
A DEEP-LEARNING-BASED FALL-DETECTION SYSTEM TO SUPPORT
AGING-IN-PLACE

A Thesis

by

HEND ALKITTAWI

BS, University of Jordan, Jordan, 2013

Submitted in Partial Fulfillment of the Requirements for the Degree of

MASTER OF SCIENCE

in

COMPUTER SCIENCE

Texas A&M University-Corpus Christi
Corpus Christi, Texas

May 2017

c⃝HEND ALKITTAWI

All Rights Reserved

May 2017

A DEEP-LEARNING-BASED FALL-DETECTION SYSTEM TO SUPPORT
AGING-IN-PLACE

A Thesis

by

HEND ALKITTAWI

This thesis meets the standards for scope and quality of
Texas A&M University-Corpus Christi and is hereby approved.

Maryam Rahnemoonfar, PhD Ahmed Mahdy, PhD
Chair Committee Member

Elizabeth Sefcik, PhD
Committee Member

May 2017

ABSTRACT

Emergency departments treat around 2.5 million older people for fall injuries

each year. Serious head and broken bones injuries occur in 20% of falls. Fall in-

juries, adjusted for inflation, has direct medical costs of $34 billion a year. Taking

into account that people 65 and older are expected to comprise 21.7% of the U.S

population in 2040, compared to 14.4% in year 2013, the numbers presented in the

statistics will dramatically increase as well.

Preserving the elderlys' right of aging in a home of their own choice is mandatory

in today's world, as more elderly people are willing to live independently. But, with

the statistics showing that falling is a major health problem that has a huge non-

desirable impact on elderly lives, fall detection systems become a necessity.

Different approaches have been used to design fall detection systems. One ap-

proach depends on wearable sensors that measure different physical parameters of

a human body or the environment around it, such as the body acceleration or its

pressure on the floor. A second approach depends on sensors employed in the en-

vironment. These sensors mainly include wide-angle cameras, depth cameras, and

microphones. Different approaches used different classifiers for training the system

to detect falls. Despite these efforts to detect falls, it is possible that other naturally

occurring falls trigger false alarms. Thus, the current implementations of fall detec-

tion systems need to be improved. Most recently, computer vision based approaches

using depth cameras are the mostly used for such improvement.

Using deep neural networks to learn features from video frames have a potential

to improve the fall-detection accuracy and reduce triggering false alarms. In this

study, a more robust and deep fall-detection system was designed. This approach

extends deep convolutional neural networks in time. This extension allows capturing

v

the spatial and temporal information presented through successive video frames. The

result of the new approach can be used to implement a reliable surveillance system

in a real-world environment.

vi

ACKNOWLEDGMENTS

I would like to thank the members of my committee: Dr. Maryam Rahnemoon-

far, Dr. Ahmed Mahdy, and Dr. Elizabeth Sefcik, for their helpful comments and

suggestions. I also would like to thank Dr. Alaa Sheta, Akash Ashapure, and the

members of Bina lab and Pixel Island lab specially Clay Sheppard, Vinay Pinnaka,

and Dang Huynh for the helpful discussions.

vii

TABLE OF CONTENTS

CONTENTS PAGE

ABSTRACT . v

ACKNOWLEDGMENTS . vii

TABLE OF CONTENTS . viii

LIST OF TABLES . x

LIST OF FIGURES . x

1 INTRODUCTION . 1

1.1 Motivation . 1

1.2 Goal and Objective . 1

1.3 Contributions . 2

2 LITERATURE REVIEW . 3

2.1 Fall Detection Systems . 3

2.2 Human Action Recognition Using Deep Learning 7

2.3 Theoretical Background . 9

2.3.1 Artificial Neural Networks/ Feedforward Neural Networks . . . 9

2.3.2 Convolutional Neural Networks 11
2.3.3 Recurrent Neural Networks . 12

2.3.3.1 Vanilla RNN . 13

2.3.3.2 Long Short-Term Memory Cells 14

2.3.3.3 Gated Recurrent Units 16

3 METHODOLOGY AND SYSTEM DESIGN 17

3.1 Data preprocessing and data representation 19
3.1.1 Depth map motion . 20

3.1.2 Sequences of frames . 21

3.1.2.1 Use the minimum number of video frames 22

3.1.2.2 Pad video frames . 22

viii

xi

3.1.2.3 Focus on falling frames 23

3.2 Classification approaches . 24
3.2.1 Depth videos classification . 24

3.2.1.1 Six-class classification 25

3.2.1.2 Fall versus non-fall classification 25

3.2.2 Binary videos classification . 27

3.3 Stream data classification . 30

3.4 System Specifications . 31

3.5 Building the Network . 31
3.5.1 Recurrent Neural Network . 32

3.5.2 3D Convolutional Neural Network 33

4 RESULTS AND DISCUSSION . 38

4.1 Depth videos classification . 39

4.1.1 Six-Class Classification . 39
4.1.2 Fall versus Non-Fall Classification 41

4.1.2.1 Use all available training set videos and all available

testing set videos . 41

4.1.3 Use a subset of available training videos and a subset of

available testing videos . 42

4.1.4 Use a subset of available training videos and all available
testing set videos . 43

4.2 Binary video classification . 45

4.3 Data stream classification . 48

5 CONCLUSION . 55

REFERENCES . 57

APPENDICES . 65

A SAMPLE TRAINING VIDEO FRAMES 66

B CORRECTLY CLASSIFIED VIDEO FRAMES 84

C MISS CLASSIFIED VIDEO FRAMES 102

ix

LIST OF TABLES

TABLES PAGE

I The distribution of the data used for (a) experiment 1 (b) exper-

iment 2 (c) experiment 3 (d) experiment 4. 30

II A summary of the filter sizes and strides for each layer in the

deep fall-detection system. 36

III Comparison of the different data preprocessing approaches. 38

IV The confusion matrix for the 6-class action recognition. It shows

the numbers of correctly classified and miss classified videos. 40

V The confusion matrix for the 6-class action recognition. It shows

the percentages for accuracies. 41

VI The confusion matrix for the fall vs. non-fall action recognition

using all training data and all testing data. (a) The number of

correctly classified and miss classified videos. (b) The percentages

for accuracies. 44

VII The confusion matrix for the fall vs. non-fall action recognition

using a subset of training data and a subset of testing data. (a)

The number of correctly classified and miss classified videos. (b)

The percentages for accuracies. 44

VIII The confusion matrix for the fall vs. non-fall action recognition

using a subset of training data and a subset of testing data. (a)

The number of correctly classified and miss classified videos. (b)

The percentages for accuracies. 45

IX The confusion matrix for the fall vs. non-fall action recognition

using binary videos. It shows the percentages for accuracies. (a)

experiment 1 (b) experiment 2 (c) experiment 3 (d) experiment
4. It shows the percentages for accuracies. 46

X Comparison of the performance of the fall vs. non-fall action

recognition. It shows the percentages for accuracies. 47

x

LIST OF FIGURES

FIGURES PAGE

1 The general structure of an artificial neural network. [46] 10

2 The general architecture of a convolutional neural network. An

activation volume is produced after convolving the input image

with a set of filters. Subsampling is performed in the pooling

layer. The output representing a class prediction is produced

after the fully connected layer. [46] 11

3 The different input-output mapping used in a recurrent neural

network.[25] . 13

4 The Vanilla Recurrent Neural Network. [38] 14

5 The Long Short-Term memory cell. [38] 15

6 The model architecture. 18

7 Sample video frames. (a) Bending frames. (b) Falling frames.

(c) Lying frames. (d) Squatting frames. (e) Sitting frames. (f)

Walking frames. 19

8 Video Length Distribution . 20

9 Samples of the depth map motions obtained for different classes.

(a) Bending. (b) Falling. (c) Lying. (d) Squatting. (e) Sitting.

