sample units. SSP indicated that the lowest value 
of precision would improve from 37% (suboptimal) to 55% 
(optimal) with a sampling effort between 5 and 10 samples, 
a remarkable precision gained with each additional sample 
(Fig. 2). After 11 samples, the improvement in precision 
obtained with increased sampling effort is small enough to 
consider the extra effort unnecessary. The R script for this 
example is in Box 1.

Figure 2. Relation between MultSE (in Jaccard dissimilarity) and sampling effort using micromollusk simulated data from Example 1. 
Shaded areas indicate the range of samples in which an increase in sampling effort provided a suboptimal (light grey) and optimal improve-
ment in precision (dark grey). The cumulative relative improvement is projected over each error bar.
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2. Coral reef sponges: The structure and composition of 
sponge assemblages associated to Alacranes Reef National 
Park (ARNP), Gulf of Mexico, Mexico, was estimated in 36 
transects of 20 × 1 m across six sites (≈ 4–8 transect per site). 
In each transect, the colonies of 41 species of sponges were 
counted. This data corresponds to a pilot study on sponge 
biodiversity in reef habitats of the Yucatán shelf (Ugalde et al. 
2015). The main objective was to estimate an adequate sam-
pling effort at two spatial scales (i.e. transect and sites) for 
further quantitative studies. The studied area represented 
the leeward area of the reef with similar geomorphology; 
hence, differences in sponge diversity due to environmen-
tal heterogeneity at this spatial scale could not be argued a 
priori. Therefore, we considered valid to simulate data for 
the entire leeward area using the information of the six sites. 
Here again, to speed up the process, only 10 data sets were 
simulated, each consisting of 20 virtual sites and 20 virtual 
transects per site. Combinations of n (from 2 to 20) and sites 
(from 2 to 20) were repeatedly sampled 10 times each. The 
Bray–Curtis index was used as the similarity measure between 
sample units after a square root transformation of simulated 
abundances. The R script for this second example is in Box 2.

Results showed a noticeable decrease of the MultSE 
between 5 and 11 sites (Fig. 3). A suboptimal improvement of 
44% in sampling effort was attained with seven sites, whereas 
an optimal improvement of 55% was achieved with 11 sites. 

Sampling nine sites would improve precision in the lowest 
value of approximately 51%. A suboptimal improvement 
in sampling effort among transects is accomplished with 5 
or 6 replicates, whereas an optimal improvement is attained 
with more than 7 but less than 11 replicates. Each additional 
sample increased the highest MultSE value by 2–3%, achiev-
ing a 55% improvement in sampling effort with 10 transects.

A noticeable feature of this simulation is the marked dif-
ferences in MultSE obtained for the two sources of variation. 
The magnitude of the difference in variation corresponds 
to that obtained with the pseudo-components of variation 
estimated for sites and residuals in a distance-based multi-
variate analysis of variance of the pilot data cvsites = 26.4, cvtran-

sects = 34.7 (R script in the Supporting information). These 
results, together with considerations of sampling costs and 
the relative contribution of each spatial scale to total varia-
tion, suggest the convenience of keeping the number of sites 
within the range of suboptimal improvement (i.e. 5–7) and 
setting the number of transects to 8 (Fig. 3).

3. Epibenthic assemblages on Caribbean mangrove roots: 
Data consists of the coverage (by point-intercept) of 116 taxa 
identified in 180 mangrove roots sampled under a hierarchi-
cally nested spatial design (Guerra-Castro  et  al. 2011). The 
design included six random sites within each of three sectors 
of the lagoon system corresponding to a strong environmental 
gradient: external (E), intermediate (M) and internal (I). The 

Box 1. SSP applied to data on micromollusks assemblages from sandy bottoms at Cayo Nuevo, Gulf of 
Mexico, Mexico (Ortigosa et al. 2018). The execution of these codes took 15 s in RStudio Cloud  
(<https://rstudio.cloud/>) with the default resource settings (1 GB RAM, 1 CPU).

library(SSP)
data(micromollusk)
 
#Estimation of parameters
par.mic <- assempar(data = micromollusk, type = "P/A")
 
#Simulation of data
sim.mic <- simdata(Par = par.mic, cases = 20, N = 100, site = 1)
 
