
 

BEACH GEOMORPHOLOGY AND KEMP’S RIDLEY (LEPIDOCHELYS KEMPII) NEST 

SITE SELECTION ALONG PADRE ISLAND, TX, USA 

 

 

 

 

 

A Thesis 

 

by 

 

MICHELLE F. CULVER 

 

 

 

 

BS, Baylor University, 2016 

 

 

 

 

 

 

Submitted in Partial Fulfillment of the Requirements for the Degree of 

 

 

 

 

 

MASTER OF SCIENCE 

 

in 

 

COASTAL AND MARINE SYSTEM SCIENCE 

 

 

 

 

 

Texas A&M University-Corpus Christi 

Corpus Christi, Texas 

 

 

May 2018 

 

 



 

 

© Michelle F. Culver 

All Rights Reserved 

May 2018 

  



 

BEACH GEOMORPHOLOGY AND KEMP’S RIDLEY (LEPIDOCHELYS KEMPII) NEST 

SITE SELECTION ALONG PADRE ISLAND, TX, USA 

 

 

 

 

 

 

A Thesis 

 

by 

 

MICHELLE F. CULVER 

 

 

 

 

 

 

This thesis meets the standards for scope and quality of 

Texas A&M University-Corpus Christi and is hereby approved. 

 

 

 

 

 

 

James C. Gibeaut, PhD 

Chair 

 

 

Michael J. Starek, PhD 

Committee Member 

 

 

 

 

 

 

Philippe Tissot, PhD 

Committee Member 

 

 

 

 

 

 

Donna J. Shaver, PhD 

Committee Member 

 

 

 

 

 

 

 

 

May 2018



v 

 

ABSTRACT 

 

The Kemp’s ridley sea turtle (Lepidochelys kempii) is the most endangered sea turtle 

species in the world, largely due to historic take of eggs at the primary nesting beach in Mexico, 

loss of juveniles and adults incidental to fisheries operations, and the limited geographic range of 

its nesting habitat. In the USA, the majority of nesting occurs along Padre Island in Texas. There 

has been limited research regarding the connection between beach geomorphology and Kemp’s 

ridley nesting patterns, but studies concerning other sea turtle species suggest that certain beach 

geomorphology variables, such as beach slope and width, influence nest site selection. This 

research addresses the literature gap by quantifying the terrestrial habitat variability of the 

Kemp’s ridley and investigating the connection between beach geomorphology characteristics 

and Kemp’s ridley nesting preferences on Padre Island, Texas, USA.  

Beach geomorphology characteristics, such as beach slope and dune peak height, were 

extracted from airborne topographic lidar data collected annually along the Texas coast from 

2009 through 2012. The coordinates of observed Kemp’s ridley nests from corresponding years 

were integrated with the geomorphic data, which was then statistically analyzed using 

generalized linear models and random forest models. These models were successful in predicting 

Kemp’s ridley nest presence. The top generalized linear models explained 40-46% of nest 

presence variability with a relatively low prediction error. The final random forest model was 

superior in performance in comparison to the generalized linear models, with a true positive rate 

above 85%. Nest elevation, distance from shoreline, maximum dune slope, and average beach 

slope were the significant variables in the top two generalized linear models and the relatively 

most important variables in the random forest model, with elevation and distance from shoreline 

being the most influential in each.  
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Kemp’s ridleys nested at a median elevation of 1.04 m above mean sea level and a 

median distance from shoreline of 12.79 m, which corresponds to the area directly below the 

potential vegetation line, which is defined as the lowest elevation where dune plants may persist. 

Kemp’s ridleys also exhibited a preference for a limited range of the study area and avoided 

nesting on beaches with extreme values for maximum dune slope, average beach slope, and 

beach width. This study provides new information regarding Kemp’s ridley terrestrial habitat and 

nesting preferences that have many applications for species conservation and management.  
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INTRODUCTION 

 

Purpose and Objectives 

 

The main goal of this project is to assess the relationship between beach geomorphology 

and Kemp’s ridley (Lepidochelys kempii) nest site selection on Padre Island National Seashore 

on North Padre Island and South Padre Island, Texas, USA. A secondary goal of this research is 

to determine the influence of environmental conditions on Kemp’s ridley nest presence. This 

study intends to fulfill the following objectives:  

1. Identify the terrestrial habitat variability of the Kemp’s ridley sea turtle on the 

beaches of North and South Padre Islands, Texas; 

2. Quantify the influence of beach geomorphology characteristics on Kemp’s ridley 

nest site selection; 

3. Assess the impact of daily average environmental conditions, such as wind speed 

and direction, on Kemp’s ridley daily nest abundance.  

This study will generate a better understanding of Kemp’s ridley nesting preferences and 

beach habitat, which will allow for greater insight into habitat vulnerability. The results of this 

study have many applications for the conservation and management of the species, including 

protecting and recreating identified beach characteristics associated with nesting preferences, 

informing nest location and monitoring efforts, and assisting with a critical habitat designation.  

Background: Kemp’s Ridley Sea Turtle 

 

The Kemp’s ridley (Lepidochelys kempii), also known as the Atlantic ridley, is the 

world’s most endangered sea turtle species. Even with recent conservation efforts, their future is 

still largely uncertain (Plotkin, 2007). Kemp’s ridley nesting sites are primarily located on 
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beaches in the western Gulf of Mexico. The largest nesting site of the Kemp’s ridley is the beach 

at Rancho Nuevo, Mexico (NMFS & USFWS, 2015; Shaver et al., 2005). In the United States, 

nesting occurs primarily on Padre Island, a barrier island in Texas (NMFS & USFWS, 2015). 

Previous studies have described sea turtle nesting habitat, but there has been little to no research 

regarding the connection between beach geomorphology and Kemp’s ridley nesting site selection 

(Plotkin, 2007).  

Listing Status and Population Trends 

 

Internationally, the Kemp’s ridley is considered the most endangered sea turtle (Plotkin, 

2007; USFWS, 1999). The Kemp’s ridley sea turtle was listed as endangered throughout its 

range on December 2, 1970 (NMFS et al., 2010; USFWS, 1999). On July 1, 1975, the Kemp’s 

ridley was listed on Appendix I by the Convention on International Trade in Endangered Species 

of Wild Fauna and Flora (CITES), which prohibited all commercial international trade. 

Furthermore, the International Union for the Conservation of Nature lists the Kemp’s ridley as 

Critically Endangered (NMFS et al., 2010; USFWS, 1999). In 1996, the Kemp’s ridley was 

classified as critically endangered by the IUCN Red List of Threatened Species, where it remains 

today (IUCN, 1996). Even with recent conservation efforts, the Kemp’s ridley continues to face 

a number of threats, including: habitat loss and destruction, cold-stunning, climate change, 

ingestion of and entrapment in marine debris, pollution, boat collisions, poaching, and incidental 

capture (National Research Council et al., 1990; NMFS & USFWS, 2015; USFWS, 1999). 

Historic information demonstrates that the Kemp’s ridley population was copious in the 

mid-20th century (Bevan et al., 2016). Tens of thousands of ridleys nested around Rancho 

Nuevo, Mexico during the late 1940s, indicative a very large adult population (NMFS & 

USFWS, 2015). During this time, an estimate of over 40,000 female Kemp’s ridleys would nest 
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in one day, as shown in the 1947 “Herrera” film (Bevan et al., 2016) (Figure 1). This would 

equate to over 120,000 nests for the 1947 season (Bevan et al., 2016).  

 

Figure 1: Snapshot of 1947 film footage taken by Andres Herrera showing thousands of Kemp’s ridleys nesting at 

Rancho Nuevo, Mexico. (Herrera, 1947). 

Between the late 1940s and mid-1980s, the Kemp’s ridley experienced a significant 

population decline (Figure 2). In 1985, a record low of 702 nests was recorded at Rancho Nuevo; 

at the time, it was estimated that there were less than 250 nesting females (NMFS & USFWS, 

2015; Shaver et al., 2005). The Kemp’s ridley population slowly began to recover in the 1990s, 

with the number of nests at Rancho Nuevo increasing to 1,430 in 1995, 6,947 in 2005, and 

15,459 in 2009 (NMFWS & USFWS, 2015). Between 2002 and 2009, 771 nests were 

documented on the Texas coast, greatly surpassing a total of 81 nests recorded in Texas from 

1948-2001 (NMFS et al., 2010) (Figure 3). In both Mexico and Texas, there was a noticeable 

drop in the number of observed nests in 2010 due to a large mortality event, but this was 

followed by a higher count of nests in 2011 and 2012 (Gallaway et al., 2016b; Shaver et al., 

2016b). In 2013 and 2014, there was a decline in the number of observed nests once again 

(NMFS & USFWS, 2015). It is possible that the decline in 2013 was caused by a recent change 

in the ability of Kemp’s ridley to attain a body condition required for remigration and 

reproduction due to a combination of reduced food supply and an increasing population in the 

northern Gulf of Mexico (Gallaway et al., 2016b).  
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Figure 2: Total number of Kemp’s ridley nests recorded at Rancho Nuevo, Mexico and other beaches from 1947-

2014. Rancho Nuevo was the only location surveyed before 1988. (NMFWS & USFWS 2015). 

 

 
Figure 3: Total number of Kemp’s ridley nests recorded at Padre Island National Seashore, Texas from 1948-2014. 

(NMFWS & USFWS 2015).  

According to a recent stock assessment by Gallaway et al. (2016a), the estimated female 

population for age 2 and older in 2012 was approximately 188,713. If females compose 76% of 

the population (based on a sex ratio of 0.76), the estimated total population of age 2 and older 
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Kemp’s ridley sea turtles in 2012 was 248,307 (Gallaway et al., 2016a; NMFS& USFWS, 2015). 

The stock assessment report concluded that the total population, including hatchlings younger 

than 2 years old, might have surpassed 1 million turtles in 2012 (Gallaway et al., 2016a). 

However, 2012 was the highest year for recorded nests since the beginning of monitoring. The 

number of nests recorded in 2014 was almost half the amount in 2012, resulting in a much lower 

current population estimate (NMFS & USFWS, 2015). Monitoring the nesting turtles in the 

entirety of Texas is logistically challenging due to the long stretch of beach coupled with the 

small nesting population, so it is possible that the Kemp’s ridley nesting population in Texas is 

larger than indicated by current nesting data (Frey et al., 2014).  

For the Kemp’s ridley sea turtle to be considered for downlisting from Endangered to 

Threatened, there must be at least 10,000 nesting females in a single season distributed at the 

primary nesting beaches (NMFS & USFWS, 2015). According to the cumulative number of 

nests and an average of 2.5 clutches/female/season, approximately 4,395 females nested at the 

primary nesting beaches in 2014 (NMFS & USFWS, 2015).  

Species Description 

 

Samuel Garman originally identified the Kemp’s ridley in 1880 (NMFS et al., 2010). The 

sea turtle was named after Richard Kemp, a fisherman who submitted the specimen from Key 

West, Florida (NMFS & USFWS, 2015). While the Kemp’s ridley is a close relative of the olive 

ridley, it is a genetically distinct species (NMFS & USFWS, 2015). It is estimated that the 

Kemp’s ridley diverged from the olive ridley between 2.5 to 5 million years ago (NMFS & 

USFWS, 2015; USFWS, 1999). 

The Kemp’s ridley and its congener, the olive ridley, are the smallest of all sea turtles 

with the Kemp’s ridley being slightly larger and heavier than the olive ridley. Adults typically 
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weigh between 32-49 kg, and the length of the straight carapace is typically 60-65 cm with the 

shell being almost as wide as it is long (NMFS et al., 2010; USFWS, 1999). Hatchlings weigh 

approximately 15-20 g, measure 42-48 mm in carapace length, and measure 32-44 mm in width 

(NMFS et al., 2010). The eggs range from 34-45 mm in diameter and 24-40g in weight (NMFS 

et al., 2010; National Research Council et al., 1990). Coloration changes significantly as a 

hatchling develops into an adult. Hatchlings typically have a grey-black dorsum and plastron, 

which changes to a grey-black dorsum with a yellow-white plastron as a juvenile. A lighter grey-

olive carapace with a white or yellowish plastron are characteristic of adults (NMFS et al., 

2010). The adult carapace usually has five pairs of costal scutes and five vertebral scutes, and 

adults generally have a large head and powerful jaws (National Research Council et al., 1990). 

Unlike other sea turtles, ridleys often aggregate to nest, emerging from the sea to nest in a 

somewhat synchronized manner referred to as an “arribada” (National Research Council et al., 

1990; Shaver et al., 2005). Nesting in aggregations may have several advantages, such as 

locating mates, increasing the likelihood of survival of the young, and preserving genetic 

diversity in the population (NMFS & USFWS, 2015; Plotkin, 2007). There is an average of 

about 25 days between arribadas, but overall the timing is largely unpredictable (NMFS & 

USFWS, 2015). Some studies suggest that there may be cues that initiate an arribada, including 

strong onshore wind, lunar and tidal cycles, olfactory signals, or social facilitation (Shaver & 

Rubio, 2008). Jimenez-Quiroz et al. (2005) found a coherence between nesting cycles and 

temperature and wind fluctuations, implying that these environmental variables could serve as 

stimuli. Shaver et al. (2017) discerned that Kemp’s ridleys prefer to nest on windy days and may 

be prompted to nest by increases in wind speed and surf. It is possible that these conditions are 
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preferable because the sand is cooler and the risk of predation is reduced, as any signs of nesting 

would be quickly erased (Shaver et al., 2017).  