(f) Walking. 21

10 Sample of the first frame in different videos for different actions.

(a) Bending. (b) Falling. (c) Lying. (d) Sitting. (e) Squatting.

(f) Walking. 23

11 Sample of the falling frames used for training in the 6-class clas-

sification method. 25

xi

12 Samples of the frames obtained using the first background sub-

traction algorithm for a bending action. (a) using kernel size of
9. (b) using kernel size of 7. (c) using kernel size of 5. (d) using

kernel size of 3. 28

13 Samples of the frames obtained using the second background sub-
traction algorithm for a bending action. (a) using kernel size of

9. (b) using kernel size of 7. (c) using kernel size of 5. (d) using

kernel size of 3. 29

14 Samples of the frames used for training in the fall versus non-fall
classification using binary frames method experiment 1. 31

15 Samples of the frames used for training in the fall versus non-fall

classification using binary frames method experiment 2. 32

16 Samples of the frames used for training in the fall versus non-fall

classification using binary frames method experiment 3. 33

17 Samples of the frames used for training in the fall versus non-fall

classification using binary frames method experiment 4. 34

18 The recurrent neural network used for 6-class classification. 34

19 Detailed model architecture where video frames are mapped to

class labels. The filters of 3D convolutional layers are shown in
yellow, green, orange, and blue. The pooling layer filters are

shown in grey. Fully connected layers are shown in red. 35

20 The overall six-classes classification accuracy using different batch
sizes . 37

21 Sample of a correctly classified falling video frames using the six-

class classification method. 42

22 Sample of a miss-classified falling video frames using the six-class

classification method. 43

23 Sample of correctly classified falling video frames in the first ex-

periment of fall versus non-fall binary video classification. 48

xii

24 Sample of miss-classified falling video frames in the first experi-

ment of fall versus non-fall binary video classification. 49

25 Sample of correctly classified falling video frames in the second

experiment of fall versus non-fall binary video classification. 50

26 Sample of miss-classified falling video frames in the second ex-

periment of fall versus non-fall binary video classification. 51

27 Sample of correctly classified falling video frames in the thirds

experiment of fall versus non-fall binary video classification. 51

28 Sample of miss-classified falling video frames in the third exper-
iment of fall versus non-fall binary video classification. 52

29 Sample of correctly classified falling video frames in the fourth

experiment of fall versus non-fall binary video classification. 52

30 Sample of miss-classified falling video frames in the fourth exper-

iment of fall versus non-fall binary video classification. 53

31 Sample of the walking action performed for the online data stream

processing. 53

32 Sample of the bending action performed for the online data stream

processing. 53

33 Sample of the throw object action performed for the online data

stream processing. 53

34 Sample of the squatting action performed for the online data

stream processing. 54

35 Sample of the sitting action performed for the online data stream

processing. 54

36 Sample of the lying-down action performed for the online data

stream processing. 54

37 Sample of the bending frames used for training in the 6-class
classification method. 66

xiii

38 Sample of the falling frames used for training in the 6-class clas-

sification method. 66

39 Sample of the lying-down frames used for training in the 6-class

classification method. 67

40 Sample of the bending frames used for training in the 6-class

classification method. 67

41 Sample of the bending frames used for training in the 6-class

classification method. 68

42 Sample of the bending frames used for training in the 6-class
classification method. 68

43 Sample of the non-fall frames used for training in the fall versus

non-fall classification method. 69

44 Sample of the fall frames used for training in the the fall versus

non-fall classification method. 69

45 Sample of the non-fall frames used for training in the the fall

versus non-fall classification method. 70

46 Sample of the non-fall frames used for training in the the fall

versus non-fall classification method. 70

47 Sample of the non-fall frames used for training in the the fall

versus non-fall classification method. 71

48 Sample of the non-fall frames used for training in the the fall

versus non-fall classification method. 71

49 Sample of the non-fall frames used for training in the the fall

versus non-fall classification method in experiment 1. 72

50 Sample of the falling frames used for training in the the fall versus

non-fall classification method in experiment 1. 72

51 Sample of the non-fall frames used for training in the the fall
versus non-fall classification method in experiment 1. 73

xiv

52 Sample of the non-fall frames used for training in the the fall

versus non-fall classification method in experiment 1. 73

53 Sample of the non-fall frames used for training in the the fall

versus non-fall classification method in experiment 1. 74

54 Sample of the non-fall frames used for training in the the fall

versus non-fall classification method in experiment 2. 74

55 Sample of the falling frames used for training in the the fall versus

non-fall classification method in experiment 2. 75

56 Sample of the non-fall frames used for training in the the fall
versus non-fall classification method in experiment 2. 75

57 Sample of the non-fall frames used for training in the the fall

versus non-fall classification method in experiment 2. 76

58 Sample of the non-fall frames used for training in the the fall

versus non-fall classification method in experiment 2. 76

59 Sample of the non-fall frames used for training in the the fall

versus non-fall classification method in experiment 2. 77

60 Sample of the non-fall frames used for training in the the fall

versus non-fall classification method in experiment 3. 77

61 Sample of the falling frames used for training in the the fall versus

non-fall classification method in experiment 3. 78

62 Sample of the non-fall frames used for training in the the fall

versus non-fall classification method in experiment 3. 78

63 Sample of the non-fall frames used for training in the the fall

versus non-fall classification method in experiment 3. 79

64 Sample of the non-fall frames used for training in the the fall

versus non-fall classification method in experiment 3. 79

65 Sample of the non-fall frames used for training in the the fall
versus non-fall classification method in experiment 3. 80

xv

66 Sample of the non-fall frames used for training in the the fall

versus non-fall classification method in experiment 4. 80

67 Sample of the falling frames used for training in the the fall versus

non-fall classification method in experiment 4. 81

68 Sample of the non-fall frames used for training in the the fall

versus non-fall classification method in experiment 4. 81

69 Sample of the non-fall frames used for training in the the fall

versus non-fall classification method in experiment 4. 82

70 Sample of the non-fall frames used for training in the the fall
versus non-fall classification method in experiment 4. 82

71 Sample of the non-fall frames used for training in the the fall

versus non-fall classification method in experiment 4. 83

72 Sample of a correctly classified bending video frames using the

six-class classification method. 84

73 Sample of a correctly classified falling video frames using the six-

class classification method. 85

74 Sample of a correctly classified lying-down video frames using the

six-class classification method. 85

75 Sample of a correctly classified sitting video frames using the

six-class classification method. 86

76 Sample of a correctly classified squatting video frames using the

six-class classification method. 86

77 Sample of a correctly classified walking video frames using the

six-class classification method. 87

78 Sample of a correctly classified non-fall video frames using the

fall versus non-fall classification method. 87

79 Sample of a correctly classified falling video frames using the fall
versus non-fall classification method. 88

xvi

80 Sample of a correctly classified non-fall video frames using the

fall versus non-fall classification method. 88

81 Sample of a correctly classified non-fall video frames using the

fall versus non-fall classification method. 89

82 Sample of a correctly classified non-fall video frames using the

fall versus non-fall classification method. 89

83 Sample of a correctly classified non-fall video frames using the

fall versus non-fall classification method. 90

84 Sample of the correctly classified non-fall video frames for the fall
versus non-fall classification method in experiment 1. 90