# Quality of simulated data
qua.mic <- datquality(data = micromollusk, dat.sim = sim.mic, Par = par.mic, transforma-
tion = "none", method = "jaccard")
 
#Sampling and estimation of MultSE
samp.mic <- sampsd(sim.mic, par.mic, transformation = "P/A", method = "jaccard",      n = 50, 
m = 1, k = 10)
 
#Summarizing results
sum.mic <- summary_ssp(results = samp.mic, multi.site = FALSE)
 
#Identification of optimal effort
opt.mic <- ioptimum(xx = sum.mic, multi.site = FALSE, c1 = 10, c2 =5, c3= 1)
 
#plot
fig.2 <- plot_ssp(xx = sum.mic, opt = opt.mic, multi.site = FALSE)
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abundance of epibenthic organisms of 10 roots were described 
within each site, producing a total of 60 roots in each sector. 
One of the main objectives of this pilot study was to define 
the sampling effort needed to evaluate spatiotemporal patterns 
of variation in species composition among sectors considering 
the environmental gradient. To achieve this, it was necessary 
to identify a sampling effort (number of sites and roots) that 
guaranteed the highest precision at the lowest cost. For each 
sector, 20 data sets were simulated, each with 30 virtual sites 
and 30 virtual roots. A two-stage random sampling was then 
simulated using sites from 2 to 20 and roots from 2 to 20 with 
each combination repeated 10 times. The Bray–Curtis index 
was used as the similarity measure between sample units once 
a fourth root transformation of abundance had been applied. 
The R script for all operations is in Box 3.

Results of SSP indicated that a similar number of sites 
are required to obtain a consistent level of precision among 
sectors (MultSE value below 0.1). Considering the relatively 
low MultSE value among sites, only a small improvement in 
precision would be required at this spatial scale (suboptimal 
region). In contrast, the MultSE among roots was consid-
erably high among all sectors (between 0.245 and 0.287). 
Consequently, at least eight roots per site would be required 
to reduce the MultSE by half and attain an optimal improve-
ment in sampling effort (Fig. 4).

Discussion

The R package described in the present study expands 
the method developed by Anderson and Santana-Garcon 
(2015). It maintains its purpose as a quantitative tool to 
define sample size for studies of communities with data to 
be analyzed using distance-based methods. Results herein 
show that SSP improves the usefulness of the original pro-
cedure regarding the following aspects: 1) MultSE – n rela-
tionship could be evaluated beyond the original sampling 
size of the pilot study; 2) MultSE estimates are obtained by 
sampling over several simulated data sets, ensuring statistical 
independence of the estimations; 3) sampling effort can be 
defined in terms of suboptimal and optimal improvement 
regarding the highest MultSE, 4) this protocol can be used 
to estimate sample size in a wide variety of situations from 
simple (i.e. sampling a single or few sites) to more complex 
experimental designs (i.e. sampling several sites for differ-
ent habitats). The latter constitutes an important advantage, 
since it offers new possibilities for planning complex sam-
pling designs, as it has been advised for multi-scale studies 
in ecology (Underwood and Chapman 1998, Leibold et al. 
2004, Chase et al. 2018).

The data sets used in this study comprised a variety of 
sampling designs, in all of which the SSP package provided 

Box 2. SSP applied to data on sponge assemblages associated to Alacranes Reef National Park (ARNP), Gulf 
of Mexico, Mexico (data from Ugalde et al. 2015). The execution of these codes took 13.5 min in RStudio 
Cloud (<https://rstudio.cloud/>) with the default resource settings (1 GB RAM, 1 CPU).

library(SSP)
data(sponges)
 
#Estimation of parameters
par.spo <- assempar(data = sponges, type = "counts")
 
#Simulation of data
sim.spo <- simdata(Par = par.spo, cases = 10, N = 20, sites = 20)
 
# Quality of simulated data
qua.spo <- datquality(data = sponges, dat.sim = sim.spo, Par = par.spo, transforma-
tion = "square root", method = "bray")
 
#Sampling and estimation of MultSE
samp.spo <- sampsd(sim.spo, par.spo, transformation = "square root",
            method = "bray", n = 20, m = 20, k = 10)
 