Another distinct characteristic of Kemp’s ridley reproduction is that this species prefers 

to nest during the day while other species primarily nest at night (National Research Council et 

al., 1990; Shaver et al., 2016b). Nesting turtles are usually only on the beach for 30 to 60 

minutes, and there are 95 to 112 eggs per clutch on average, which incubate 42-62 days before 

hatching (NMFS & USFWS, 2015; Shaver et al., 2016b). Females may lay one to four clutches 

per season, but the average number of clutches laid per female is highly debated and may vary 

between nesting sites (Frey et al., 2014). 

Terrestrial Habitat 

 

The range of the Kemp’s ridley sea turtle encompasses the Gulf of Mexico and extends 

into the northwestern Atlantic Ocean (Putman et al., 2013) (Figure 4). Most nesting occurs on 

beaches along the west-central Gulf of Mexico, with the greatest nesting numbers near Rancho 

Nuevo, Tamaulipas, Mexico (Caillouet et al., 2015; Shaver & Caillouet, 2015; Shaver & Rubio, 

2008). The Mexican government began protecting the nests in 1966 because the population was 

rapidly declining (Caillouet et al., 2015; Shaver & Caillouet, 2015). By 1977, extinction of the 

species was imminent, so a bi-national, multi-agency imprinting and head-start project was 

implemented to increase Kemp’s ridley nesting at Padre Island National Seashore (PAIS), known 

as the PAIS Restoration Program (Shaver & Caillouet, 2015; Shaver & Rubio, 2008). The 

overall goal of this project was to create a secondary nesting colony in a location that was both 

protected and within the native range of the species (Shaver & Rubio, 2008). Due to these and 

other efforts, both Rancho Nuevo in Mexico and Padre Island National Seashore in the United 

States serve as main nesting sites for the Kemp’s ridley sea turtle today (Caillouet et al., 2015) 
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(Figure 4). Nesting also occurs in Veracruz, Mexico and occasionally in Florida, Alabama, South 

Carolina, and North Carolina in the United States (NMFS & USFWS, 2015). 

 
Figure 4: The approximate range of the Kemps ridley sea turtle and the location of the main nesting beaches of the 

species, Padre Island National Seashore, TX, USA and Rancho Nuevo, Mexico. Derived from NMFS et al. (2010). 

The beach at Rancho Nuevo, Mexico is a high-energy, dissipative beach (Wright & 

Short, 1984) characterized by fine grain sand and low dunes stabilized by coastal plants and fine 

grain sand. Forming reef-like barriers, sand flats parallel the beach (Bevan et al., 2016; NMFS & 

USFWS, 2015). The dunes in this region are stabilized by bushy coastal vegetation similar to 

that of Padre Island, Texas, including sea oats and spartina alterniflora (Marquez-M., 1994). Two 

berms, varying in width from 15-45 m, usually form the beach. On the landward side of the 
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beach, coastal lagoons with several narrow cuts surround the beach (NMFS & USFWS, 2015). 

Carranza-Edwards et al. (2004) notes that beaches near Rancho Nuevo, Mexico are narrower and 

steeper in comparison to beaches near the center of the Rio Grande delta (Figure 5). This 

corresponds to larger particle sizes, poorly sorted sediments and the presence of shell fragments 

in this region (Carranza-Edwards et al., 2004). Similarly, along the central section of Padre 

Island, the beaches are steeper, narrower, and characterized by the presence of shell fragments 

(NMFS et al., 2010; NMFS & USFWS, 2015).  

 
Figure 5: Beach profiles in Tamaulipas, Mexico (2x vertical exaggeration). Rancho Nuevo is located near Barra del 

Tordo. (Carranza-Edwards et al., 2004). 

Nesting Preferences 

 

Environmental factors affect embryo survivorship, hatchling quality, and sex ratio. 

Therefore, nest site selection largely determines the fitness of a nesting female because it 

significantly influences hatchling survival (Horrocks & Scott, 1991; Wood & Bjorndal, 2000; 
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Zavaleta-Lizarraga & Morales-Mavil, 2013). Females respond to various signals, both biotic and 

abiotic, to attempt to select the most successful site for her eggs, making nest site selection non-

random (Weishampel et al., 2006; Zavaleta-Lizarraga & Morales-Mavil, 2013). According to 

Wood and Bjorndal (2000), sea turtle nest site selection can be divided into three stages: beach 

selection, emergence of the female, and nest placement. Beach selection and emergence probably 

depend on offshore cues and beach characteristics, such as slope and dune profile (Wood & 

Bjorndal, 2000). A number of selective forces drive nest placement both seaward towards the 

shoreline and landward away from it; nests close to the sea have a higher probability of 

inundation and egg loss due to erosion while nests further from the sea are more likely to result 

in predation and hatchling disorientation (Wood & Bjorndal, 2000; Santos et al., 2006). 

The biophysical features of beaches that affect nesting preference have long been 

thoroughly studied, but morphological characteristics influencing nest site selection have not 

been researched to the same extent (Horrocks & Scott, 1991; Yamamoto et al., 2012). 

Furthermore, there has been little to no research regarding the connection between beach 

geomorphology and Kemp’s ridley nesting site selection, but studies regarding other species of 

sea turtles suggest that beach characteristics may be important factors in determining sea turtle 

nesting site preferences (Santos et al., 2006; Yamamoto et al., 2012). 

While it is well known that females prefer to nest on beaches with fine grain sands 

because it is more difficult to dig egg chambers in coarse, dry sand, Mortimer (1982) predicted 

that slope and offshore configuration are potentially more important than sand grain properties in 

nesting preferences, but their relative importance was not quantified (Mortimer, 1990; Mortimer, 

1982). One study found that segments of beaches with higher beach face slopes and narrower 

widths had higher nest densities of loggerhead turtles than beaches with lower slopes and wider 
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widths (Provancha & Ehrhart, 1987). Research regarding hawksbill turtles found that nest 

elevation above sea level was positively related to hatching success. Furthermore, this study 

found that hawksbills nested further from the high tide line on beaches with less steep slopes, 

suggesting that they prefer to nest at a certain mean elevation above sea level (Horrocks & Scott, 

1991). Similarly, Wood and Bjorndal (2000) found that out of the factors slope, temperature, 

moisture, and salinity, slope had the largest impact on nest site selection of loggerheads, likely 

because it is correlated with nest elevation. A study in Mexico discovered that green sea turtles 

prefer beaches with steeper slopes, specifically a steeper berm slope, while hawksbill turtles nest 

site selection extended to a wider range of beach morphology characteristics (Cuevas et al., 

2010). A similar study regarding nest site selection by the green sea turtle in Mexico found that 

the most utilized nest sites were characterized by beaches at least 1,300 m long with gentle to 

medium slopes (Zavaleta-Lizarraga & Morales-Mavil, 2013).  

Most recently, Dunkin et al. (2016) developed a model that accurately predicts 

loggerhead nesting habitat suitability in Florida using elevation, beach slope, beach width, and 

dune peak as predictors. Consistent with the findings of several of the aforementioned studies, 

they found that elevation was the most influential factor for nesting preferences (Dunkin et al., 

2016). Similarly, Yamamoto et al. (2012) successfully modeled nest density for three different 

sea turtle species using a limited number of geomorphology variables. This study found that each 

sea turtle species exhibited a tolerance for beaches with a wide range of measured 

geomorphology variables but would not nest on beaches outside of this tolerance (Yamamoto et 

al., 2012).  

The specific preference of nesting beach characteristics varies between species, possibly 

due to the difference in size and weight between each species. This makes the specific preference 
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of nesting beach characteristics for the Kemp’s ridley unidentifiable. Considering the importance 

that slope and elevation have in regards to nest site selection of various species of sea turtles, it is 

possible that they are important aspects of Kemp’s ridley nesting preference. Additionally, other 

geomorphology features, such as dune height, rugosity, aspect, beach width, distance from 

shoreline, and offshore configuration, might also be important aspects of nesting preference for 

the Kemp’s ridley. Marquez-M. (1994) notes that on beaches in Rancho Nuevo, Mexico, the 

Kemp’s ridley usually nests beyond the high tide line in front of the first dune, on the windward 

slope of the dune or on top of the dune. This report describes the distribution of nests at relative 

positions along a beach profile, but it fails to quantify the characteristics of each position, such as 

elevation or distance from shoreline, and to assess alongshore nesting preferences in relation to 

beach geomorphology characteristics, such as beach slope or width (Marquez-M., 1994).  

Imprinting 

 

Some studies suggest that sea turtles return to nest in the region where they were hatched 

through imprinting or a natal homing mechanism (Shaver et al., 2016b). The previously 

mentioned PAIS Restoration Program was constructed around this concept, in hopes that 

released hatchlings would return to PAIS to nest and form a nesting colony. According to Shaver 

et al. (2016b), most nesting turtles observed in south Texas from 1978-2014 were wild-stock 

turtles (89.4 %), while 7.9% were Padre Island-imprinted head-start turtles and 2.7% were 

Mexico-imprinted head-start turtles (Figure 6). While Padre Island-imprinted sea turtles are 

returning to the National Seashore, it is unclear the degree to which imprinting effects nesting 

beach selection on the National Seashore itself. The nests of imprinted sea turtles are widely 

distributed along PAIS, suggesting that the location of the release site is not the only determining 

factor for nest site selection. Furthermore, a recent study by Shaver et al. (2017) found that 95% 
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of documented Kemp’s ridleys nested more than once on the Texas coast between 1991 and 

2014 on the same or nearby beaches, but only a small portion demonstrated site fidelity, defined 

as 13.5 km or less between nest sites. On PAIS, the mean distance between nests of females that 

nested more than once in the same season was 18.7 km, with a range of 0.3 to 77.3 km (Shaver et 

al., 2017). This variability in nest location within the region further suggests that more factors 

than solely imprinting affect nest site selection.  

 
Figure 6: Annual nest counts of Kemp’s ridleys found on the Texas coast from 1978-2014 differentiated by wild 

stock and imprinting location of hatchlings in the PAIS Restoration Program. (Shaver et al., 2016b).  

Potential Threats to Terrestrial Habitat 

  

The terrestrial habitat for a sea turtle is a critical, limiting factor for successful 

reproduction due to the limited area in which suitable environmental conditions occur for 

nesting, making any threat to the terrestrial environment extremely impactful (Pike, 2013). Sea 

level rise can cause inundation, sand erosion, and changes in topography that are difficult for 
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turtles to traverse, which therefore effectively decreases the availability of suitable nesting 

habitat (Santos et al., 2015; Ussa, 2013; Witt et al., 2010).  

According to a vulnerability assessment of PAIS, the most influential factors controlling 

how Padre Island will respond to sea-level rise are geomorphology and shoreline change 

(Pendleton et al., 2004). Beach slope, width, elevation, and other morphological features are 

factors that may be key to nesting preference that are also at risk of SLR-induced changes 

(Santos et al., 2015; Stutz & Pilkey, 2011; Williams, 2013). It is very probable, therefore, that 

North and South Padre Islands will undergo changes caused by SLR that put the Kemp’s ridley 

sea turtle terrestrial habitat at risk.  

Average annual long-term shoreline rates along Padre Island range from over 2m of 

retreat per year to 2m of accretion, with the most accretion occurring at the central section of 

North Padre Island (Paine et al., 2013). Climate change may also increase the magnitude of 

storm events, which can be extremely destructive to sea turtle habitat (NMFS & USFWS, 2015; 

Long et al., 2011). A recent study found that the more the shape of a beach profile was changed 

from its pre-hurricane morphology, the further nesting success declined (Long et al., 2011).  

Beach nourishment projects are often completed in response to shoreline erosion caused 

by hurricanes or other damaging processes. However, beach nourishment efforts may not fully 

restore the sea turtle nesting habitat to its full potential and, furthermore, can potentially decrease 

survivorship of eggs and hatchlings. This is because nourishment projects can change beach 

characteristics such as beach slope and width, sand compaction, gaseous environment, hydric 

environment, containment levels, nutrient availability, and thermal environment (Crain et al., 

1995; Gallaher, 2009).  
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Study Area 

 

The study area for this research is the beaches of Padre Island National Seashore on 

North Padre Island and South Padre Island, Texas, USA (Figure 7). North and South Padre 

Islands are barrier islands that run parallel to the coastline, separated from the mainland by the 

shallow estuaries of the Upper and Lower Laguna Madre, respectively (Judd et al., 1977; Weise 

& White, 1980). Collectively, North and South Padre Islands extend 182 km from Corpus Christi 

to Brazos-Santiago Pass, varying from 450 m to 4.8 km in width (Judd et al., 1977). Port 

Mansfield Channel is a human-made and jettied channel that separates South Padre Island from 

North Padre Island (Judd et al., 1977). Padre Island National Seashore, located on North Padre 

Island, is mostly undeveloped and spans roughly 112 km of coastline, covering 52,745 ha 

(KellerLynn, 2010).  
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Figure 7: Map of the study area, North and South Padre Islands, Texas, USA.  
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Geologic History 

 

Padre Island is a fairly young island geologically; according to radiocarbon dating of 

shells, it is estimated to have begun forming approximately 4,500 years ago (Weise & White, 

1980). It is hypothesized that Padre Island began as a submerged sand bar formed from offshore 

shoals that grew via spit accretion (Weise & White, 1980). Approximately 18,000 years ago 

during the Last Glacial Maximum, sea level was 90 to 140 meters lower than present-day, thus 

exposing a large portion of the currently submerged continental shelf (Weise & White, 1980). 