85 Sample of the correctly classified falling video frames for the fall

versus non-fall classification method in experiment 1. 91

86 Sample of the correctly classified non-fall video frames for the fall

versus non-fall classification method in experiment 1. 91

87 Sample of the correctly classified non-fall video frames for the fall

versus non-fall classification method in experiment 1. 92

88 Sample of the correctly classified non-fall video frames for the fall

versus non-fall classification method in experiment 1. 92

89 Sample of the correctly classified non-fall video frames for the fall

versus non-fall classification method in experiment 2. 93

90 Sample of the correctly classified falling video frames for the fall

versus non-fall classification method in experiment 2. 93

91 Sample of the correctly classified non-fall video frames for the fall

versus non-fall classification method in experiment 2. 94

92 Sample of the correctly classified non-fall video frames for the fall

versus non-fall classification method in experiment 2. 94

93 Sample of the correctly classified non-fall video frames for the fall
versus non-fall classification method in experiment 3. 95

xvii

94 Sample of the correctly classified falling video frames for the fall

versus non-fall classification method in experiment 3. 95

95 Sample of the correctly classified non-fall video frames for the fall

versus non-fall classification method in experiment 3. 96

96 Sample of the correctly classified non-fall video frames for the fall

versus non-fall classification method in experiment 3. 96

97 Sample of the correctly classified non-fall video frames for the fall

versus non-fall classification method in experiment 3. 97

98 Sample of the correctly classified non-fall video frames for the fall
versus non-fall classification method in experiment 3. 97

99 Sample of the correctly classified non-fall video frames for the fall

versus non-fall classification method in experiment 3. 98

100 Sample of the correctly classified non-fall video frames for the fall

versus non-fall classification method in experiment 4. 98

101 Sample of the correctly classified falling video frames for the fall

versus non-fall classification method in experiment 4. 99

102 Sample of the correctly classified non-fall video frames for the fall

versus non-fall classification method in experiment 4. 99

103 Sample of the correctly classified non-fall video frames for the fall

versus non-fall classification method in experiment 4. 100

104 Sample of the correctly classified non-fall video frames for the fall

versus non-fall classification method in experiment 4. 100

105 Sample of the correctly classified non-fall video frames for the fall

versus non-fall classification method in experiment 4. 101

106 Sample of a miss-classified bending video frames using the six-

class classification method. 102

107 Sample of a miss-classified falling video frames using the six-class
classification method. 103

xviii

108 Sample of a miss-classified sitting video frames using the six-class

classification method. 103

109 Sample of a miss-classified squatting video frames using the six-

class classification method. 104

110 Sample of a miss-classified walking video frames using the six-

class classification method. 104

111 Sample of a miss-classified non-fall video frames using the fall

versus non-fall classification method. 105

112 Sample of a miss-classified falling video frames using the fall ver-
sus non-fall classification method. 105

113 Sample of a miss-classified non-fall video frames using the fall

versus non-fall classification method. 106

114 Sample of a miss-classified non-fall video frames using the fall

versus non-fall classification method. 106

115 Sample of a miss-classified non-fall video frames using binary

frames approach in experiment 1. 107

116 Sample of a miss-classified falling video frames using binary frames

approach in experiment 1. 107

117 Sample of a miss-classified falling video frames using binary frames

approach in experiment 2. 108

118 Sample of a miss-classified non-fall video frames using binary

frames approach in experiment 3. 108

119 Sample of a miss-classified falling video frames using binary frames

approach in experiment 3. 109

120 Sample of a miss-classified non-fall video frames using binary

frames approach in experiment 4. 109

121 Sample of a miss-classified falling video frames using binary frames
approach in experiment 4. 110

xix

CHAPTER 1

INTRODUCTION

1.1 Motivation

There is nothing worthier than working on research that has a great impact on

people's lives. Preserving the elderly's right of aging in a home of their own choice is

a must. But, with the statistics showing that falling is a major health problem of a

huge non-desirable impact on elderly lives, the security of elderly becomes a concern.

It has been reported that emergency departments treat 2.8 million older people

for fall injuries every year [14]. Serious head and broken bones injuries occur in 20%

of falls [14]. Fall injuries, adjusted for inflation, have direct medical costs of $31

billion [14]. Taking into account that people 65 and older are expected to comprise

21.7% of the U.S population in 2040, compared to 14.4% in year 2013 [13], the

numbers presented in the statistics will dramatically increase as well. Therefore, fall

detection systems become a necessity.

1.2 Goal and Objective

Current implementations of fall detection systems lack accuracy. Despite efforts to

detect elderly falls, it is possible that daily life activities, such as lying down, trigger

false alarms [47]. The goal of this study is to build a more robust fall-detection

system by using deep learning algorithms. This approach uses a 3D convolutional

neural network to capture both the spatial information available in video frames,

and the temporal information presented through successive video frames.

1

1.3 Contributions

In general, the research on fall-detection systems focusses on extracting the best fea-

tures that can correctly identify fall events. In this research we investigate using deep

convolutional neural networks to describe the overall space-time appearance pattern

of a fall-event. It is one of few approaches that apply deep convolutional neural

networks to video frames of a relatively small dataset. Our approach focusses on

finding the best representation of video frames that would allow automatic learning

of space-time features presented in surveillance video frames. Our contributions in

this research are:

1. Conducting an extensive study on data representation in order to get the

system to perform well. This includes testing with depth images, and binary images.

It also includes considering different number of frames for action representation.

2. Utilizing a 3D convolutional neural network architecture and adjusting it to

fit the goal of this research. This includes finding the sizes of the convolutional and

pooling filters, in the spatial and temporal domains.

3. Improving fall-detection systems. This has a great influence on lowering the

false alarms ratio, and consequently, improves the system's accuracy and real-time

response.

4. Extending the system obtained to process an online data-stream. The result

of the new approach can be used to implement a reliable surveillance system in a

real-world environment.

2

CHAPTER 2

LITERATURE REVIEW

2.1 Fall Detection Systems

A variety of systems have been developed to detect falls [21][36]. Technologies and

algorithms used have changed over time, but the main objective of a fall-detection

system remains the same; it needs to distinguish between fall events and the activities

of daily life. The metrics used for measuring the system performance are: sensitivity,

being able to classify a fall correctly, and specificity, being able to classify daily

activity as daily activity. Having a robust system, with a high degree of sensitivity

and specificity, is the ultimate goal of the research done in this field.

Fall detection systems can be generally categorized under the following types:

context-aware systems, wearable devices, and cellphone based systems [21]. In

context-aware systems, sensors are deployed in the environment to detect falls. The

most commonly used sensors, in more recent research, are wide angle cameras [5][40],

and depth cameras [31][47][2][34]. Installing cameras with other sensors such as mi-

crophones [33] and pressure sensors [54] is also a common approach. Radars are

another type of sensor that is used in context-aware systems to sense motions based

on the wavelet transform [48]. Wearable devices can be defined as miniature elec-

tronic sensor-based devices that are worn by the bearer, under, with, or on top of

clothing. For these systems accelerometers are mainly used [53][8][32]. Approaches

that uses cellphones for fall-detection take advantage of the accelerometers embedded

in mobile devices. These approaches also use the built-in communication function-

ality in cellphones for designing fall-detection systems [11][1][18].