#Summarizing results
sum.spo <- summary_ssp(results = samp.spo, multi.site = TRUE)
 
#Identification of optimal effort
 
opt.spo <- ioptimum(xx = sum.spo, multi.site = TRUE)
 
#plot
fig.3 <- plot_ssp(xx = sum.spo, opt = opt.spo, multi.site = TRUE)
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an appropriate and useful visualization tool to identify the 
optimal sampling effort. The SSP protocol applied to data 
from the simplest case in micromollusks of Cayo Nuevo 
showed that the sampling effort should be increased com-
pared to the pilot study (Fig. 3). The sponge case brings the 
opportunity to evaluate the precision required considering a 
more complex situation, since the SSP protocol can estimate 
MultSE in two different spatial scales: transects and sites. The 
possibility of targeting sampling effort in this way constitutes 
a key advantage in experimental design, since it allows a re-
valuation of the number of sampling sites, hence the costs of 
the corresponding fieldwork. Similarly, the results of the sim-
ulation on the data from epibenthic fauna in mangrove roots 
demonstrated the potential of SSP to define sampling effort 
in studies of communities in heterogeneous environments. In 
the original research, using a very primitive version of SSP, 
the sampling effort was defined with four sites per sector and 
eight roots per site. This sampling effort was used by Guerra-
Castro et al. (2016) and had the statistical power to detect dif-
ferences along the gradient despite reduced sampling effort. 
Decisions such as changing the number or distribution of 
sampling effort are central since they directly impact the costs 
of a sampling project. An adequate combination of effort at 
different spatial scales will help optimize the allocation of 
resources that are often limited. Optimization of sampling 

designs using cost–benefit procedures described by previous 
authors (Underwood 1997) could easily be combined with 
the protocol presented here, further improving cost–effective 
allocations of sampling effort.

One aspect that requires theoretical development is the 
one referring to the behavior of the MultSE and its scale 
dependency. Even though the MultSE decreases as ~1/ n , 
its magnitude and interpretation are strongly associated with 
the dissimilarity index and transformation of species abun-
dance used in each case. By standardizing to the maximum, it 
is possible to improve the level of precision to a desired level, 
but this does not solve the differences in scales. Therefore, it 
is not appropriate to make comparisons of precision levels 
between studies that use different dissimilarity coefficients. 
This implies that users must carefully consider the level of 
optimization required for any particular study case, while 
taking into account the dissimilarity coefficient of interest, 
the magnitude of multivariate dispersion, its meaning and 
the cost associated with each sampling unit.

It is important to mention that SSP is not free from 
assumptions. First, simulations in the present study do 
not consider environmental constraints, neither the co-
occurrence of species nor their joint distribution functions; 
the procedure essentially assumes that any combination 
of species is possible. Therefore, we recommend avoiding 

Figure 3. Relation between MultSE (in Bray–Curtis dissimilarity and square root transformation of species abundance) and sampling effort 
using sponge simulated data. Shaded areas indicate the range of samples in which an increase in sampling effort provided a suboptimal (light 
grey) and optimal improvement in precision (dark grey).
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Box 3. SSP applied to data on epibenthic assemblages on Caribbean mangrove roots (data from  
Guerra-Castro et al. 2011). Considering the environmental differences between each sector, SSP was 
applied independently to each sector. Results were merged and analyzed simultaneously. The execution  
of these codes took 1.86 h in RStudio Cloud (<https://rstudio.cloud/>) with the default resource settings 
(1 GB RAM, 1 CPU).

library(SSP)
library(tidyr)
library(ggplot2)
library(dplyr)
 
data(pilot)
sectors <- levels(pilot$Sector)
 
#Defining arguments for simulation and sampling
N = 30
sites = 30
cases = 20
n = 20
m = 20
k = 10
 
#Lists to store results
sum.l <- opt.l <- qua.l <- vector(mode = "list", length = 3)
 
#Loop SSP at each sector
for (i in 1:length(sectors)){
  dat <- pilot[pilot$Sector==sectors[i],2:length(pilot)]
 
  #parameters for simulation
  par <- assempar(data = dat, type = "cover", Sest.method = "chao")
 