During this time of low sea level, rivers deposited sediments in the Gulf of Mexico. As glaciers 

melted and sea level began to rise, the old submerged river-delta deposits eroded and moved 

towards the shore via wave and current activity (Weise & White, 1980). Sand bars developed 

and eventually emerged as barrier islands, mostly positioned on the divides between historic 

river valleys. Longshore currents transported and deposited sand onto the islands, resulting in 

spit accretion (KellerLynn, 2010; Weise & White, 1980). Aeolian and marine processes helped 

the island to develop vertically into the modern barrier island, but the same processes continue to 

re-shape the island today. Though the northern half of the island is currently in a relatively stable 

state of equilibrium, South Padre Island has been in an erosional or destructive state for some 

time (KellerLynn, 2010; Weise & White, 1980). 

Beach Characteristics and Geomorphology  

 

As a barrier island system, Padre Island is composed of a series of geomorphic zones that 

are shaped by the forces of tides, winds, and waves (Figure 8). From the Gulf of Mexico moving 

landward, these geomorphic zones are nearshore, forebeach, backbeach, coppice dunes, active 

dunes, stabilized blowout dunes, vegetated barrier flat, and back-island sand flats (KellerLynn, 

2010). In the barrier flats and storm washover channels, brackish and freshwater marshes and 
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ponds may form. In the southern area of Padre Island, washover channels cut through the island. 

Wind-deflation flats separate the barrier island and lagoon systems. The lagoon system includes 

wind-tidal flats (also referred to as Sabkhas), lagoon-margin sand, and grassflats (KellerLynn, 

2010). 

 
Figure 8: Generalized cross section of North Padre Island displaying the geomorphic zones. (Weise & White, 1980). 

The trends in the geomorphology characteristics of the beaches of North and South Padre 

Islands vary alongshore (KellerLynn, 2010; Weise & White, 1980). The northern section of the 

island consists of broad beaches, large foredunes, and grasslands and the beaches here are 

typically higher and wider than the southern section. The beaches are also high-energy and 

predominately dissipative, characterized by a double-barred beach profile (Weymer, 2012; 

Wright & Short, 1984). The shape of the Texas Gulf shoreline causes longshore currents to 

converge near the central section of North Padre Island, where wave fronts are parallel to the 

shore (Figure 9). This convergence results in the accumulation of sediment and shell fragments, 

thereby causing the beach to be steeper since slope is directly related to sediment size (Davis, 

1977; Watson, 1971; Weise & White, 1980). Therefore, along the central section of the study 

area, narrower beaches with a steeper topography and a plethora of shells are dominant, making 

these beaches predominantly reflective (Weymer, 2012; Wright & Short, 1984). The beaches in 

this area are characterized by extensive foredunes stabilized by vegetation, some of which reach 

15m in height (Davis, 1977; KellerLynn, 2010). In the southern section of North Padre Island, 

the beaches are relatively flat, the foredunes are sparse, and the vegetation is scattered. Washover 
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channels and blowout dunes are more frequent in this area (KellerLynn, 2010; Judd et al., 1977). 

The beaches in this region are predominately dissipative or intermediate (Wright & Short, 1984).  

 
Figure 9: Longshore currents converge near the central section of North Padre Island, causing wave fronts 

approaching at a 90° angle to be parallel to the shore. (Weise & White, 1980). 

On South Padre Island, there is a considerable amount of variability in morphology. It 

ranges from well-developed foredunes with a height of 12m to washover channels lacking 

vegetation (Houser & Mathew, 2010). Overall, the beaches in this area are composed of wide 

backbeach areas and a gentle foreshore (Davis, 1977). South Padre Island has been experiencing 

widespread erosion due to a substantial loss of sediment supply from the Rio Grande River Delta 

caused by flow reductions and reservoir sedimentation (Houser & Mathew, 2011). This erosion 

is exacerbated by extreme storms that breach the dunes and move sediment into Laguna Madre 

through washover channels (Houser & Mathew, 2011).  
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There are documented variations in mean grain size along the study area (Davis, 1977) 

(Figure 10). The southern section of North Padre Island is characterized by fine grain sizes with 

little temporal or spatial variation. Mean grain size in the northern section of North Padre Island 

is overall finer than the grain sizes in the other sections of the study area and, like the southern 

section, shows little variation in time and space. However, the mean grain sizes of the central 

section of North Padre Island, the site of longshore current convergence, display both temporal 

and spatial variation, with some sites composed of fine sediments and other sites composed of 

coarser sediments (Davis, 1977). 

 
Figure 10: Range and mean values of foreshore mean grain size (φ) for each relative section of Padre Island, with 

convergence occurring at the central section of North Padre Island. (Davis, 1977). 

Physical Processes 

 

As is typical of the Texas Gulf Coast, the tidal range of North and South Padre Islands is 

small (Weise & White, 1980). North and South Padre Islands are microtidal and diurnal, with a 

mean diurnal tidal range of 0.43 m and 0.49 m, respectively (Houser & Mathew, 2010; Weise & 
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White, 1980). Wind tides, which occur when strong winds elevate the water surface, can cause 

large changes in the water level and are much more influential than astronomical tides 

(KellerLynn, 2010). Wind tides can produce a rise and fall of water levels by as much as 0.6 m, 

which can expose or submerge the beach profile and cause erosion or deposition. Similarly, 

storm tides and waves produced by hurricanes and storms can cause large changes in the beach 

and foredunes that may take years to recover to pre-storm conditions (Weise & White, 1980).  

As previously mentioned, wind is an important driver for waves, currents, tides and 

aeolian processes in the Gulf of Mexico (Curray, 1960; Weise & White, 1980). South and 

southeasterly winds occur most frequently in the study area, but northerly winds associated with 

a cold front dominate during the winter (U.S. Army Corps of Engineers, 2014) (Figure 11). 

Concurrent with trends in wind direction, waves most frequently approach from the southeast 

(U.S. Army Corps of Engineers, 2014) (Figure 12). Waves along Padre Island are on average 

around 1 m in height, but they can be over 2 m high during storms (U.S. Army Corps of 

Engineers, 2014; Weise & White, 1980). 
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Figure 11: Wind Rose of Gulf of Mexico WIS Station 73032, located near the central section of the study area, for 

2014. See Figure 7 for location. (Wave Information Study, http://wis.usace.army.mil/).  

 

http://wis.usace.army.mil/
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Figure 12: Wave Rose of Gulf of Mexico WIS Station 73032, located near the central section of the study area, for 

2014. See Figure 7 for location. (Wave Information Study, http://wis.usace.army.mil/). 
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METHODS 

Light Detection and Ranging (lidar) uses laser pulses to obtain spatially dense and 

accurate elevation data capable of displaying small differences in elevation across a landscape 

(Yamamoto et al., 2012). Laser pulses emitted from an aircraft-mounted lidar system reflect 

from objects both on and above the ground, and any laser pulse that encounters multiple 

reflection surfaces is split into multiple returns (Houser et al., 2008). The first return is 

associated with the highest feature, or the first reflection surface that the laser pulse detects, and 

the last return is associated with the last reflection surface the laser pulse encounters, which may 

not always be the ground (Starek et al., 2012). The spatial and temporal resolution of lidar data is 

ideal for extracting topographic information from coastal areas, making lidar data optimal for 

this study (Houser et al., 2008; Yamamoto et al., 2012). 

Figure 13 depicts a flowchart of the methodology of this study, with the green box 

indicating the prominent steps. Lidar data collected in 2009, 2010, 2011, and 2012, and the 

coordinates of Kemp’s ridley nests for the respective years on North and South Padre Islands, 

Texas, were compiled and processed. Background points were randomly generated within the 

study area for assessing the variability of the available nesting area. Next, beach geomorphology 

characteristics were extracted from the lidar data at each nest coordinate and background point, 

which were then statistically analyzed using generalized linear models and a random forest to 

assess both the relationship between nest presence and the geomorphology characteristics and the 

capacity of geomorphology characteristics in predicting nest presence. To determine if 

environmental variables influence nesting preferences, average daily environmental conditions 

for each day during nesting season were also obtained and statistically analyzed with respect to 

daily nest counts. 
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Figure 13: Flowchart of the methodology of the study, with the green box indicating the prominent procedure.  

Labeled ‘Alongshore Habitat Variability Analysis’ in Figure 13, the next portion of the 

methodology aims to quantify the habitat variability alongshore and assess the relationship 

between alongshore trends in geomorphology and nest presence. Cross-shore topographic 

profiles were generated every 100 m alongshore, from which beach geomorphology 

characteristics were extracted. Subsequently, the profiles were grouped together in 1 km beach 

segments and the average geomorphology characteristics within each group were statistically 

analyzed with respect to nest density, resembling the methodologies used in studies regarding 

other sea turtle species (Cuevas et al., 2010; Long et al., 2011; Provancha & Ehrhart, 1985; 

Rousoo et al., 2014; Yamamoto et al., 2012; Zavaleta-Lizarraga & Morales-Mavil, 2013). 
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Data Compilation and Processing 

 

Lidar Data 

 

The Bureau of Economic Geology (BEG), the Center for Space Research, and Texas 

A&M-Corpus Christi conducted three airborne lidar surveys of the Texas Gulf of Mexico 

shoreline every year from 2010 through 2012. The 2010 and 2011 surveys were conducted in 

April at the beginning of Kemp’s ridley nesting season while the 2012 survey was conducted in 

February, a few months prior to the start of nesting season (Paine et al., 2013). Lidar instrument 

settings for these surveys were as follows: laser pulse rate, 25 kHz; scanner rate, 26 Hz; scan 

angle, +/- 20 degrees; beam divergence, narrow; altitude, 570 to 1200 m above ground level; and 

ground speed, 50 to 120 kts (Paine et al., 2013). The horizontal datum is North American Datum 

of 1983 (NAD83), the ellipsoid is Geodetic Reference System of 1980 (GRS80), and the vertical 

datum is North American Vertical Datum of 1988 (NAVD88). The projected coordinate system 

of the data is Universal Transverse Mercator, Zone 14 N (UTM 14 N) (Paine et al.2013). BEG 

transferred the raw flight data into lidar point files, applied bias correction to the first and last 

return, and converted z-values from height above the GRS80 ellipsoid to elevations with respect 

to NAVD88 using the Geoid99 geoid model. The BEG has thoroughly performed quality 

assurance and quality control on the data (Paine et al., 2013) (Table 1). 

In 2009, the US Army Corps of Engineers (USACE) Joint Airborne Lidar Bathymetry 

Technical Center of Expertise (JALBTCX) collected lidar data of the South Texas Gulf of 

Mexico shoreline for the West Texas Aerial Survey 2009 project. The survey was conducted 

between February and April, just before Kemp’s ridley nesting season (Table 1). The lidar point 

cloud was gathered at a density sufficient to produce a maximum final post spacing of 1.5 points 
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per meter (NOAA et al., 2016). The horizontal datum is NAD83, the ellipsoid is GRS80, and the 

vertical datum is NAVD88 using the Geoid12A geoid model (NOAA et al., 2016). This data has 

undergone accuracy assessment and quality control by the originator (Table 1). Using 

NOAA/NOS’s VDatum, the data was converted from Geoid12A to Geoid99, the same geoid as 

the 2010-2012 BEG lidar data. The las2las tool in LAStools (Isenburg, 2017) was used to project 

the 2009 LAS files into UTM 14 N.  

Table 1: Information from NOAA et al. (2016) and Paine et al. (2013) about the accuracy of the lidar data from the 

USACE and BEG, respectively. 

Source 
Collection 

Timeframe 

Point Spacing 

(m) 

Horizontal 

Accuracy (m) 

Vertical 

Accuracy (m) 

USACE 02-04/2009 1.5 1 0.15 

BEG 

04/2010 

1 1 0.1 04/2011 

02/2012 

 

The las2las tool in LAStools was used to filter the 2012 lidar data by return points. The 

2009-2011 lidar data was already classified by return points. The last return points were used for 

this project in order to reduce the probability of land cover biasing topography (Starek et al., 

2012).  

The last return LAS files for each year were imported into ArcMap 10.4.1 as LAS 

datasets and the statistics for each LAS dataset were calculated. The lidar data for each year was 

clipped to a polygon of the study area using the Clip tool in ArcGIS. To assess the point density 

of the last return lidar points, the LAS Point Statistics as Raster tool in ArcGIS, with the method 

set to pulse count, was used to create point density rasters for each year (Figure 14). The point 

density rasters were used to check for voids and to determine the ideal resolution for the 

elevation rasters. The Apply Filter tool in ArcGIS was used to locate any outliers in the data by 
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identifying data points that exceed a height or slope difference relative to neighboring 

measurements within 30 meters. To eliminate outliers in the data, the las2las tool in LAStools 

was used to filter out data above an elevation of 20 meters, a threshold that is above the 

maximum dune height.  

 
Figure 14: Example of a point density raster with a 1 m x 1 m cell size for the 2010 lidar data.  

 

The data points were classified into ground and vegetation points using LAStools. To 

assess the effect of filtering point classifications when gridding the lidar data, 1 m x 1 m 

resolution elevation rasters of all last return points, ground points, and ground and vegetation 

points were created for a subset of the 2012 data using the LAS Dataset to Raster tool in ArcGIS 

(Figure 15). The cell assignment method used in the tool was inverse distance weighted (IDW) 

and the void fill method was natural neighbor interpolation.  
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Figure 15: Elevation rasters (1 m x 1 m cell size) created using ground, ground and vegetation, and all point 

classification filters for a subset of the 2012 data. Red and white indicate areas of high elevation and light green 

indicates areas of low elevation. 

 

The use of only ground points or of ground and vegetation points caused the dune 

profiles to be flattened, and otherwise, there were minimal differences between surfaces 

generated using ground, ground and vegetation, and all point classification filters. Therefore, all 

last return points for each year were used to generate 1-m x 1-m resolution elevation surfaces. 