Several advantages and disadvantages are associated with the different systems.

3

While implementations which use cellphones are portable and self-contained, they

face problems associated with the low battery life and the stability of the accelerom-

eter used in a cellphone. In addition, they use the operating system of a cellphone

which was not designed for this goal. The algorithms used with accelerometer-based

systems are less complex than those used with vision-based systems [21], but having

them worn by the user introduces a considerable limitation on such systems.

Context-aware systems in general are superior over wearable devices in terms of

reliability as there are no chances of forgetting or losing them. Microphones are an

example of context-aware fall-detection systems. The work presented in [33], uses an

eight-microphone circular array is used to track a person. Tracking is based on beam-

forming techniques that allow performing under noisy environment. By determining

the position of the sound source, the height of a person can be measured. A sound

that comes from the ground represents a potential fall and triggers more processing of

the sound signal in order to verify the fall-event. The main disadvantage associated

with context-aware systems is that they can only function in the areas where they are

installed. In more recent systems, wide angle cameras are used to allow monitoring

large areas without having to install several cameras in that location, but the camera

lens introduces some distortion that needs to be corrected [5]. The advantage that

depth cameras provide is preserving the privacy of people under surveillance, since

color images are not used. Occlusion represents a considerable constraint for systems

based on computer vision [47].

Fusing cameras with other context-aware sensors is a common approach to min-

imize the amount of computations performed as the non-camera sensor is used to

trigger the processing of video frames, instead of continuously analyzing the surveil-

lance videos. A Pressure sensor is an example of such sensors [54], where the human

4

pressure on the floor is measured and compared against a threshold. If the pressure

value is greater than the threshold value, video frames are processed in order to verify

a fall-event. Employing context-aware sensors and wearable sensors in one system in

order to overcome the limitations of the independent systems was also proposed. The

work presented in [31] uses an accelerometer and a depth camera. The accelerome-

ter continuously measures the acceleration of the wearer, which is compared against

a threshold signal. An acceleration that is greater than a threshold triggers video

frames extraction and processing so that a fall-event is identified.

The reported accuracy for the current implementations varies. The performance

of the systems is highly affected by the conditions under which they were tested: the

number and type of falls included in the dataset, the ages of people involved in testing,

and the environment conditions under which the systems were tested. Therefore, the

actual accuracy might be lower than the declared performance, and the findings of

different studies may not be generalized.

The datasets used have real [47] or simulated [31] fall and non-fall events, which

is collected and recorded using different sensors in order to process and classify

them. To classify the events as falls or non-falls, techniques such as Decision Trees

[47], Support Vector Machine [5], Kalman Filtering [40], Thresholding Techniques

[31], Nearest-neighbor Rule [31], Gaussian Mixture Model [43], Rule-based Tech-

niques [57], Multi-frame Gaussian Classifier [19], Gaussian Distribution of Clustered

Knowledge [59], Bayesian Filtering [41], Hidden Markov Models [10], and Fuzzy Logic

[39] are used.

These classification techniques are well known in the area of machine learning.

Decision trees are used to model decisions and their consequences as a graph. In

the graph, each node represents an attribute test. While branch represents the test

5

outcome. For a classification problem, the class label is represented by a leaf node.

In support vector machines, vectors or hyperplanes are used to classify data with

the maximum possible margin separation. The larger this margin is, the lower the

generalization error is. Therefore, support vector machine classifiers can achieve high

accuracies. Kalman filtering is an estimation technique that uses measurements cap-

tured over time to predict a class label. Thresholding techniques are low-complexity

algorithms that produces a class label based on a signal exceeding a threshold. The

threshold is usually determined heuristically. The nearest neighbor rule produces a

class label for a new input using votes from k training examples neighbors. Voting

is based on a metric distance, such as the Euclidean distance.

Gaussian mixture models are a class of mixture models where the data points are

assumed to be generated from a mixture of a finite number of Gaussian distributions.

A new data entry is assigned a label that maximizes the likelihood of the data being

under a specific class, based on the parameters learned during the training phase.

Hidden Mrakov models represents the system as a Markov process with hidden states.

They are a generalization of mixture models where the hidden variables are related

through a Markov process. In a rule-based system, features are used as rules sets.

The rules are applied to infer a class label for a new data entry. Bayesian filtering

uses the bag-of-words representation and the Bayes rule to produce a class label.

The idea behind fuzzy logic classification is to define a class membership based on

the relative importance of precision.

Overall, the selection of a classification technique often depends on the set of

features obtained to map an input to an output. For fall-detection systems that are

based on computer vision approaches, these features can be as simple as the ratio

between the width and height of the bounding box surrounding a human [43], and

6

as complicated as the distance of the points in a human point cloud to the floor [31].

Some other features include extracting the patterns of change in human curvature

[34], or human silhouette orientation [2] during a fall event. The focus of the research

in this area is to design the best features that would correctly identify fall events,

with the minimum false alarms ratio.

2.2 Human Action Recognition Using Deep Learning

Deep learning algorithms have been widely used for solving a variety of problems

in different domains. Convolutional neural networks are extensively used for image

classification [30][20], object detection [51], and scene recognition [60] tasks. Re-

current neural networks are also applied to image classification tasks [35], but they

are more associated with sequences processing. Machine translation [7][49][50], and

natural language processing [22][52][17] are some of the most common applications

of recurrent neural networks. Sequence generation is another interesting application

of such networks where machines can generate text [16], code [26], and music [9].

Due to the magnificent performance of these algorithms, human action recogni-

tion has received extensive interest by deep learning researchers. More recently, deep

learning techniques have been used to recognize actions in videos. These applications

are flourishing with the increased processing capabilities available through GPUs, as

well as the large video datasets that were made available for the research community.

The most commonly used video datasets are UCF-101, HMDB-51, and Sports-1M.

These datasets contain RGB videos for a variety of human actions.

Deep learning algorithms allow the system to learn the best features to recognize

human actions in videos. One class for human action recognition using deep learning

relies on applying convolutional neural networks to process video frames [27][44][23].

7

The work presented in [27] uses Sports-1M dataset with one million videos represent-

ing 487 human action classes. In their work, the authors stack the video frames and

feed them to a multi-resolution CNN. The multi-resolution network has two streams

for processing; a low-resolution stream and a high-resolution stream. The authors

also have investigated multiple approaches for fusing temporal data in the convolu-

tional neural network. The approaches include a single-frame model, early-fusion,

late-fusion and slow-fusion. In [44], the authors use two-stream convolutional neural

network. One stream is used to capture the spatial information by processing single

frames. The other stream is used to capture the temporal information by processing

multi-frame optical flow representations. A 3D convolutional neural network was

used in [23] to extract the spatial and temporal information encoded in successive

video frames. The datasets used to test this 3D architecture are the TRECVID 2008

and the KTH with more than 49-hour videos. Bounding boxes were drawn around

humans in the scene to keep track of them. Video frames were fed into the network

which consists of two 3D convolutional layers, two pooling layers, one 2D convolu-

tional layer, and one fully connected layer. In most cases, the classification based on

the CNN approach achieves good results. For RGB video frames, these results can

be due to the association of human actions with the presence of certain objects in

the scene. For example, for a human action to be classified as swimming, a water

surface needs to be present in the scene.