  # Simulation of data
  sim <- simdata(Par = par, cases = cases, N = N, sites = sites)
 
  # Quality of simulated data
  qua <- datquality(data = dat, dat.sim = sim, Par = par, transformation = "fourth root", 
method = "bray")
  qua$sector <- rep(sectors[i], nrow(qua))
  qua.l[[i]] <- qua
 
  # Sampling and estimation of multse for each data set
  samp <- sampsd(dat.sim = sim, Par = par, transformation = "fourth root",
            method = "bray", n = n, m = m, k = k)
 
  # average of multse for each potential sampling design
  sum <- summary_ssp(samp, multi.site = TRUE)
 
  #Optimal sample sizes
  opt <- ioptimum(sum)
  opt <- as.data.frame(opt)
  opt$sv <- c("sites", "samples")
  opt <- pivot_longer(opt, cols = c("c1", "c2", "c3"), names_to = "cut", values_to = "effort")
  opt$sector <- rep(sectors[i], nrow(opt))
  opt.l[[i]] <- opt
 
  #arrangement to plot
  sum$sector <- rep(sectors[i], nrow(sum))
  sum.l[[i]] <- sum
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the combination of data from environmentally different 
habitats when using simulations with SSP. Instead, associa-
tions among species (i.e. co-occurrence or repulsion) con-
sidering differences between assemblages can be modelled 

using copulas (Anderson  et  al. 2019, Tang  et  al. 2019). 
The advantage of copulas is that it allows simulating spe-
cies arrangements like those observed in the pilot data. The 
SSP protocol assumes that potential differences in species 

  }
 
#combine summary into a data frame
sum.df <- do.call(rbind.data.frame, sum.l)
sum.df$sector <- factor(sum.df$sector, levels = c("E", "M", "I"))
 
#combine optimal sample sizes into a data frame
opt.df <- do.call(rbind.data.frame, opt.l)
opt.df$sector <- factor(opt.df$sector, levels = c("E", "M", "I"))
 
#Combine quality features into a data frame
qua.df <- do.call(rbind.data.frame, qua.l)
 
# Generation of plot
my_breaks <- function(x) {
  y <- seq(min(x), max(x), 1)
  y <- round(y,0)
}
 
#Definition of values for shade areas
shade.opt <- opt.df %>%
          group_by(sector, sv) %>%
          filter(cut != "c1") %>%
          summarise(xmin = min(effort), xmax = max(effort))
 
shade.sub <- opt.df %>%
          group_by(sector, sv) %>%
          filter(cut != "c3") %>%
          summarise(xmin = min(effort), xmax = max(effort))
 
#plot
fig.4 <- ggplot(sum.df, aes(x=samples, y=mean))+
      geom_point()+
      geom_errorbar(aes(ymin=lower, ymax=upper), width=.1)+
      facet_grid(sector~sv, scales = "free_x")+
      theme_bw(base_size=16) +
      ylab ("Multivariate pseudo SE")+
      xlab("Sampling effort")+
      scale_y_continuous(breaks=seq(0.0, max(sum.df$upper), 0.025))+
      scale_x_continuous(breaks = my_breaks)+
      theme(axis.text.x = element_text(colour="black", size=rel(0.7)),
      axis.text.y = element_text(colour="black", size=rel(0.7)),
      axis.title.x = element_text(colour="black", size=rel(0.9)),
      axis.title.y = element_text(colour="black", size=rel(0.9)),
      panel.grid.major = element_blank(),
      panel.grid.minor = element_blank(),
      panel.border = element_rect(size=0.4),
      axis.ticks= element_line(size=0.2))+
      geom_rect(data = shade.opt, aes_(x = NULL,y = NULL,
                  xmin=~xmin, xmax=~xmax, ymin=min(sum.df$lower), ymax=max(sum.
df$upper)), alpha=0.5, fill="grey10")+
      geom_rect(data = shade.sub, aes_(x = NULL,y = NULL,
                  xmin=~xmin, xmax=~xmax, ymin=min(sum.df$lower), ymax=max(sum.
df$upper)), alpha=0.5, fill="grey50")+
      geom_text(aes_(x = ~samples, y = ~upper + 0.01, label = ~cum), na.rm = TRUE)
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composition among sites are due to spatial aggregation of 
species measured in the pilot data. Thus, any spatial struc-
ture of species that was not captured by the pilot data will 
not be reflected by SSP. The simulation of associations 
among species and the use of copulas are aspects to be con-
sidered in a future version of SSP.