Each LAS file was gridded using an IDW operation developed in the Coastal and Marine 

Geospatial Lab at Harte Research Institute for Gulf of Mexico Studies. This method generated 

surfaces with a consistent method for both cell assignment and void fill.  The search radius for 

the IDW operation was 2.5 m and the operation used a maximum of 3 points within that search 

radius. In ArcGIS, the Mosaic to New Raster tool was used to combine the rasters into a 

consistent surface for each year.  
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Bias between surveys in the lidar data was calculated by comparing the elevation of 

roads, a feature that should maintain a consistent elevation through the years. Most of the study 

area is undeveloped, so the roads available for this calculation were limited to the northern-most 

section of North Padre Island and the southern-most section of South Padre Island (Figure 16). 

Roads were outlined using the Draw tool in ArcGIS and then points were created every 1 meter 

along the roads using the Create Station Points tool in the ET GeoWizard extension for ArcGIS. 

Elevation data for each year was extracted from the gridded elevation surfaces to the points using 

the Extract Values to Points tool in ArcGIS. The difference in elevation between subsequent 

years was calculated. Due to the limited extent of roads within the study area and the minimal 

differences between the elevations of the roads for each year, the bias in the lidar data was not 

corrected (Table 2 & Appendix A). 
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Figure 16: Map depicting the location of the roads used for the calculation of the bias between the surveys in the 

lidar data. Locations A and B are referred to as the North in Table 2 and Location C is referred to as the South.  
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Table 2: Mean bias and standard deviation (m above NAVD88) between surveys in the lidar data in the North and 

South.  

Year 
Mean Bias: 

North 

Standard 

Deviation: 

North 

Mean Bias: 

South 

Standard 

Deviation: 

South 

2012-2011 0.14 0.062 0.017 0.045 

2011-2010 -0.041 0.053 0.072 0.045 

2010-2009 -0.23 0.044 0.0054 0.044 

 

Nest Coordinates 

 

Padre Island National Seashore Sea Turtle Division employees used Garmin GPS 72 and 

Garmin GPS 72H to record the coordinates of observed sea turtle nests on North Padre Island, 

Texas. Se Turtle, Inc. employees used Garmin GPS 72 or the Google Earth to document nest 

coordinates on South Padre Island, Texas. The coordinates of observed Kemp’s ridley nests 

within the study area for the years 2009-2012 were obtained from Dr. Donna J. Shaver, the 

coordinator of the Sea Turtle Stranding and Salvage Network in Texas and Chief of Sea Turtle 

Science and Recovery at Padre Island National Seashore (Table 3). The geographic coordinate 

system of the data was set to WGS_1984, but the data was then projected to UTM 14 N, the 

coordinate system of the lidar data. Of the total 573 nest coordinates, 8 points (1.39%) were 

determined to be outliers and were excluded from the study. These coordinates, comprised of 

three points from 2012, four points from 2011, and 1 point from 2010, were located outside of 

the study area within the Gulf of Mexico, likely due to an instrumentation error when the nest 

coordinates were recorded.  

Table 3: The number of Kemp’s ridley nests confirmed within the study area from 2009 to 2012.  

Year North Padre Island South Padre Island 

2009 117 33 

2010 74 28 

2011 117 39 
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2012 106 59 

Comparisons of various species distribution modeling techniques demonstrate that 

presence-absence models typically perform better than presence-only models (Barbet-Massin et 

al., 2012; Edith et al., 2006). Presence-absence models are increasingly used when only presence 

data is available by creating artificial absence data, referred to as pseudo-absence or background 

data (Barbet-Massin et al., 2012; Edith et al., 2006). Background data establishes the 

characteristics of the study area while the presence data provides the attributes of the area in 

which a species is more likely to be present (Phillips et al., 2009). Background points were 

created for this study by using the Create Random Points tool in ArcGIS to randomly generate 

points within the study area (Barbet-Massin et al., 2012; VanDerWal et al., 2009). The 

background points were created on a 10:1 ratio to the nest coordinates in order to better capture 

the distribution of the features of the entire system. Furthermore, Barbet-Massin et al. (2012) 

found that model accuracy increased until an asymptote when the ratio of background to 

presence points reached 10:1 for generalized linear models and random forests.  

Environmental Variables 

 

A study by Shaver and Rubio (2008) concluded that adult female and male Kemp’s 

ridleys are primarily inhabitants of near-shore waters with relatively shallow depths. Therefore, 

meteorological and physical data measured on Bob Hall Pier, located on North Padre Island, 

should be representative of the environmental conditions of adult females in nearby waters in the 

northern section of the study area (Figure 7). Similarly, environmental data from TGLO TABS 

Buoy J should characterize the environmental conditions of adult females in nearby waters in the 

southern section of the study area (Figure 7). However, historic data for TGLO TABS Buoy J 

was not available for the entire period of this study. After comparing the data from Bob Hall Pier 
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to the available data from TGLO TABS Buoy J, it was determined that the average daily data 

from Bob Hall Pier was representative of the average daily conditions at South Padre Island, 

Texas, so the data from Bob Hall Pier was used for the entire study area (Table 4). 

Table 4: Mean difference between the average daily environmental variables measured at Bob Hall Pier and TGLO 

TABS Buoy J during nesting season in 2012. The average TGLO TABS Buoy J data was subtracted from the 

average Bob Hall Pier data. 

 Mean Difference 

Wind Speed (knots) 3.18 

Wind Direction (degrees) -3.13 

Gust Speed (knots) 2.64 

Water Temperature (°F) 3.66 

Environmental conditions during nesting season each year were obtained from Bob Hall 

Pier (NWLON Station 8775870), including wind speed, wind direction, gust speed, atmospheric 

temperature, barometric pressure, water temperature, water level, and sigma of water level 

(NOAA, 2017). The daily average, maximum, and minimum for each of these variables was 

calculated and was associated with the daily nest count. It is important to note that information 

regarding air temperature, barometric pressure, and water temperature was missing for 5/16/2010 

– 6/27/2010 and information regarding wind speed and gust speed was missing for 5/16/2010.  

Extraction of Geomorphology Characteristics 

Shoreline, potential line of vegetation, and landward dune boundaries were mapped to 

delineate the beach and the foredune complex within the study area for geomorphology 

characteristic extraction (Figure 17). Through the analysis of lidar data and beach profiles, 

Gibeaut et al. (2002) and Gibeaut and Caudle (2009) found that the wet/dry boundary typically 

occurs at 0.6 m above mean sea level on the Texas Gulf Coast. This elevation was mapped as the 

shoreline for each year. The potential vegetation line is the lowest elevation dune vegetation may 
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thrive along the Texas Gulf shore and is 1.2 m above mean sea level. The wet/dry line is the 

seaward boundary of the beach and potential vegetation line is the landward boundary of the 

beach and seaward boundary of the fordune. The ArcGIS Contour List tool was used to map the 

contours, and the contours were smoothed using a 5 m tolerance with the Polynomial 

Approximation with Exponential Kernel (PAEK) method of the Smooth Line tool in ArcGIS. 

 

 
Figure 17: Example of a beach profile with shoreline, potential vegetation line, and landward dune boundaries 

delineating the beach and foredune complex.  

 

The landward dune boundaries for the 2010-2012 data were mapped by the Coastal and 

Marine Geospatial Lab at Harte Research Institute, as outlined in Paine et al. (2013). The same 

systematic qualitative criteria used to generate the landward dune boundaries for 2010-2012, 

outlined in Appendix B, was used to create a landward dune boundary for 2009. The following 

criteria were used to determine inclusion in the fordune complex: change in slope from steep on 

the foredune to gentle on the back-barrier dune; elevation about 2 m above mean sea level; 

provides storm-surge protection; morphology is elongate parallel to the shoreline; proximity to 

the shoreline; density clusters of dune forms; and connection to other forms classified as 

foredunes (Appendix B).  
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The following procedure, which involves the use of basic tools in ArcGIS and ET 

Geowizard Extension of ArcGIS, was applied to the nest coordinates and background points for 

each year to extract the associated beach geomorphology characteristics. A seaward baseline was 

created by using the Buffer tool in ArcGIS to generate a 150 m buffer around each shoreline and 

then using the Draw tool in ArcGIS to create a new line feature along the buffer. Using the same 

methodology, a secondary baseline was created landward of the study area. The Perpendiculars 

to Polyline tool in ET Geowizard Extension of ArcGIS was used to cast lines from the nest 

coordinates to the seaward baseline and then the Intersect tool in ArcGIS was employed to create 

points where the aforementioned lines intersect the baseline. Transects were cast from these 

points to the landward baseline using the Perpendiculars to Polyline tool, producing across-shore 

transects that run through each presence and background point (Figure 18). The transects were 

split at the potential vegetation line, shoreline, and landward dune boundary using the Split 

Polyline with Layer tool in ET Geowizard Extension of ArcGIS. The segment that extends from 

the potential vegetation line to the shoreline was selected using the Select by Location tool in 

ArcGIS and exported as a new shapefile, resulting in transects of the beach (Figure 18). The 

segment of transect that extends from the landward dune boundary to the potential vegetation 

line was also selected using the Select by Location tool in ArcGIS and exported as a new 

shapefile, producing transects of the dune complex (Figure 18).  
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Figure 18: Example of across-shore transects that intersect nest coordinates and the derived beach and dune 

transects.  

 

Points were created every 1 m along both the beach and dune profiles using the Create 

Station Points tool in ET Geowizard, and then elevation values were attributed to the points 

using the Extract Values to Points tool in ArcGIS. The Points to Polyline tool and the PolylineZ 

Characteristics tool in ET Geowizard were applied to convert the points to polylineZ features and 

to derive various characteristics of the 3D profiles, respectively. The resulting geomorphology 

characteristics include average beach slope, maximum beach slope, 3D beach width, dune peak 

height, maximum dune slope upward from potential vegetation line, average dune slope upward 

from potential vegetation line, and 3D dune width (Table 5). 

Table 5: Description of each geomorphology characteristic derived for each nest coordinate and background point.  

Geomorphology 

Characteristic 
Description 

Beach Width 
Distance (m) between the potential vegetation line and the 

shoreline 

Beach Slope 

Average slope (degrees) of the profile from the shoreline to the 

potential line of vegetation; maximum, minimum, and average 

values 

Dune Height 
Highest point (m) between the landward dune boundary and the 

potential line of vegetation 

Dune Width 
Distance (m) between the potential vegetation line and the 

landward dune boundary 
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Dune Slope 

Average upward slope (degrees) going from the potential line of 

vegetation toward the landward dune boundary; maximum, 

minimum, and average values 

Distance from 

Shoreline 

Distance (m) from nest position to the shoreline (negative value 

on the seaward side of the shoreline) 

Rugosity Surface roughness or the standard deviation of elevation 

Aspect Compass direction that a slope faces 

Elevation Elevation (m) above NAVD88 

 

In order to calculate the distance of each nest and background point from the shoreline 

(Table 5), the Perpendiculars to Polyline tool in ET Geowizard was used to generate a line from 

each point to the baseline and Calculate Geometry in the attribute table of the shapefile in 

ArcGIS was used to calculate the length of each line. The segment of profile that extends from 

the shoreline to the seaward baseline was selected using the Select by Location tool in ArcGIS 

and exported as a new shapefile. The length of each line was calculated using Calculate 

Geometry in the attribute table of the shapefile in ArcGIS. Using the Spatial Join tool in ArcGIS, 

the shapefiles were combined and the difference in length between related lines was calculated 

using Calculate Geometry in ArcGIS. This methodology option accounted for the placement of 

nests on the seaward side of the shoreline, which resulted in a negative distance from shoreline 

value. Background points with a distance from shoreline value outside the range of the distance 

from shoreline values attributed to the presence points were deemed as outside of the study area 

and were excluded from statistical analyses. 

An aspect raster for each year was generated using the Aspect tool in ArcGIS. Rugosity 

rasters for each year were created using the Focal Statistics tool in ArcGIS by calculating the 

standard deviation of elevation in a 3 x 3 m window. Using the Extract Values to Points tool in 
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ArcGIS, values from the aspect, slope, and elevation rasters were extracted to the nest 

coordinates and background points of respective years (Table 5).  

Statistical Analysis  

To better understand the dynamics of the system, preliminary statistical analyses were 

conducted. The Optimized Hot Spot Analysis tool in ArcGIS, which identifies statistically 

significant spatial clusters of high values and low values, was used on each year of nest 

coordinates, as well as all years combined. This tool aggregates incident data, identifies an 

appropriate scale of analysis, and corrects for multiple testing and spatial dependence. The 

Getis_Ord Gi* statistic is calculated for each feature in the dataset, and the resulting high and 

low z-scores are indicative of hot spots and cold spots, respectively. The resulting maps 

identified statistically significant hot spots and cold spots of nests and classified the general 

spatial trends in nesting.  

Boxplots were created in R that compare the median and interquartile range of each 

geomorphology characteristic differentiated by nest presence and pseudo-absence. These 

boxplots served as tools that can be used to recognize if the Kemp’s ridleys are nesting within a 

subset of the available habitat. Additionally, a correlation matrix composed of pairwise 

scatterplots and associated Pearson correlation coefficients was calculated in R to assess the 

collinearity between the geomorphology characteristics and to preliminarily pinpoint any 

geomorphology characteristics with a relationship to nest presence. Collinearity between 

variables can skew generalized linear models, so this information was taken into consideration 

during model development and selection.  
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Generalized Linear Model 

Due to the binomial distribution of the response variable, generalized linear models for 

each year and all years combined were developed in R, with nest presence/absence as the 

dependent variable and the geomorphology characteristics as the explanatory variables. Models 

utilizing all of the explanatory variables were dredged in order to pinpoint the variables that 

comprise the relatively best model options. The relatively best models options were then 

generated and evaluated using McFadden’s pseudo R-squared value, K-fold cross-validation 

prediction error, and a boxplot of the predictions differentiated by the observation value. 