Combining convolutional neural networks and recurrent neural networks is used

for image captioning tasks [56]. As videos consist of a sequence of frames that are

related in time, a second class of recognizing human actions, using deep learning,

relies on applying a combination of convolutional neural networks, and recurrent

neural networks to process video sequences. The work presented in [12] uses this

8

combination to classify human actions. This combination can also be used to generate

textual descriptions for the actions presented in videos [55]. The idea of the work

presented in [12] is to learn the temporal information from videos by passing a

sequence of spatial features learned by a convolutional neural network to a recurrent

neural network. The later network is capable of extracting the temporal features to

achieve the video recognition task. Similarly, [55] feed RGB frames to a convolutional

neural network and use a sequence to sequence recurrent neural network to describe

the action in videos.

The work presented here adapts deep learning techniques used for human action

recognition. These techniques are employed for recognizing fall events captured in

depth videos. This approach is different from other other fall-detection approaches

in that it automatically learns the fall patterns in space and time using a deep 3D

convolutional neural network. The following section gives an insight on how deep

neural networks can learn those features.

2.3 Theoretical Background

2.3.1 Artificial Neural Networks/ Feedforward Neural Networks

Artificial neural networks, (ANNs), and their variants, are a class of machine learn-

ing techniques that have been proven to be powerful throughout many applications.

These networks shine in the areas where there are lots of data and complex problems

to solve through “Deep Learning”. They have been applied to image and video clas-

sification, image and video captioning, machine translation, and many other fields.

ANNs were inspired by the neuroscience, thus, the building block of an ANN is

called a neuron. A basic neural network is shown in figure 1. It consists of an input

layer, one or more hidden layers, and an output layer. Each layer consists of one

9

or more neuron. Inputs are fed into the neurons that compute some output values

based on the weights and biases associated with them [37]. These outputs are also

referred to as the activations of neurons. Some functions are used more often to

compute such activations. The Sigmoid Function is one of these functions.

Figure 1. The general structure of an artificial neural network. [46]

The learning algorithms behind ANNs can automatically produce some desired

output based on the given input by adjusting the weights and biases along the net-

work. This adjustment aims to minimize the difference between the computed output

and the actual output value, and can be automated using the Backpropagation and

Gradient Descent algorithms during the training phase. Therefore, these steps are

followed in order to train a neural network:

1. Design a network architecture.

2. Randomly initialize weights.

3. Implement forward propagation to compute the output(s).

4. Implement the cost function.

5. Implement back propagation to compute partial derivatives.

6. Use gradient descent and backpropagation to minimize the cost function as

a function of the weights and biases.

10

2.3.2 Convolutional Neural Networks

Convolutional Neural Networks, (CNNs), are a subclass of feedforward neural net-

works that are mainly used for processing images. These networks can learn a hier-

archy of features which can be used for image classification [30][20], object detection

[51], scene recognition [60], and more recently for video classification [27][44][23]. A

CNN consists of several layers as shown in figure 2. Different architectures are built

for specific applications using these layers.

Figure 2. The general architecture of a convolutional neural network. An activation

volume is produced after convolving the input image with a set of filters. Subsampling

is performed in the pooling layer. The output representing a class prediction is

produced after the fully connected layer. [46]

The building block of a CNN is the Convolutional Layer. This layer has neurons

connected to local regions in the input image and it is where most of the computa-

tions are performed. The convolutional layer represents filters whose parameters are

learned by the network. These filters in turn, detect features across the input image

by being convolved with images in the dataset. The filters are being slid across the

image in order to detect similar features across it. Since these filters are shared across

the input image, the parameters of the network are highly reduced and optimized

compared to a regular feedforward neural network. At this layer, padding the frames

is a common practice to preserve the spatial extent of the input image. The output

11

of this layer is passed through an activation function such as the Rectified Linear

Unit function (RELU), defined in equation 2.1. The result of passing the output

through the activation function is an activation volume that extends along the input

depth.

f(x) = max(0, x) (2.1)

The Pooling Layer of the CNN is used to down sample the activation volume

that results from the convolutional layer. This has an important role for reducing

the amount of computations. Max pooling is the most commonly used approach in

CNN compared to average or L2-norm pooling. It uses a window of a small size, 2

or 3, and takes the maximum value of the image in that window, sliding spatially

across the entire image to produce its output.

For image classification problems, the Fully Connected Layer is used to compute

the scores of classes. The neurons of this layer are connected to all activations in the

previous layer. The output of this layer is a vector holding the class prediction for an

input image. To turn these predictions into class probabilities, a softmax function is

applied.

2.3.3 Recurrent Neural Networks

Recurrent Neural Networks, RNNs, can be used to estimate different functions with

different input-output mapping. The general idea behind an RNN cell, is the recur-

rence application of the same set of functions on a sequence of input vectors at each

timestep, which allows the persistence of information in the recurrent network. It

can be thought of as a neural network with a series of repeating modules.

RNNs are capable of mapping a single input to a single output. Such mapping

12

is used in an image classification task [35]. RNNs are also used to map a sequence

of inputs to a single output. An application of this mapping would be to determine

the sentiment [22], being positive or negative, for a sequence of words i.e. a sentence.

Lastly, an RNN can map a sequence of inputs to a sequence of outputs. This is widely

used for language translation, where the input is a sequence of text in some language

and the output is the corresponding translation in another language [50][49]. These

mappings are shown in figure 3.

Figure 3. The different input-output mapping used in a recurrent neural

network.[25]

There are different variations of recurrent neural networks including the Vanilla

Recurrent Neural Networks [4], Long Short-Term Memory Cells [4], Gated Recur-

rent Units [4], Depth Gated Recurrent Neural Network [58], and Clockwork Neural

Network [29]. The details of the most dominant variations are listed below.

2.3.3.1 Vanilla RNN

Vanilla RNN is the basic version of RNN, and is shown in figure 4. It calculates the

hidden state based on some function f with parameters W. The recurrence function,

most dominantly a tanh function, uses the current cell input and the hidden state

in a previous time step to calculate the current hidden state. This hidden state, in

13

Figure 4. The Vanilla Recurrent Neural Network. [38]

turn, is used to calculate the output at that specific time step. This process is shown

in equations 2.2 to 2.4.

ht = fW (ht−1, xt) (2.2)

ht = tanh(Whh.ht−1 +Wxh.xt) (2.3)

yt = Why.ht (2.4)

Vanilla RNN perform well for short sequences, where the time difference between

the relevant information and the place where they are needed is small. For long

dependences, such networks suffer from vanishing/exploding gradients. Gradients

can rapidly reach a value of zero for sequences of only length 10 or 20 [4]. This occurs

due to long backpropagation iterations, and prevents the network from properly

learning how to model the problem.

2.3.3.2 Long Short-Term Memory Cells

To solve the problem of vanishing/exploding gradients, Long Short-Term Memory

architecture was proposed. An LSTM cell is capable of learning long- term depen-

dencies. In addition to the hidden state, an LSTM maintains a cell state, which is

adjusted by structures called gates. The gate simply represents an application of a

14

sigmoid function on some input. An LSTM cell maintains three kinds of gates: the

input gate, the forget gate, and the output gate. The architecture of an LSTM cell

is shown in figure 5.