Whilst the protocol performs well with small pilot data, 
the pilot sampling should not be restricted to a small number 
of samples or sites but should capture the greatest possible 
variability in the system under study. After evaluating the 
quality of the simulated data in the present study, it became 
clear that simulated data did not always have properties 

Figure 4. Relation between MultSE (in Bray–Curtis dissimilarity and fourth root transformation of abundances) and sampling effort using 
epibenthic assemblages on Caribbean mangrove roots. Shaded areas indicate the range of samples in which an increase in sampling effort 
provided a suboptimal (light grey) and optimal improvement in precision (dark grey).

Table 1. Output of datquality for the three examples: relevant features of original and simulated data. Features include the number of sample 
units (n), the number of sites (m), average number species/sample ( S ), average Simpson diversity index (aSDI) and range of multivariate 
dispersion (MVD).

n m S aSDI MVD

Micromolusk from Cayo Nuevo, Gulf of Mexico
Pilot 6   1 25.3 (±7.2) – 0.25
Simulated 1000   1 30.5 (±3.9) – 0.22–0.24

Sponges from Alacranes Reef, Gulf of Mexico
Pilot 4–8   6 12.4 (±4.3) 0.84 (±0.08) 0.16
Simulated 20 20 9.1 (±2.4) 0.72 (±0.13) 0.22–0.23

Epibionts on Caribbean mangrove roots
  External sector Pilot 60   6 18.3 (±5.7) 0.82 (±0.07) 0.19
  Intermediate sector Pilot 60   6 16.1 (±5.25) 0.80 (±0.10) 0.18

Simulated 30 30 16.2 (±2.9) 0.93 (±0.01) 0.14–0.15
  Internal sector Pilot 60   6 14.3 (±2.6) 0.83 (±0.07) 0.14

Simulated 30 30 14.8 (±2.7) 0.86 (±0.05) 0.14–0.15
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identical to those in the pilot data (Table 1). In Example 1, 
the mean number of species per sample was 20% higher than 
the pilot data. This could be a consequence of the limited 
number of samples used to estimate the probability of occur-
rence of each species (n = 6, only six possible values of f, the 
lowest equal to 1/6). In Example 2 (with n between 4 and 
8 transects at each of six sites), the mean number of species 
per sample was 26% lower than the pilot data. Unlike the 
first example, the MVD of the sponge simulations exceeded 
38% the original dispersion. By contrast, the simulated data 
of Example 3 closely resembled the corresponding pilot data, 
probably because the pilot data was extensive.

Despite these limitations, if the properties of the simulated 
data resemble the community of interest and show ecologi-
cal plausibility, the extrapolations derived from the procedure 
presented here will hold valid to define the sampling size of 
any study based on dissimilarity-based multivariate analysis. 
Overall, this procedure simulates data that satisfies the key 
features on which inferences are to be made, thereby allow-
ing for independent and multiple estimations of multivari-
ate standard errors to be drawn from simulated data matrixes 
and the unbiased construction of a MultSE – n relationship. 
Finally, the versatility of SSP can be used to the advantage 
of researchers without R background as a powerful decision-
making tool to define adequate sampling effort by using the 
online app.

Software availability

SSP ver. 1 is free and open source, distributed under GNU 
Public License ver. 2 (GPL-2). This package is available on 
the comprehensive R archive network (CRAN) <https://
cran.r-project.org/web/packages/SSP/index.html> and is 
also hosted in GitHub <https://github.com/edlinguerra/
SSP>. The online version can be accessed at <https://edlin.
shinyapps.io/ssp_web/>. Data from all three examples are 
available in the package. To cite SSP or acknowledge its use, 
cite this software note including the appropriate version 
number.

Data availability statement

Data available from the Dryad Digital Repository: <http://
dx.doi.org/10.5061/dryad.3bk3j9kj5> (Guerra-Castro et al. 
2020).
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