McFadden’s pseudo R-squared value is defined as 𝑅𝑀𝑐𝐹𝑎𝑑𝑑𝑒𝑛
2 = 1 −

log(𝐿𝑐)

log(𝐿𝑛𝑢𝑙𝑙)
, where 𝐿𝑐 denotes 

the likelihood value from the current fitted model and 𝐿𝑛𝑢𝑙𝑙 denotes the corresponding value for 

the null model (McFadden, 1974). In K-fold cross-validation, the observations are split into K 

partitions, the model is trained on K-1 partitions, and the test error is predicted on the left out 

partition k (Zuur et al., 2009). This process is repeated for each partition and the result is the 

average test error of all partitions (Zuur et al., 2009).  

Because the sampling type and ratio of the background data can greatly affect the model, 

these components were taken into consideration when developing the model (Barbet-Massin et 

al., 2012; VanDerWal et al., 2009). As mentioned in section Data Acquisition and Processing, 

background points were generated at a ratio of 10:1 to the presence points. However, using this 

ratio as an input into the model would likely cause the model to be biased to predict the 

background points instead of the presence points. Therefore, models were developed using a 

10:1, 5:1, 2:1, and equal ratios of background points to presence points in order to gauge the 

effect of variations in ratio background points on model accuracy (Barbet-Massin et al, 2012; 

VanDerWal et al., 2009). Models were also as created using background points with geographic 
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exclusions of 25 m, 50 m, and 100 m to assess the impact of variations in sampling technique 

(Barbet-Massin et al, 2012; VanDerWal et al., 2009). The models generated using 5:1, 2:1, and 

equal ratios of background to presence points were re-constructed 100 times, resampling the 

background points each iteration, in order to fully take into consideration the distribution of the 

background points. The geographic exclusions were created by using the Buffer tool in ArcGIS 

to create 25 m, 50 m, and 100 m buffers around each nest coordinate, which subsequently 

eliminated the background points that fall within each range. McFadden’s pseudo R-squared 

value, K-fold cross-validation prediction error, and a boxplot of the predictions differentiated by 

the observation value for each model were compared in order to evaluate model performance.  

Spatial Autocorrelation  

 

The analysis of spatial data is often complicated by spatial autocorrelation, a 

phenomenon that occurs when the values of variables sampled at nearby locations are not 

independent of each other (Dormann et al., 2007; Crase et al., 2014). In order to determine if 

there was spatial autocorrelation in the presence/absence data, a spline correlogram of the raw 

data was created in R (Zuur et al., 2009; Crase et al., 2014). A spline correlogram is a graphical 

representation of Moran’s I for different distance classes that is smoothed using a spline 

function. A spline correlogram of the Pearson residuals of the model was also created in R to 

determine if any spatial autocorrelation was explained by the explanatory variables (Zuur et al., 

2009). If positive spatial autocorrelation is present in the Pearson residuals of the model, then the 

explanatory variables did not explain the spatial autocorrelation. In this case, a Generalized 

Linear Mixed Model (GLMM) that accounts for spatial autocorrelation would need to be 

developed.  
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Random Forest 

 

In order to assess the capacity of geomorphology characteristics in predicting the 

presence or absence of Kemp’s ridley nests, a random forest model was applied to the full study 

dataset (2009-2012). Random forests are machine learning classification and regression tools that 

are composed of a combination of trees created by using bootstrap samples of training data and 

random feature selection in tree induction (Breiman, 2001; Svetnik et al., 2003). A random forest 

model was determined to be a suitable option due to the size of the dataset and the ability to gain 

insights into variable importance. The predictand of the model was the presence or background 

of a nest site while the predictors were the geomorphology characteristics. The relative 

importance of each predictor in the model was quantified, providing even more insight into the 

relationships within the system. 

Because the sampling type and ratio of the background data can greatly affect the model, 

these components were taken into consideration when developing the random forest model 

(Barbet-Massin et al, 2012; VanDerWal et al., 2009). A subset of the background points of equal 

ratio to the presence points was constructed and then the data was further split into 75% for 

testing and 25% for training. The random forest model was built and then a loop was established 

to perform 100 iterations of each step. This effectively bootstraps the background data so that the 

entire distribution is assessed. The outputs for each iteration were captured as text files. In order 

to assess the accuracy of each model, a confusion matrix was generated as an output for both the 

test and training subsets of each model.  The accuracy, sensitivity, and specificity were used to 

assess and compare the performance of each model iteration. Variable importance plots were 

constructed in order to determine the role of each explanatory variable.  
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Environmental Variables 

 

 A correlation matrix was created in R to assess the collinearity between the explanatory 

variables and to preliminarily evaluate the relationship between daily nest count and the average 

daily environmental conditions. Statistical measures of the average daily environmental 

conditions associated with nesting days were compared to those of non-nesting days for all the 

years of data combined in order to further pinpoint any trends.  

Linear models were generated for each year and all years combined with daily nest count 

as the dependent variable and the average daily environmental conditions as the explanatory 

variables. Environmental conditions include including wind direction, wind speed, gust speed, 

water level, water sigma, water temperature, air temperature, and barometric pressure. For the 

2010 dataset, barometric pressure, air temperature, and water temperature were excluded since 

there was missing data. The models were dredged and their Akaike Information Criterion (AICc) 

values were compared in order to pinpoint which models were the relatively best options. The 

linear model options were assessed using the p-value of both the model and variables, the 

adjusted R-squared value, and a plot of the residuals.  

Power and exponential models predicting daily nest count also were developed in R using 

a non-linear least squares approach with daily average wind speed as the explanatory variable. 

The goodness of fit of each model was compared by computing the residual sum-of-squares and 

the complement of its proportion to the total sum-of-squares, or the multiple R-squared value. 

Models were also evaluated based upon AICc values and plots of the residuals. The non-linear 

models were compared to the top linear model using the same evaluation criteria in order to 

determine the relatively best model option.  
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Alongshore Habitat Variability Analysis 

To assess the variability of the geomorphology of the study area, cross-shore profiles 

were generated every 100 m alongshore and subsequently divided into groups, which were then 

compared. Cross-shore profiles of the study area were created using the Create Station Lines tool 

in ET Geowizard Extension for ArcGIS. The profiles were created at 100 meter intervals 

perpendicular to the baseline. The Split Polyline with Layer tool in ET Geowizard Extension for 

ArcGIS was used to split the profiles at the dune boundary and shoreline. Select Layer by 

Location in ArcGIS was used to select the lines that extend from the dune boundary to the 

shoreline, which were then exported as a new shapefile. The final output was cross-shore profiles 

every 100 meters along the study area that extend from the landward foredune boundary to the 

shoreline (Figure 19).  
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Figure 19: Example of the cross-shore profiles every 100 m alongshore that extend from the shoreline to the 

landward dune boundary.  

Using the procedure outlined in Extraction of Geomorphology Characteristics, the 

geomorphology features of dune width, dune height, dune slope, beach slope and beach width 

were extracted to each profile. The profiles for each year were divided into groups using the 

Group Analysis tool in ArcGIS. The profiles were grouped using K nearest neighbors based 

upon the geomorphology characteristics and spatial distribution of the profiles, and the optimal 

number of groups was evaluated using the Calinski-Harabasz pseudo F-statistic. The average, 

maximum, and minimum value for each geomorphic characteristic, as well as nest frequency, 

was calculated for each group and compared.  
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Next, resembling the methodology of other studies regarding other sea turtle species, the 

study area was divided into sections and the average geomorphology characteristics and nest 

abundance for each section was calculated and statistically analyzed (Cuevas et al., 2010; Long 

et al., 2011; Provancha & Ehrhart, 1985; Rousoo et al., 2014; Yamamoto et al., 2012; Zavaleta-

Lizarraga & Morales-Mavil, 2013). Blocks 1000 meters in length were created alongshore the 

study area, and nest abundance and the average of the geomorphic variables of the profiles 

within each block was calculated. The average geomorphology characteristics alongshore were 

plotted in order to further assess habitat variability. 

The data was statistically analyzed using a linear model in R, with nest abundance acting 

as the dependent variable and the geomorphology characteristics acting as the explanatory 

variables. For each year and all years combined, a model was created with all of the 

geomorphology characteristics acting as the explanatory variables, which was subsequently 

dredged to identify the relatively best model options based on AICc values. The top models were 

developed and evaluated based upon the mean square error, p-value, and adjusted R-squared 

value. 
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RESULTS 

 

Preliminary Statistical Analysis  

 

 The use of the Optimized Hot Spot Analysis tool on the nest coordinates of each year and 

all years combined resulted in the presence of a hot spot near the central section of Padre Island, 

Texas each year (Figure 20). In particular, the analysis of all years combined exposed a notable 

hot spot along the central section of Padre Island and a cold spot along the northern half of South 

Padre Island.  

 
Figure 20: Statistically significant hot spots and cold spots for each year of data produced using the Optimized Hot 

Spot Analysis tool in ArcGIS.  
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Boxplots of each geomorphology characteristic differentiated by nest presence contrast 

the range of geomorphology values used by the Kemp’s ridley sea turtle with the total range of 

available nesting area (Figures 21-27). In Figures 21-27, the lines of each box, moving from the 

bottom to the top of each figure, indicate the 1st, 2nd, and 3rd interquartile range. The points 

above and below the tails represent potential outliers, or values beyond the quartiles by one-and-

a-half the interquartile range. For most of the geomorphology characteristics, the extent used by 

the Kemp’s ridley for nesting is limited in comparison to the breadth of the entire study area; the 

Kemp’s ridley tends to avoid extreme values. The median value for presence points is lower than 

the median value for the background points for the variables elevation, distance from shoreline, 

maximum dune slope, dune width, and average beach slope (Figures 21-27). In particular, the 

interquartile range of the presence points does not overlap with the interquartile range of the 

background data for elevation and distance from shoreline, indicative of a distinct preference of 

the species (Figures 21-22). Furthermore, Tables C1-C5 in Appendix C list statistical measures 

of each geomorphology characteristic for the nest coordinates for each year and all years of data 

combined, which provides a detailed quantification of the terrestrial habitat range of the Kemp’s 

ridley sea turtle. 
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Figure 21: Boxplot of elevation (m) differentiated by background (0) and nest presence (1) data.  

 

 
Figure 22: Boxplot of distance from shoreline (m) differentiated by background (0) and nest presence (1) data. 
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Figure 23: Boxplot of dune height (m) differentiated by background (0) and nest presence (1) data. 

 

 
Figure 24: Boxplot of maximum dune slope (degrees) differentiated by background (0) and nest presence (1) data. 
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Figure 25: Boxplot of dune width (m) differentiated by background (0) and nest presence (1) data.  

 

 
Figure 26: Boxplot of beach width (m) differentiated by background (0) and nest presence (1) data.  
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Figure 27: Boxplot of beach slope (degrees) differentiated by background (0) and nest presence (1) data. 

A correlation matrix of the variables revealed collinearity between the following pairs of 

variables: maximum dune slope and average dune slope, maximum beach slope and average 

beach slope, and elevation and rugosity (Figure 28). There was also a notable relationship 

between elevation and dune height, as well as between elevation and distance from shoreline.  
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Figure 28: Correlation matrix showing pairwise scatterplots (upper right) and Pearson correlation coefficients (lower 

left) for each pair of geomorphic variables for all years combined.   

Generalized Linear Model 

 

Several generalized linear models were generated that predicted the presence or absence 

of nests for all of the years of data combined (Table 6). One of the top models, Model 1, included 

the significant variables (p-value < 0.001) of elevation, dune height, average beach slope, 

maximum dune slope, and beach width (Table 6). This model had a pseudo R-squared value of 

0.46, meaning it accounted for approximately 46% of the variability of nest presence and 

absence. Another one of the top models for all of the years combined, Model 2, included the 

significant variables (p-value < 0.001) of distance from shoreline, dune height, maximum dune 

slope, and average beach slope (Table 6). This model had a pseudo R-squared value of 0.411, 
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meaning it accounted for approximately 41% of the variability of nest presence and absence. 

Elevation and distance from shoreline are the most important variables in the first and second 

models, respectively. A model containing the other significant variables without elevation or 

distance from shoreline, Model 3, only had a pseudo R-squared value of 0.097 (Table 6). 

Table 6: Various generalized linear models and their respective McFadden’s pseudo R-squared values and K-fold 

cross validation prediction errors. These models were produced using all of the years of data combined.  