Figure 5. The Long Short-Term memory cell. [38]

The input gate chooses what new information needs to be stored in the cell

state, this is shown in equation 2.4 and 2.5, where it is the input gate layer output

and ct is the cell state update. The forget gate decides what existing information in

cell state needs to be thrown away, this is shown in equation 2.6, where ct is again the

update of the cell state. Finally, the output gate filters the output and determines

the final cell output. This can be seen through equations 2.8 and 2.9, where ot is the

output-gate layer output and ht is the resulting hidden state for the given input.

it = σ(Wi.[ht−1, xt] + bi) (2.5)

ct = tanh(Wc.[ht−1, xt] + bc) (2.6)

ft = σ(Wf .[ht−1, xt] + bf) (2.7)

ot = σ(Wo.[ht−1, xt] + bo) (2.8)

ht = ot.tanh(ct) (2.9)

There are very interesting applications that use LSTMs; text [16], code [26], and

music generation [9] to mention a few.

15

2.3.3.3 Gated Recurrent Units

This is a simpler model which is based on LSTMs, and has been used quite frequently

in literature [58][52]. It builds an update gate using the input and forget gates. It

also fuses the hidden and cell states.

16

CHAPTER 3

METHODOLOGY AND SYSTEM DESIGN

Due to the conditions under which fall-detection systems are to be employed, depth

videos are preferred over RGB videos. Depth video streaming cuts down the el-

derly's concerns about their privacy. In addition, the use of IR sensors to capture

these videos makes the system more robust to lighting condition changes and allows

it to operate under low light conditions [2][34][47]. This study uses the SDUFall

dataset1 which contains 6 actions performed by twenty young people. These action

are: bending, falling down, lying, squatting, sitting and walking. Men and women

participants performed each action multiple times. The conditions under which these

actions were captured are different based on the lighting conditions, and the direction

and position of the stunt relative to the camera. The Microsoft Kinect sensor was

installed at 1.5m height. The videos were recorded at 30 frames per second, with a

640× 480 frame size. On average, the length of a video is 5.6 seconds.

There are a few approaches for human action recognition using deep learning

algorithms. The choice of the deep neural network architecture for this research was

governed by many factors. First, the temporal information that is available in videos

gives a clue that cannot be ignored for fall-detection. While some approaches use

multiple 2D convolutional neural networks to process the spatial and temporal data

presented in videos, we are unable to feeds videos to such networks due to memory

limitations. Other approaches feed sequences of features extracted using 2D con-

volutional neural networks to LSTM cells. Besides the fact that having multiple

networks is computationally expensive, LSTMs are capable of capturing long tem-

1http://www.sucro.org/homepage/wanghaibo/SDUFall.html

17

poral dependencies using feedback loops along with the feedforward loops. These

dependencies can be for sequences of hundreds of time-steps [4]. During a fall-event,

video frames have short term temporal dependencies. Therefore, we made the choice

of using 3D convolutional neural networks, taking into account that convolutional

neural networks allow capturing short temporal dependencies, if extended in time.

The architecture used extends convolutional neural networks in time, to al-

low capturing both temporal and spatial information presented in successive video

frames. The network architecture for the final implementation is shown in figure 6.

Figure 6. The model architecture.

The algorithms used by deep neural networks allow learning the parameters of

the functions that best classify the data. This minimizes the need for hand-crafted

features in order to classify data, but introduces a new challenge for machine learning

engineers. That is, we need to find the best data representation that would allow the

network to learn those features. The following section shows more details on data

preprocessing and preparation, that cumulatively gave insight into the optimal data

representation for our goal.

18

3.1 Data preprocessing and data representation

The dataset's video frames have 640×480 spatial resolution. All frames were resized

to 160× 120 pixels. By means of visual interpretation, we could determine that the

size reduction lowered the amount of processing required, without loosing the spatial

information. A sample of frames for the different actions is shown in figure 7.

Figure 7. Sample video frames. (a) Bending frames. (b) Falling frames. (c) Lying

frames. (d) Squatting frames. (e) Sitting frames. (f) Walking frames.

The videos in the original dataset are of different lengths. The number of frames

in a video ranges between 69 and 502. The histogram in figure 8 shows the distribu-

tion of the number of frames in each video.

To be able to feed batches of videos to the 3D convolutional neural network,

the dimensions of the input needs to be consistent. That is, all inputs must be of

19

Figure 8. Video Length Distribution

the same spatial and temporal size. For the spatial domain, all video frames are of

the same size and there are no inconsistencies. But for the temporal domain, videos

are of different lengths. In order to achieve consistency in the temporal domain,

two approaches to prepare the dataset were considered. One approach is based on

creating the depth map motion, the other is based on using fixed number of video

frames. The details for these approaches are in the following subsections.

3.1.1 Depth map motion

This approach generates the depth map motion similar to the work presented in

[6]. That is, the absolute difference between two consecutive frames is projected and

accumulated through the video sequence as shown in equation 3.1, where N is the

total number of frames in the video. This would result in one image that captures

the action sequence.

20

Depth Map Motion =
i=N∑

i=2

| framei − framei−1 | (3.1)

A sample of the results obtained is shown in figure 9.

Figure 9. Samples of the depth map motions obtained for different classes. (a)

Bending. (b) Falling. (c) Lying. (d) Squatting. (e) Sitting. (f) Walking.

The results obtained on our dataset's videos where not very well representa-

tive of the actions. Therefore, no further work was considered using this approach.

Alternatively, an approach that uses a fixed number of video frames was adopted.

3.1.2 Sequences of frames

For this approach, it was important to maintain the same number of frames for all

videos. This step is important for training a neural network as it allows creating

batches of the data. Batching data minimizes the training signal noise. This means

that batching eliminates continuous updates of the network parameters, and reduces

21

the computational overhead. Since the optimizer updates the network weights and

biasses only after iterating over multiple samples included in the batch, the training

performance is improved. Different experiments were used to analyze this approach

as following.

3.1.2.1 Use the minimum number of video frames

This is an intuitive approach where the minimum number of frames for all videos was

used as a starting point. All videos were trimmed to 69 frames. Thus, depending on

the video length, all frames except the last 69 frames were discarded. Although some

videos lost the complete representation of the human action, this approach showed

promising results as the overall accuracy for action recognition was 84.3%. But as the

action representation was lost on some videos, a better way for data representation

needs to be considered.

3.1.2.2 Pad video frames

Since around 96% of the videos have a number of frames that falls in the range

[150 - 300]. Only videos that fall in this range were considered in this approach.

All videos of length greater than 150 and less than 300 were padded with frames of

zeros. The dataset is relatively small which eliminates the option of further reducing

this range by discarding more videos. Following this approach dropped the overall

action classification accuracy to 27%. Padding the videos have created an association

between the number of padding frames and the action presented in the video. Using

this approach, a few falling videos were discarded since they do not fall in that range.

Thus, this approach was abandoned.

22

3.1.2.3 Focus on falling frames

A considerable number of frames in the longer videos has no human present, and

therefore does not provide any spatial or temporal information that affects the clas-

sification process. The minimum number of frames representing a fall-event is 99,

and the maximum number of frames is 273. In consideration of that the focus of this

study is on correctly recognizing fall-events, having a properly presented training

and testing fall-events data is mandatory. Consequently, all videos from all actions

that fall out of this range were excluded. Hence, we used about 95% of the videos in

the dataset.

All videos whose number of frames fall in the range [99 - 273] were trimmed to

99 frames. The initial frames were discarded as they mostly are empty frames with

no human present. The last 99 frames are kept as the human action representation is

more stable towards the end of the action recorded. This way of trimming the videos

preserved the human action representation. Trimming also randomized the initial

location of the human in the videos. The randomization has a good effect on the

learning algorithm, as it breaks the association of the initial location of the human

and the actions performed in videos. Figure 10 gives more insight to this process.

Figure 10. Sample of the first frame in different videos for different actions. (a)

Bending. (b) Falling. (c) Lying. (d) Sitting. (e) Squatting. (f) Walking.

23

Using 99 video frames we could capture the full representation of the human

action without redundant video frames. Thus, all the experiments conducted on

training and testing the performance of the deep learning algorithm was based on

using 99 video frames. The pseudocode for extracting these frames is:

1. For i in range (videoLength - 99):

Discard Frame(i)

2. For j in range (99):

Save Frame(j)

The details of the classification approaches, i.e. training and testing the neural

network, are provided in the next section.

3.2 Classification approaches

The data representation approach described in section 3.1.2.3 was found to be the

best fit for the goal of this research. Therefore, two classification approaches were

considered; depth video classification, and binary video classification. In the follow-

ing subsections, a description of these approaches is provided.

3.2.1 Depth videos classification

The videos in the dataset has frames of three channels. The depth dimension cap-

tured using the Microsoft Kinect sensor is sampled and transformed to three different

channels for visualization. Two classification methods were considered using this ap-

proach; falling versus bending, lying, sitting, squatting, and walking actions, and

falling versus non-falling actions. More details on these methods are provided in the

following subsections.

24

3.2.1.1 Six-class classification

Here, 99 frames were extracted from each video whose length falls in the range [99

- 273]. All video frames were given one label based on the action in the video. The

labels given are: bending, falling, lying-down, sitting, squatting, and walking. The

dataset was split into two sets; a training set and a testing set. The training set

contained 80% of the videos, and the testing set contained 20% of the videos. A

sample of a fall-event video frames that were used to train the network are shown in

figures 11.

Figure 11. Sample of the falling frames used for training in the 6-class classification

method.

Samples for the training frames of other actions are shown in appendix A.

3.2.1.2 Fall versus non-fall classification

The goal of this research is to build a fall-detection system that has high sensitivity

and high specificity. The focus should be on classifying a fall event as a fall event

and a non-fall event as a non-fall event, and how to possibly prevent falls on future

by studying patterns of falling. Therefore, videos in the dataset whose length falls

25

in the range [99 - 273] were labeled as falling videos, or non-falling videos. Multiple

experiments where conducted to test the fall versus non-fall approach. The details

of these experiments are as follows:

1. Use all available training set videos and all available testing set videos.

For this approach, all the videos in the training and testing datasets where

labeled as fall videos or non-fall videos. Thus, 810 videos were used for training, out

of which 135 videos had a fall event. And 265 videos were used for testing, out of

which 55 videos had fall events.

2. Use a subset of available training videos and a subset of available testing

videos.

Using this approach, an equal number of videos were used for fall and non-fall

events in both the training dataset and the testing dataset. That is, 135 fall videos

and 135 randomly chosen non-fall videos were used for training. And 55 fall videos

and 55 randomly chosen non-fall videos were used for training. Although the videos

for non-fall events were randomly chosen, they had an equal number of videos from

different classes from the original dataset.

3. Use a subset of available training videos and all available testing set videos.

This approach was used to insure that the approach described in the first ex-

periment can generalize well for other videos in the test dataset. Here, the training

dataset used is the one described in the second experiment. Whereas, the test dataset

was composed of all test videos available in the dataset. More specifically, 135 fall

videos and 135 randomly chosen non-fall videos were used for training. And 265

videos were used for testing, out of which 55 videos had fall events.

It should be noted that following the depth classification approach is not the final

goal of this research. The ultimate goal is to be able to classify a human fall event

26

correctly irrespective of the surrounding objects. This generalization of fall-detection

can be achieved on binary videos were the background is subtracted from the scene.

There has not been much work done in literature on binary video classification using

deep neural networks. So, depth video classification was conducted to verify that the

system can learn to detect falls using a relatively small training dataset. The results

were then taken one step further by trying to detect fall events in binary videos. The

details for using binary videos in order to detect fall events are shown next.

3.2.2 Binary videos classification

This approach was followed for two main reasons. One, is to verify that the system

can be generalized for classifying human actions under real life conditions. The goal

was to extract the foreground object, which is the human, with the minimum back-

ground noise. Second, is for the sake of comparison with other available fall-detection

algorithms that uses the dataset used in this research. These algorithms require pro-

cessing binary video frames, where videos are split into training and testing datasets

with 70% and 30% ratios. Therefore, these conditions were duplicated and tested

using our algorithm.

For background subtraction, two algorithms were tested. The first experiment

was based on the work in [61]. While the second experiment is based on the work pre-

sented in [24]. Both algorithms use Gaussian Mixture-based Background/Foreground

Segmentation. The first algorithm uses K gaussian distributions for each pixel

throughout the algorithm. Whereas, the second algorithm selects the appropriate

number of gaussian distribution for each pixel. This selection allows the algorithm

to adapt well to changes, such as illumination changes, in the scene. After the back-

ground subtraction, morphological operations; erosion and dilation, were performed

27

to reduce the noise. Several sizes of kernels were tested. It was found that the best

background noise reduction is achieved using the second background subtraction al-

gorithm with kernel size of 9 for both erosion and dilation operations. Figure 12

shows a sample of the result obtained using the first background subtraction algo-

rithm. Figure 13 shows the results obtained using the second background subtraction

algorithm.

Figure 12. Samples of the frames obtained using the first background subtraction

algorithm for a bending action. (a) using kernel size of 9. (b) using kernel size of 7.

(c) using kernel size of 5. (d) using kernel size of 3.

Based on the experience gained through the previous classification approaches,

discussed in section 3.2.1.1, better choices were made for training the network using

the binary videos. First, we have learned that the network is more biased to data

that dominate during the training phase. Therefore, a sample pool for training

the network was created. This pool has equal number of fall and non-fall events.

The data in the pool has all fall events, and a randomly sampled non-fall events

from the original dataset. Four experiments were conducted using this pool; in each

experiment 70% of the data was used for training, and 30% was used for testing. The

28

Figure 13. Samples of the frames obtained using the second background subtraction

algorithm for a bending action. (a) using kernel size of 9. (b) using kernel size of 7.

(c) using kernel size of 5. (d) using kernel size of 3.

videos for each experiment were chosen randomly. Table I show the data distribution

for the four experiments.

Second, we have learned the importance of batching data and its effect on the

learning progress of the network. A video whose frames are of size 240×320 were fed

to the network. Due to memory constraints, the maximum batch size we could use

was 2. The results during training were pretty random, and the network could not

adjust its parameters represent the data. Therefore, all frames sizes were reduced to

160× 120, and batches of 19 videos were fed to the network.

Samples of the fall-event video frames that were used to train the network during

the different experiments are shown in figures 14 to 17.

More samples on the training video frames used for this approach are shown in

appendix A.

29

Training Testing

Non-fall 131 59

Fall 135 55

(a) experiment 1

Training Testing

Non-fall 179 11

Fall 87 103

(b) experiment 2

Training Testing

Non-fall 160 30

Fall 106 84

(c) experiment 3

Training Testing

Non-fall 150 40

Fall 116 74

(d) experiment 4

Table I. The distribution of the data used for (a) experiment 1 (b) experiment 2 (c)

experiment 3 (d) experiment 4.