Model 

Number 
Generalized Linear Model 

McFadden’s 

Pseudo R-

Squared 

K-fold 

Cross-

Validation 

Prediction 

Error 

Ratio of 

Background: 

Presence 

Points 

1 

5.9 – 1.64*elevation + 0.21*dune 

height – 0.36*avg beach slope – 

0.075*max dune slope – 

0.034*beach width 

0.460 0.117 1:1 

2 

4.9 – 0.037*distance from shoreline 

+ 0.13*dune height – 0.088*max 

dune slope – 0.43*avg beach slope 

0.411 0.106 1:1 

3 

3.16 + 0.077*dune height – 

0.29*avg beach slope – 0.086*max 

dune slope 

0.097 0.220 1:1 

4 

5.8 – 1.79*elevation + 0.22*dune 

height – 0.44*avg beach slope – 

0.074*max dune slope – 

0.04*beach width 

0.450 0.111 2:1 

5 

5.23 – 2.05*elevation + 0.26*dune 

height – 0.47*avg beach slope – 

0.069*max dune slope – 

0.05*beach width 

0.448 0.075 5:1 

6 

4.375 – 2.16*elevation + 0.23*dune 

height – 0.37*avg beach slope – 

0.065*max dune slope – 

0.05*beach width  

0.417 0.051 10:1 

The first three models were generated using an equal ratio of background points to nest 

coordinates, but models were also generated using 10:1, 5:1, and 2:1 ratios. The model created 

using a 10:1 ratio (Model 6) had a pseudo R-squared value of 0.417, the model created using a 



55 
 

5:1 ratio (Model 5) had a pseudo R-squared value of 0.448, and the model created using a 2:1 

ratio (Model 4) had a pseudo R-squared value of 0.450 (Table 5). The accuracy of the 

aforementioned models in predicting nest presence versus nest absence was assessed via 

boxplots of the predictions differentiated by nest presence (Figures 29-34). The results indicate 

that the ratio of background to presence points acts as a factor for model accuracy in predicting 

presence and absence; as the ratio of background points to presence points decreases, the 

accuracy of the predictions for nest presence increases and the accuracy of the predictions for 

nest absence decreases (Figures 29 & 32-34). It is also important to note that the median 

prediction value for the presence points increases in accuracy at a faster rate than the median 

prediction value for the absence points decreases in accuracy, resulting in a somewhat balanced 

accuracy in the model created using an equal ratio. This is further validated by comparing the 

statistical measures of the confusion matrices for the models created using varying ratios of 

background to presence points (Appendix D). Therefore, a 1:1 ratio of background to present 

points is optimal for the purposes of this study, as it produces the most accurate model for 

predicting nest presence without exceedingly hindering the accuracy for predicting nest absence. 

 
Figure 29: Boxplot of the predictions of Model 1 in Table 5 differentiated by nest presence.   
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Figure 30: Boxplot of the predictions of the Model 2 in Table 5 differentiated by nest presence.  

 

 
Figure 31: Boxplot of the predictions of the Model 3 in Table 5, which excludes elevation and distance from 

shoreline, differentiated by nest presence.  

 

 
Figure 32: Boxplot of the predictions of Model 4 in Table 5, which was generated using a 2:1 ratio of background to 

presence points, differentiated by nest presence. 
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Figure 33: Boxplot of the predictions of Model 5 in Table 5, which was generated using a 5:1 ratio of background to 

presence points, differentiated by nest presence. 

 

 
Figure 34: Boxplot of the predictions of Model 6 in Table 5, which was generated using a 10:1 ratio of background 

to presence points, differentiated by nest presence.  

 

Geographic exclusions were applied to the background points input into model 6 of Table 

6 to limit the proximity of the background points to the nest coordinates. The subsequent 

McFadden’s pseudo R-squared values and K-fold cross-validation prediction errors were 

compared to assess the impact of background sampling technique on model performance 

(Figures 35-36). The McFadden’s pseudo R-squared value increased as the size of the 

geographic exclusion increased, but the K-fold cross validation prediction error increased as 

well, meaning increased geographic exclusions resulted in models that explained more variation 

but were less accurate (Figures 35-36).  
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Figure 35: McFadden’s pseudo R-squared value for models created using varying geographic exclusions. 

 

 
Figure 36: K-fold cross-validation prediction error for models created using varying geographic exclusions.  

 

Overall, differences between the models generated using varying geographic exclusions 

were minute and corresponded with the findings of Barbet-Massin et al. (2012), which were that 

geographic exclusions decrease the accuracy of GLMs and, therefore, using a random selection 

sampling technique of background points is ideal. Consequently, the optimal generalized linear 

models for this study are models characterized by a 1:1 ratio of background to presence points 

and background points created using a random sampling technique. Models 1 and 2 in Table 5 

were determined to be the best overall models for all the years of data combined.  
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Generalized linear models were produced for each year of data using a 1:1 ratio of 

background to presence points without a geographic exclusion. Each of these were characterized 

by McFadden’s pseudo R-squared values and K-fold cross-validation prediction errors (Table 7). 

The top model for each year contained a distinct combination of explanatory variables, but 

elevation, dune height, and maximum dune slope were consistently present in each (Table 7).  

Table 7: Top generalized linear model for each year using nest presence/absence as the dependent variable and the 

geomorphology characteristics as the explanatory variables.  

Year Generalized Linear Model 

McFadden’s 

Pseudo R-

Squared 

K-fold Cross-

Validation 

Prediction Error 

2009 

1.51 – 1.77*elevation + 0.21*dune height 

– 0.06*max dune slope + 0.42*avg beach 

slope – 0.0075*aspect 

0.379 0.054 

2010 

3.94 – 0.93*elevation + 0.52*dune height 

– 0.06*max dune slope – 1.05*avg beach 

slope – 0.019*dune width 

0.362 0.056 

2011 
5.6 – 3.32*elevation + 0.27*dune height – 

0.08*max dune slope – 0.048*beach width 
0.524 0.044 

2012 

6.13 – 2.8*elevation + 0.22*dune height – 

0.1*max dune slope – 0.076*beach width 

– 0.0054*aspect 

0.532 0.0415 

 

Spatial Autocorrelation  

 

The spline correlogram of the raw data for all years of data combined revealed positive 

spatial autocorrelation between nests up to 250 m apart (Figure 37). The spline correlogram of 

the Pearson residuals of the top generalized linear model for all the years combined (first model 

in Table 4) exhibited little spatial autocorrelation between nests, even within a short distance 

(Figure 38). This suggests that the spatial autocorrelation in the data was explained by the 

explanatory variables in the model (Zuur et al., 2009; Crase et al., 2014). Therefore, the 

generalized linear model does not need to be adapted to account for spatial autocorrelation (Zuur 

et al., 2009).  
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Figure 37: Spline correlogram of the raw data with 95% pointwise bootstrap confidence intervals.  

 

 
Figure 38: Spline correlogram of the residuals of the GLM with 95% pointwise bootstrap confidence intervals. 

 

Random Forest  

 

A random forest model was successfully created with an accuracy of 0.896, a sensitivity 

of 0.914, and a specificity of 0.879 (Table 8). This model was generated using an equal ratio of 

pseudo absence points to presence points. A Receiving Operating Characteristic (ROC) curve of 

the random forest model shows the false positive rate versus the true positive rate (Figure 39). 

The closer the false positive rate is to 0 and the closer the true positive rate is to 1, the more 

accurate the model. Furthermore, variable importance plots for the random forest demonstrate 

the relative ranking of each predictor in importance (Figure 40). Elevation and distance from 
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shoreline proved to be the most important variables, but maximum dune slope and average beach 

slope were relatively important as well. 

Table 8: Results of the random forest model generated using an equal ratio of background points to presence points. 

These values are the average values of the 100 iterations. 

Accuracy 0.896 

Kappa 0.792 

P-value < 2e-16 

Sensitivity 0.914 

Specificity 0.879 

Positive Prediction Value 0.885 

Negative Prediction Value 0.909 

Prevalence 0.506 

Detection Rate 0.522 

Balanced Accuracy 0.896 

 

 
Figure 39: Receiver operating characteristic (ROC) curve of the random forest model.  
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Figure 40: Variable importance plots of the random forest model. The figure on the left shows the mean decrease in 

accuracy of the model due to the exclusion of each variable and the figure on the right shows the relative importance 

of each variable.  

A random forest model was also generated using a 10:1 ratio of background points to 

presence points (Table 9). In comparison to the random forest generated using an equal of 

background points to presence points, the sensitivity, or accuracy of predicting presence points, 

of this model was much lower. This is indicative that the higher ratio of background to presence 

points biases the model against the presence data, which is consistent with the trends between the 

generalized linear models created using varying ratios of background to presence points (Tables 

8-9). Therefore, the top random forest model for this study was the model created using an equal 

ratio of background to presence points because it was more accurate in predicting nest presence 

without exceedingly hindering the accuracy in predicting nest absence.  

Table 9: Results of the random forest model generated using a 10:1 ratio of pseudo absence points to presence 

points. 

Accuracy 0.948 

Kappa 0.607 

P-value 1.05e-09 

Sensitivity 0.530 

Specificity 0.987 

Positive Prediction Value 0.787 
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Negative Prediction Value 0.958 

Prevalence 0.0843 

Detection Rate 0.0569 

Balanced Accuracy 0.759 

Environmental Variables 

 

The correlation matrix of the environmental variables for all years of data combined 

revealed collinearity between the following pairs of variables: water temperature and air 

temperature, and wind speed and gust speed (Figure 41).  

 
Figure 41: Correlation matrix comprised of pairwise scatterplots (upper right) and Pearson correlation coefficients 

(lower left) for each pair of environmental variables for all years of data combined. 

Comparing the statistical measures of the average daily environmental conditions for 

non-nesting days during nesting season, nesting days, and nesting days with more than two nests 
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revealed stark differences for the environment variables of wind speed and gust speed (Table 

10). For nesting days, the median wind speed was 16.0 knots and the median gust speed was 18.7 

knots. This is a sharp contrast to the median wind speed and gust speed values for non-nesting 

days, 12.3 knots and 14.3 knots, respectively. Furthermore, 75% of nesting days with two or 

more nests were characterized by wind speeds of at least 14.4 knots and by gust speeds of at least 

17.1 knots, while only 25% of non-nesting days were characterized by comparable wind speeds 

and gust speeds (Table 10). This suggests that nesting is more likely to occur if wind speeds and 

gust speeds surpass a certain magnitude.  

Table 10: Statistical measures of the average daily environmental conditions for non-nesting days, nesting days, and 

nesting days with more than two nests.   
Non-Nesting Days Nesting Days Nesting Days (>2 Nests)  
Wind 

Speed (kn) 

Gust Speed 

(kn) 

Wind 

Speed (kn) 

Gust Speed 

(kn) 

Wind 

Speed (kn) 

Gust Speed 

(kn) 

Average 12.62 14.72 15.84 18.53 16.53 19.37 

1st 

Quartile 
9.78 11.35 13.41 15.57 14.44 17.13 

2nd 

Quartile 
12.28 14.25 16.04 18.69 16.73 19.25 

3rd 

Quartile 
15.09 17.65 18.57 21.56 18.83 22.29 

Several linear models were generated that predict daily nest count using daily average 

environmental conditions as the explanatory variables (Table 11). The top two models were 

comprised of the explanatory variables of wind speed and gust speed, which are collinear, and 

were characterized by comparative adjusted R-squared values, p-values, and F-statistics (Table 

11). Models generated using across-shore wind speed (wind direction of east or west) and 

alongshore wind speed (wind direction of north or south) were characterized by lower adjusted 

R-squared values and p-values in comparison to the model generated using wind speed of all 
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directions (Table 11). Plots of the residuals of the top two linear models reveal an increasing 

trend, suggestive that a non-linear model might be a better fit for the data (Figures 42-43). 

Table 11: Linear models and their associated statistics using daily nest count as the dependent variable and daily 

average environmental characteristics as the explanatory variables.  

Linear Model 
Adjusted R  

Squared 
P-value F-statistic 

-3.05 + 0.344*wind speed 0.1086 8.55e-10 40.01 

-3.02 + 0.29*gust speed 0.108 9.64e-10 39.74 

-1.92 + 0.24*across-shore wind 

speed 0.0864 0.000348 13.49 

-3.38 + 0.37*alongshore wind 

speed 
0.0969 9.595e-06 20.74 

 

 
Figure 42: Plot of the residuals versus fitted values for the linear model generated using wind speed. 

 

 
Figure 43: Plot of the residuals versus fitted values for the linear model generated using gust speed. 

 

 Non-linear models, specifically power and exponential models, were developed in R 

using wind speed as the explanatory variable and daily nest count as the dependent variable. The 
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multiple R-squared and AICc values of the non-linear models were comparable to that of the 

linear model that used wind speed as the explanatory variable, yet the values associated with the 

linear model were slightly more favorable (Table 12). Furthermore, the power and exponential 

models did not explain the trend in the residuals (Figures 44-45). The plots of the residuals for 

the non-linear models reveal an increasing trend in the residuals similar to the trend of the 

residuals for the linear model (Figures 42 & 44-45). Therefore, the relatively best model option 

that uses environmental conditions to predict daily nest count is the linear model with the 

explanatory variable of wind speed.  

Table 12: The multiple R-squared and AICc values of the linear, power, and exponential models with wind speed as 

the explanatory variable.  

Model Type Model Multiple R-squared AICc 

Linear 
-3.05 + 0.344*wind 

speed 
0.1114 1774.075 

Power 
-15.7 + 9.1*(wind 

speed^0.25) 
0.1016 1777.619 

Exponential 
-0.31 + 1.12*e^(-1.709 

+ 0.153*wind speed) 
0.1107 1774.338 

 

 
Figure 44: Plot of the residuals versus fitted values for the power model generated using wind speed. 
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Figure 45: Plot of the residuals versus fitted values for the exponential model generated using wind speed. 

 

Alongshore Habitat Variability Analysis 

 

The optimal number of groups for the cross-shore profiles created every 100 m 

alongshore, which was evaluated using the Calinski-Harabasz pseudo F-statistic, was four for 

2009-2011 and five for 2012. Tables 13-16 list the average value of each geomorphology 

characteristic and nest frequency for each group of profiles each year, providing a quantification 

of the general trends in geomorphology alongshore. A detailed quantification of the variations in 

geomorphology alongshore is furnished by plots of each geomorphology characteristic derived 

from the cross-shore profiles versus distance alongshore, located in Appendix E. Figures 46-49 

display the location of each group of profiles per year. Each year, nest frequency was highest in 

one of the groups of profiles located in the central section of the study area (Figures 46-49). This 

section was characterized by beaches that were narrower and steeper than average and by dunes 

that had an above average height, with the exception of 2011 where the steepest beach slope was 

located in the northernmost region.  
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Figure 46: Map depicting the location of each group (cluster) of profiles for 2009 labeled with the corresponding 

nest frequency (nests/km).  

 

Table 13: Table listing the average of each geomorphology characteristics for each group of profiles for 2009, listed 

in order from North to South. 

Group Average 

Dune Slope 

(degrees) 

Beach 

Width (m) 

Average 

Beach Slope 

(degrees) 

Dune Width 

(m) 

Dune 

Height (m) 

Nests 

Frequency 

(nests/km) 

2 7.29 16.45 2.29 170.69 6.63 0.75 

3 7.03 10.60 3.58 204.75 7.73 1.60 

4 8.36 11.45 3.18 124.57 5.99 0.76 

1 6.04 16.43 2.66 143.26 5.61 0.58 
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Figure 47: Map depicting the location of each group (cluster) of profiles for 2010 labeled with the corresponding 

nest frequency (nests/km). 

 

Table 14: Table listing the average of each geomorphology characteristics for each group of profiles for 2010, listed 

in order from North to South. 

Group Average 

Dune Slope 

(degrees) 

Beach 

Width (m) 

Average 

Beach 

Slope 

(degrees) 

Dune Width 

(m) 

Dune 

Height (m) 

Nest 

Frequency 

(nests/km) 

2 10.35 23.53 2.66 63.93 5.28 0.40 

3 7.81 10.32 4.32 134.81 8.15 0.88 

4 9.86 17.46 3.31 71.11 5.86 0.81 

1 2.50 27.95 6.58 117.82 5.38 0.49 
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Figure 48: Map depicting the location of each group (cluster) of profiles for 2011 labeled with the corresponding 

nest frequency (nests/km). 

 

Table 15: Table listing the average of each geomorphology characteristics for each group of profiles for 2011, listed 

in order from North to South. 

Group Average 

Dune Slope 

(degrees) 

Beach 

Width (m) 

Average 

Beach 

Slope 

(degrees) 

Dune Width 

(m) 

Dune 

Height (m) 

Nest 

Frequency 

(nests/km) 

2 8.10 20.13 3.58 158.84 6.72 0.76 

4 7.88 20.87 3.00 174.00 7.58 1.57 

3 8.85 22.51 2.58 123.77 6.03 0.86 

1 6.76 36.12 2.32 134.27 5.74 0.70 
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Figure 49: Map depicting the location of each group (cluster) of profiles for 2012 labeled with the corresponding 

nest frequency (nests/km). 

 

Table 16: Table listing the average of each geomorphology characteristics for each group of profiles for 2012, listed 

in order from North to South. 

Group Average 

Dune Slope 

(degrees) 

Beach 

Width (m) 

Average 

Beach 

Slope 

(degrees) 

Dune Width 

(m) 

Dune 

Height (m) 

Nest 

Frequency 

(nests/km) 

3 7.84 21.95 2.81 157.53 6.31 0.34 

5 8.59 19.10 2.71 137.96 6.46 0.68 

4 7.08 10.18 3.83 200.89 7.91 0.76 

2 9.26 13.70 3.20 114.61 6.37 1.39 

1 6.61 18.13 2.96 143.42 5.79 1.06 
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Statistical analyses of nest abundance and the associated average geomorphology 

characteristics within the 1 km beach segments for each year and all years combined resulted in 

linear models with low adjusted R-squared values, high p-values and high errors (Table 17). The 

models for each year and all years combined were each comprised of a unique combination of 

explanatory variables. For each year and all years combined, each variable in the top linear 

model was significant with an alpha of 0.1. In comparison to the aforementioned GLMs, these 

models are not effective at predicting nest presence or absence, possibly due to the limited 

number of nests over the extensive study area.  

Table 17: Table listing the top linear model for each year and all years combined for the statistical analysis of nest 

abundance and average geomorphology characteristics within 1 km beach segments. 

Year Linear Model 
Adjusted R-

Squared 
P-value 

Mean 

Square 

Error 

2009 
0.2 + 0.31*avg beach slope + 0.0039* 

dune width – 0.028*max dune slope 
0.084 0.0004 0.97 

2010 
1.9 – 0.068*avg dune slope – 0.018*beach 

width – 0.0036*dune width 
0.032 0.034 0.63 

2011 0.394 + 0.0033*dune width 0.034 0.0078 0.99 

2012 
-2.98 + 4.31*avg beach elevation – 

0.016*beach width 
0.032 0.022 1.11 

All 
-1.85 – 0.011*beach width + 0.081*dune 

height + 2.48*avg beach elevation 
0.038 1.32e-06 0.96 
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DISCUSSION 

 

 Kemp’s ridley nest presence was successfully modeled using a small number of 

geomorphology characteristics. The top generalized linear models were able to explain 40-46% 

of the variability of nest presence with a relatively low prediction error (Table 6), and the final 

random forest model was highly accurate with a true positive rate above 85% (Table 8). The 

random forest model was superior in performance compared to the generalized linear models. 

This indicates that ranges of the geomorphology characteristics may be more important for 

Kemp’s ridley nesting than linear trends, or that the relationship between nest presence and the 

explanatory variables is non-linear. 

 The generalized linear models generated using a higher ratio of background to presence 

points were characterized by lower pseudo R-squared values and lower K-fold cross validation 

prediction errors in comparison to the generalized linear models constructed using a lower ratio 

of background to presence points (Table 6). However, as the ratio of background to presence 

points increased, model accuracy in predicting presence points decreased while accuracy in 

predicting background points increased (Figures 29 & 32-34).  

 Similarly, the random forest model generated using a 10:1 ratio of background points to 

presence points had a higher accuracy in predicting background points with a lower sensitivity in 

comparison to the random forest model generated using an equal ratio (Tables 9-10). This is 

indicative that the models generated using higher ratios of background to presence points are 

biased towards predicting the background points. Furthermore, generalized linear models created 

using a geographic exclusion sampling technique of the background points decreased the 

accuracy of the model, indicating that a random selection sampling technique of background 

points is a good method to build presence/absence models (Figures 35-36). Therefore, the 
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optimal generalized linear models for this study were generated using a 1:1 ratio of background 

points to presence points with background points that were randomly sampled, making Models 1 

and 2 of Table 6 the top generalized model options. Similarly, the top random forest model was 

created using an equal ratio of background to presence points (Table 8).  

 For both the random forest model and the top generalized linear models, elevation and 

distance from shoreline were the most important variables. The optimized generalized linear 

models included the aforementioned geomorphology characteristics as significant variables. 

Furthermore, the generalized linear model generated without the variables of elevation or 

distance from shoreline was less accurate in predicting nest presence and absence and only 

accounted for 9% of the variability (Table 6). Similarly, the variable importance plots for the 

random forest model indicate that elevation and distance from shoreline contributed the most to 

the accuracy of the model and were the relatively most important variables (Figure 40). This is 

indicative that site specific characteristics, or where Kemp’s ridleys nest on a given beach, are 

more important than the other beach geomorphology characteristics. This is further supported by 

the results of the alongshore habitat variability analysis, which revealed that alongshore trends in 

the geomorphology characteristics did not significantly influence nest presence (Table 17).  

 However, the alongshore habitat variability analysis may have been ineffective at 

predicting nest presence due to the relatively small number of nests in comparison to the 

extensive size of the study area. Maximum dune slope and average beach slope were both 

relatively important variables in the random forest model and were significant variables in the 

top generalized linear models, exhibitive of a degree of importance for nesting preferences 

(Table 6 & Figure 40). 
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 Kemp’s ridleys preferred to nest at a median elevation of 1.04 m above mean sea level 

and a median distance from shoreline of 12.79 m, which corresponds to the area near the 

potential vegetation line (Appendix A). This is consistent with the description of the nesting 

habits of the species by Marquez-M. (1994) that the Kemp’s ridley usually nests in front of the 

first dune, on the windward slope, or on top of the dune. Kemp’s ridleys also exhibited a 

preference for a limited range of the available habitat and avoided nesting on beaches with 

extreme values for maximum dune slope, average beach slope, and beach width (Figures 21-27). 

Additionally, nesting occurred at a median value for each geomorphology characteristic that is 

lower than the median value of the background points, suggestive of an aversion to maximum 

values of geomorphology characteristics (Figures 21-27). Figures 50 and 51 are examples of 

profiles that would not be preferred for nesting because they are characterized by extreme values 

for the beach geomorphology characteristics. On the other hand, Figures 52 and 53 are examples 

of profiles that would be preferred for nesting because they are characterized by beaches with 

moderate widths and slopes as well as prominent foredune complexes.  

 
Figure 50: Example of a profile that would not be preferred for nesting due to the wide, flat beach. 

 

0

1

2

3

4

5

6

7

0 5

1
0

1
5

2
0

2
5

3
0

3
5

4
0

4
5

5
0

5
5

6
0

6
5

7
0

7
5

8
0

8
5

9
0

9
5

1
0

0

1
0

5

1
1

0

1
1

5

1
2

0

1
2

5

1
3

0

1
3

5

1
4

0

1
4

5

1
5

0

1
5

5

1
6

0

El
ev

at
io

n
 (

m
)

Distance from Shoreline (m)



76 
 

 
Figure 51: Example of a profile that would not be preferred for nesting due to the narrow, steep beach and high 

average dune slope. 

 

 
Figure 52: Example of a profile that would be preferred for nesting due to the moderate beach slope and width and 

prominent dune complex. 

 

 
Figure 53: Example of a profile that would be preferred for nesting due to the moderate beach slope and width and 

prominent dune complex. 
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 Spatially, Kemp’s ridleys nested at higher frequencies along the central section of the 

study area; the beaches in this region are on average narrower, steeper and characterized by 

higher dune peaks in comparison to the northern and southern sections of the study area (Figures 

46-49 & Tables 13-16). However, this is not indicative that this region is characterized by more 

extreme values for beach geomorphology characteristics in comparison to the other regions 

(Appendix E). The results of the Optimized Hot Spot Analysis tool in ArcGIS concur with this 

finding, with a considerable hot spot occurring along the central section of the study area for all 

the years of data combined (Figure 30). The beaches along the central section of the study area 

resemble the main nesting site of the Kemp’s ridley, the beaches of Rancho Nuevo, Mexico, 

which are also narrower and steeper in comparison to nearby beaches (Carranza-Edwards et al., 

2004) (Figure 4). Both regions are also characterized by the presence of shell fragments 

(Carranza-Edwards et al., 2004; NMFS et al., 2010; NMFS & USFWS, 2015). The resemblance 

between the beaches of the central section of Padre Island, TX and Rancho Nuevo, Mexico 

reinforces the spatial nesting trends found in this study.  

 These results largely resemble the findings of research regarding other sea turtle species. 

Yamamoto et al. (2012) found that loggerhead, green, and leatherback sea turtles each exhibited 

tolerances for ranges of values of geomorphology characteristics, but they would not nest on 

beaches with values outside of these tolerances. This is consistent with the findings of this 

research, which concluded that Kemp’s ridleys exhibited an aversion to beaches outside of a 

certain range of values of geomorphology characteristics (Figures 21-27). Studies regarding both 

the loggerhead and hawksbill sea turtles found that these species prefer to nest at a certain 

elevation above mean sea level (Horrocks & Scott, 1991; Wood & Bjorndal, 2000). Furthermore, 

Dunkin et al. (2016) developed a model that successfully predicted loggerhead habitat suitability 
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using geomorphology characteristics, of which elevation proved to be the most influential factor. 

Similarly, Kemp’s ridley nest presence was successfully modeled using beach geomorphology 

characteristics, and elevation and distance from shoreline, which are collinear variables, were the 

most important.  

Environmental Conditions for Nesting 

 

 The results of this study also indicate that the Kemp’s ridley exhibited a preference for 

nesting on days with higher wind speeds and gust speeds, concurrent with the findings of 

Jimenez-Quiroz et al. (2005) and Shaver et al. (2017). A comparison of statistical measures of 

the environmental conditions for non-nesting days, nesting days, and nesting days with two or 

more nests suggested that nesting becomes more likely once wind speeds and gust speeds reach a 

certain magnitude. Seventy-five percent of nesting days with two or more nests were 

characterized by wind speeds of at least 14.4 knots and by gust speeds of at least 17.1 knots 

(Table 10). In comparison, only 25% of non-nesting days during nesting season were 

characterized by comparable wind speeds and gust speeds (Table 10). Furthermore, models 

predicting daily nest count using daily average wind speed and gust speed as explanatory 

variables were significant and explained over 10% of the variability in daily nest count (Tables 

11-12). It is possible that wind speed acts as a cue or stimuli for Kemp’s ridleys to initiate an 

arribada, since higher wind speeds are advantageous because they produce cooler sand 

temperatures and reduce predation risk (Jimenez-Quiroz et al., 2005; Shaver et al., 2017; Shaver 

& Rubio, 2008).  

Sources of Error 

 

Potential sources of error include the accuracy of both the nest coordinates and the lidar 

data. Both the Garmin GPS 72 and GPS 72H have a typical GPS accuracy of less than 15 meters 
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with an RMS of 95% and a typical DGPS accuracy of 3 to 5 meters with an RMS of 95% 

(Garmin, 2002; Garmin, 2009). The horizontal accuracy of the lidar data is less than 1 m and the 

vertical accuracy is less than 0.15 m (Table 1). The bias in the lidar data, though minimal, was 

not corrected and constitutes another source of error (Table 2 & Appendix A). In particular, the 

accuracy of the nest coordinates measured on South Padre Island using Google Earth is 

questionable. Google makes no claims as to the accuracy of the coordinates in Google Earth, and 

imagery is acquired from several sources with varying projections and spectral characteristics. 

However, a recent study by Wang et al. (2017) found that the RMSE of Google Earth roadway 

elevations was 2.27 meters and concluded that elevation data provided by Google Earth is a 

reliable data source for transportation applications.  

Additionally, in-situ nests, or nests not located during beach monitoring and nest location 

efforts, were not included in this study. The beaches of these nests could be characterized by 

geomorphology characteristics that fall outside the current quantification of the Kemp’s ridley 

habitat range, which would thereby change the range of the species and alter the statistical 

models. However, the patrol effort along the study area is considerable and the number of in-situ 

nests is likely minimal (Shaver et al., 2016b). This means that the nests analyzed in this study are 

representative of a majority of nests within the study area, and it is feasible to assume that any 

in-situ nests would only minutely alter the results of this study.  

Applicability for Kemp’s Ridley Management and Conservation 

 

 There are variety of species management and conservation applications for the results of 

this study that would help protect the Kemp’s ridley sea turtle and its habitat. The methods 

developed in this study can be used to monitor Kemp’s ridley habitat availability along the Texas 

coast as both human (i.e. beach nourishment) and natural processes (i.e. sea-level rise and 
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extreme storm events) alter beach geomorphology characteristics. Resource managers and city 

planners can use these results to limit degradation to Kemp’s ridley terrestrial habitat during 

beach nourishment and maintenance projects by ensuring the geomorphology characteristics of 

all managed beaches fall within the habitat range of the species. For instance, beaches can be 

managed to resemble Figures 52-53 and can be further altered if they resemble Figures 50-51.  

Furthermore, this quantification of Kemp’s ridley terrestrial habitat and nesting 

preferences can be used to locate beaches with optimal nesting habitat for any future relocation 

efforts and to assist with a critical habitat designation for the species. The results of this study 

can also be applied to Kemp’s ridley nest location efforts. Monitoring can be focused on areas 

where Kemp’s ridleys are most likely to nest, such as near the potential line of vegetation and 

along the central section of Padre Island, Texas, and searches can be strengthened on days with 

higher wind speeds, especially on days with wind speeds greater than 15 knots. 
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CONCLUSIONS 

 

This project assessed the relationship between beach geomorphology and Kemp’s ridley 

nest site selection on North and South Padre Islands, Texas, USA and determined the influence 

of environmental conditions on Kemp’s nest presence. The following objectives were achieved: 

 Identify the terrestrial habitat variability of the Kemp’s ridley sea turtle on the beaches of 

North and South Padre Islands, Texas; 

 Quantify the influence of beach geomorphology characteristics on Kemp’s ridley nest site 

selection; 

 Assess the impact of daily average environmental conditions, such as wind speed and 

direction, on Kemp’s ridley daily nest abundance.  

The results of this study include new information regarding the Kemp’s ridley sea turtle 

that will be beneficial for species conservation practices and management decisions. Although 

the Kemp’s ridley nests on beaches with a wide range of geomorphology characteristics, the 

species exhibited an aversion to beaches outside a certain range of values (Figures 21-27). 

Furthermore, the Kemp’s exhibited a preference for nesting near the potential vegetation line, or 

the lowest dune elevation at which vegetation will grow, and on days with higher wind speeds. 

Future Research 

 

 Future work should incorporate the results of this study into a habitat suitability model in 

order to map Kemp’s ridley habitat along the Texas Gulf Coast, especially as beaches respond to 

threats, such as extreme storms and sea-level rise, and the extent of Kemp’s ridley habitat 

potentially changes. In addition, applying this study to the main nesting beach of Rancho Nuevo, 

Mexico would be informative of any regional differences in Kemp’s ridley nesting preferences. 

This would also serve as a method of further validating the results of this study. In hopes of 
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explaining more of the variability, a future project could also combine geomorphology 

characteristics with other parameters, such as sand characteristics, artificial lighting, and extent 

of human use, in a more comprehensive model predicting Kemp’s ridley nest presence. 

Similarly, current and tidal data could be combined with wind speed and gust speed data to 

attempt to better understand the timing of Kemp’s ridley arribadas. Furthermore, future work 

could assess if individuals exhibit fidelity for beaches within a narrow range of geomorphology 

characters, even if they do not necessarily exhibit site fidelity.  
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APPENDICES 

 

A. Lidar Bias Calculations 

 

 
Figure A1: Difference in elevation along the roads of the 2012 and 2011 lidar data in the North.  

 

 
Figure A2: Difference in elevation along the roads of the 2012 and 2011 lidar data in the South. 
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Figure A3: Difference in elevation along the roads of the 2011 and 2010 lidar data in the North.  

 

 

 
Figure A4: Difference in elevation along the roads of the 2011 and 2010 lidar data in the South. 
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Figure A5: Difference in elevation along the roads of the 2010 and 2009 lidar data in the North. 

 

 

 

 
Figure A6: Difference in elevation along the roads of the 2010 and 2009 lidar data in the South.  
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B. Landward Foredune Boundary Mapping Criteria 

 

I.  Identify main foredune complex 

 

1. Relief 

 Visually locate dunes 

 Find the main foredune complex, it is usually prominent and readily identifiable 

 

2. Elevation and Aspect 

 Identify features with an elevation greater than 2m. 

 Use aspect as a visual aid to identify the continuous foredune ridge. 

 

II. To determine if neighboring dunes are part of the foredune complex, use the following: 

 

1. Proximity, connectedness, clustering 

 Identify groups of dunes that are close to the main foredune feature/ridge. 

 Assess if dunes are connected resembling a continuous chain and are clustered 

together.  

 There may be gaps within the foredune complex. 

 

2. Orientation- parallel to the coast  

 Neighboring dunes are part of the main foredune complex if the group is oriented 

parallel to the coast  

 

3. Function 

 Dune chains or groups are considered part of the foredune complex if they could 

potentially act as storm washover protection features given their elevation, orientation 

to the shoreline, and proximity to the main complex. 

 

 III. Other criteria to consider: 

 

1. Excluding man-made structures that disrupt foredune function 

 

2. Consider dune dynamics and vegetation cover if: 

 The foredune ridge is fragmented. 

 The dune environment is highly dynamic. 

 If the area in question is a part of the active aeolian exchange with the 

beach or foredune. 

 

 

The Coastal and Marine Geospatial Lab at Harte Research Institute and the Bureau of Economic 

Geology developed this process, the outputs of which are described in Paine et al. (2013). 
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C. Preliminary Statistical Analysis: Nest Habitat  

 

Table C1: Statistical measures of each geomorphology characteristic for the nest coordinates of all of the years of data combined. 

All Years Aspect  Elevation 

(m) 

Rugosity Avg 

Beach 

Slope 

(degrees) 

Beach 

Width 

(m) 

Dune 

Height 

(m) 

Dune 

Width 

(m) 

Max 

Dune 

Slope 

(degrees) 

Avg Dune 

Slope 

(degrees) 

Distance 

from 

Shoreline 

(m) 

Average 113.64 1.20 2.75 2.96 17.46 6.44 250.18 29.03 7.79 19.47 

Standard 

Deviation 

71.92 0.77 3.80 0.93 9.25 1.88 75.93 7.72 2.59 61.72 

1st Quartile 72.01 0.75 1.22 2.27 11.02 5.38 87.93 24.01 6.07 2.71 

Median 92.63 1.11 1.78 2.78 15.53 6.22 123.91 29.17 7.54 12.79 

3rd Quartile  120.58 1.47 2.63 3.43 21.05 7.37 189.76 33.92 9.34 23.01 

 

Table C2: Statistical measures of each geomorphology characteristic for the nest coordinates of 2012.  

2012 Aspect  Elevation 

(m) 

Rugosity Avg 

Beach 

Slope 

(degrees) 

Beach 

Width 

(m) 

Dune 

Height 

(m) 

Dune 

Width 

(m) 

Max 

Dune 

Slope 

(degrees) 

Avg Dune 

Slope 

(degrees) 

Distance 

from 

Shoreline 

(m) 

Average 108.74 1.06 2.36 3.05 14.46 6.48 325.17 28.06 7.88 13.29 

Standard 

Deviation 

73.03 0.63 1.57 0.77 6.09 1.84 1378.56 7.14 2.24 41.78 

1st Quartile 69.22 0.62 1.49 2.43 10.02 5.52 91.84 23.56 6.36 -0.71 

Median 85.37 1.05 1.82 2.88 13.02 6.31 123.34 28.70 7.65 7.97 

3rd Quartile  117.39 1.38 2.51 3.59 18.02 7.31 177.58 33.10 9.34 15.66 

 

Table C3: Statistical measures of each geomorphology characteristic for the nest coordinates of 2011.  

2011 Aspect  Elevation 

(m) 

Rugosity Avg 

Beach 

Slope 

(degrees) 

Beach 

Width 

(m) 

Dune 

Height 

(m) 

Dune 

Width 

(m) 

Max 

Dune 

Slope 

(degrees) 

Avg Dune 

Slope 

(degrees) 

Distance 

from 

Shoreline 

(m) 

Average 131.08 1.14 2.49 2.82 23.42 6.60 354.81 30.07 7.66 18.42 

Standard 

Deviation 

86.48 0.52 2.18 0.79 11.14 1.82 1417.28 8.08 2.40 24.70 
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1st Quartile 70.40 0.89 1.46 2.23 17.02 5.61 101.44 24.75 6.03 6.60 

Median 99.61 1.06 1.99 2.65 21.04 6.50 138.54 30.08 7.42 17.46 

3rd Quartile  177.91 1.33 2.68 3.23 27.05 7.69 194.48 36.12 9.22 24.81 

 

Table C4: Statistical measures of each geomorphology characteristic for the nest coordinates of 2010.  

2010 Aspect  Elevation 

(m) 

Rugosity Avg 

Beach 

Slope 

(degrees) 

Beach 

Width 

(m) 

Dune 

Height 

(m) 

Dune 

Width 

(m) 

Max 

Dune 

Slope 

(degrees) 

Avg Dune 

Slope 

(degrees) 

Distance 

from 

Shoreline 

(m) 

Average 120.17 1.35 4.39 2.93 19.99 5.79 80.00 29.85 9.25 24.46 

Standard 

Deviation 

74.60 1.01 5.42 0.97 7.80 1.51 47.12 7.37 3.17 70.57 

1st Quartile 74.40 0.69 1.62 2.13 13.54 4.72 47.62 24.06 7.10 2.23 

Median 99.83 1.10 2.21 2.84 20.02 5.68 69.79 29.35 9.17 15.97 

3rd 

Quartile  

128.00 1.64 3.89 3.40 25.53 6.51 98.66 34.31 10.73 26.79 

 

Table C5: Statistical measures of each geomorphology characteristic for the nest coordinates of 2009.  

2009 Aspect  Elevation 

(m) 

Rugosity Avg 

Beach 

Slope 

(degrees) 

Beach 

Width 

(m) 

Dune 

Height 

(m) 

Dune 

Width 

(m) 

Max 

Dune 

Slope 

(degrees) 

Avg Dune 

Slope 

(degrees) 

Distance 

from 

Shoreline 

(m) 

Average 96.83 1.31 2.35 3.02 12.94 6.67 178.24 28.49 6.85 23.78 

Standard 

Deviation 

41.00 0.88 4.93 1.15 6.97 2.09 81.91 7.89 2.19 91.62 

1st Quartile 75.31 0.79 0.58 2.22 9.02 5.42 117.50 23.99 5.57 2.84 

Median 88.70 1.31 0.74 2.76 12.01 6.26 156.51 28.65 6.77 13.46 

3rd 

Quartile  

103.13 1.69 1.39 3.67 15.01 7.67 232.35 33.57 8.28 23.56 
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D. Confusion Matrices for GLMs of Varying Ratios of Background to Presence Points 

 

Table D1: Confusion matrix results for Model 1 in Table 5, which was generated using an equal ratio of background 

to presence points.  

Accuracy 0.842 

Kappa 0.684 

P-value 2.2e-16 

Sensitivity 0.892 

Specificity 0.793 

Positive Prediction Value 0.811 

Negative Prediction Value 0.880 

Prevalence 0.500 

Detection Rate 0.446 

Balanced Accuracy 0.842 

 

Table D2: Confusion matrix results for Model 4 in Table 5, which was generated using a 2:1 ratio of background to 

presence points. 

Accuracy 0.834 

Kappa 0.638 

P-value < 2e-16 

Sensitivity 0.775 

Specificity 0.869 

Positive Prediction Value 0.747 

Negative Prediction Value 0.885 

Prevalence 0.333 

Detection Rate 0.258 

Balanced Accuracy 0.822 
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Table D3: Confusion matrix results for Model 5 in Table 5, which was generated using a 5:1 ratio of background to 

presence points.  

Accuracy 0.896 

Kappa 0.593 

P-value 3.29e-16 

Sensitivity 0.589 

Specificity 0.957 

Positive Prediction Value 0.735 

Negative Prediction Value 0.921 

Prevalence 0.167 

Detection Rate 0.0981 

Balanced Accuracy 0.773 

 

Table D4: Confusion matrix results for Model 6 in Table 5, which was generated using a 10:1 ratio of background to 

presence points. 

Accuracy 0.930 

Kappa 0.436 

P-value 3.59e-16 

Sensitivity 0.340 

Specificity 0.989 

Positive Prediction Value 0.747 

Negative Prediction Value 0.938 

Prevalence 0.090 

Detection Rate 0.0307 

Balanced Accuracy 0.665 
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E. Alongshore Habitat Variability Analysis 

 

 
Figure E1: Beach width south to north alongshore the study area. 

 

 
Figure E2: Beach slope south to north alongshore the study area. 
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Figure E3: Dune height south to north alongshore the study area. 

 

 
Figure E4: Maximum dune slope south to north alongshore the study area. 
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Figure E5: Dune width south to north alongshore the study area. 
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