3.3 Stream data classification

The system is also setup for processing data stream. A buffer that fits 99 frames

is used. The system reads a new frame and adds it to the buffer after discarding

the oldest frame. A label is produced with each frame added to the buffer. For the

online data stream classification to function properly, the human action should be

separated from the background. In other words, it is important to verify that the

system works properly regardless of what the human surroundings are. Therefore,

the binary videos classifier generated based on experiment 4 in section 3.2.2, were

used for video stream processing. This classifier was chosen as it has the highest fall-

detection accuracy. By classifier we are referring to the set of parameters generated

by the 3D convolutional neural network.

30

Figure 14. Samples of the frames used for training in the fall versus non-fall clas-

sification using binary frames method experiment 1.

3.4 System Specifications

To train and test the model, TensorFlow library [15] was used on a Ubuntu 14.04

system that two GeForce GTX 980 Ti GPUs. Each GPU has 2816 CUDA cores.

The open source library, TensorFlow, was developed by a team of engineers and re-

searchers from Google in order to process machine learning and deep neural networks

algorithms. TensorFlow uses graphs to represent numerical computations. Mathe-

matical operations are represented by graph nodes. Data tensors communication

between nodes is represented by edges in the graph. The following section describes

in more details how the deep neural network used in this research was built.

3.5 Building the Network

While the 3D convolutional neural network approach was considered as the best fit

for our problem, other experiments were done using a recurrent neural network to

confirm that this choice was the best. Among other approaches, using a network of 2

31

Figure 15. Samples of the frames used for training in the fall versus non-fall clas-

sification using binary frames method experiment 2.

LSTM cells was the most affordable in terms of the computational complexity. The

following subsections describe the architectures of both networks.

3.5.1 Recurrent Neural Network

An implementation of the fall-detection system using a recurrent neural network

with 2 LSTM layers was tested. Figure 18 shows an overview of the network used.

Sequences of video frames were fed into this network, and a label to identify the

action in that video is produced. The network has 20 hidden units, and processed a

99-frame video sequence. Adam optimizer was used with learning rate of 1e-4.

The network considers all the pixels in the sequences of frames A large portion of

a video frame is raw video frames to the recurrent neural network have T The overall

accuracy using this approach was below 50%. Therefore, no further experiments

were conducted using this approach.

32

Figure 16. Samples of the frames used for training in the fall versus non-fall clas-

sification using binary frames method experiment 3.

3.5.2 3D Convolutional Neural Network

This study uses a 3D convolutional neural network for fall-detection. A video was

fed to the network, and a class label is generated to determine whether a fall event

has occurred. A detailed network architecture for the implementation is shown in

figure 19.

The input to the network is a video of size 99×160×120×3. The video is then

goes through the first 3D convolutional layer. This layer has 96 filters each of size

25×11×11, where the filter spans the videos with a stride of 3 in the spatial domain

and a stride of 3 in the temporal domain. The size of the filter in the temporal

domain was chosen such that the network looks at sufficient number of frames before

updating it's parameters. So, based on the conducted experiments using around one-

fourth the number of video frames served this purpose. Next, we have a max-pooling

layer that down-samples the resulting activation volume by 2 in every dimension.

Following this pooling layer we have a second convolutional layer of 256 filters each

of size 15× 5× 5 that span the video with a stride of 2 in both spatial and temporal

33

Figure 17. Samples of the frames used for training in the fall versus non-fall clas-

sification using binary frames method experiment 4.

Figure 18. The recurrent neural network used for 6-class classification.

domains. Again, a pooling layer, with the same properties as the first pooling layer,

follows this convolutional layer. We then have three convolutional layers of sizes

5×3×3, 1×3×3 and 1×3×3 respectively. These convolutional layers are followed

by a pooling layer. A summary of the filter sizes and strides for each layer is listed in

table II. Finally, a fully-connected layer of 128 neurons is followed by another fully

connected layer whose number of neurons is associated with the number of classes

in the problem are used. A softmax function is applied to the output of the last

fully-connected layer to compute the classes’ probabilities.

34

Figure 19. Detailed model architecture where video frames are mapped to class

labels. The filters of 3D convolutional layers are shown in yellow, green, orange, and

blue. The pooling layer filters are shown in grey. Fully connected layers are shown

in red.

To train the network, Adam Optimizer algorithm was used. This is a gradient-

based algorithm which requires little memory and is very efficient in terms of compu-

tations. The use of Adam optimizer fits problems of large data and parameters. Prac-

tically, this optimizer works well compared to other stochastic optimization methods

[28]. The loss function used is the cross-entropy function given by equation 3.2. Us-

ing this function the optimizer minimizes the sum of the difference between labels

and predictions of all samples in a batch.

Cost = −
i=N∑

i=2

Labeli − log(Predictioni) (3.2)

After experimenting with different hyper-parameters, the hyper-parameters of

the network were set as follows: 0.7 for the dropout rate, 10 for the batch size,

and 1e-4 for the learning rate. Two values for the dropout rate were evaluated;

0.5 and 0.7. Using the dropout technique means that the network randomly and

temporarily removes some of the network units and their connections. Thus, the

higher dropout rate is, the lower overfitting the network has [45]. Two values for

35

Layer
Spatial Filter Temporal Filter

Size Stride Size Stride

Conv1 11 3 25 3

Pool1 2 2 2 2

Conv2 5 2 15 2

Pool2 2 2 2 2

Conv3 3 1 5 3

Conv4 3 1 1 2

Conv5 3 1 1 2

Pool3 2 2 1 2

Table II. A summary of the filter sizes and strides for each layer in the deep fall-

detection system.

the learning rate were also used for performance comparison, 1e-4 and 1e-8. The

learning rate is used by the optimizer to adjust the weights and biases of the network.

Different combinations of these values were tested, with accuracies below 70% for all

combinations other than 0.7 for dropout rate, and 1e-4 for the learning rate. Several

values for the batch size were tested. Figure 20 shows the accuracy changes across

different values for the batch size. These sizes where used while training the network.

For testing, all batch sizes where set to 5. This is because the batch size needs to be

a divisor for the data size. The batch size cannot exceed 40, as this means loading

a larger amount of data than what the system memory can handle. Therefore, the

values of the batch size with a training set of 810 videos were: 10, 15, 18, and 30.

The values of the batch size for a testing set of 265 videos was set to 5.

36

Figure 20. The overall six-classes classification accuracy using different batch sizes

37

CHAPTER 4

RESULTS AND DISCUSSION

The following sections describe in details the results of the two approaches used

for training and testing the designed architecture. One approach was to detect fall

events using depth videos, the other approach was based on binary videos. Based on

the data preprocessing and preparation experiments, the best results for the 6-class

classification on depth videos were obtained using 99 video frames. This number of

frames was found to be optimum as shown in table III. Thus, all approaches use

videos of 99 frames.

Minimum no. of frames Padding video frames 99 video frames

Accuracy 84.50% 27% 93.20%

Table III. Comparison of the different data preprocessing approaches.

The overall accuracy reported for all approaches is calculated using the equation:

Overall accuracy =
Number of correctly classified videos

Total number of videos in the test dataset
× 100% (4.1)

Similarly, the accuracy reported for a class is calculated using the equation:

Class accuracy =
Number of correctly classified class videos

Total number of class videos in the test dataset
×100% (4.2)

All results are reported through a confusion matrix, where a row represents a

class label, and a column represents a prediction. From the confusion matrix, other

metrics such as the precision, recall, and F1-scores can be inferred. The precision

can be expressed in terms of the relationship between the true positive and the true

38

negative results. It can be expressed by the equation:

Precision =
True Positives

True Positive + True Positive
× 100% (4.3)

The recall metric is given by the equation:

Recall =
True Positives

True Positive + True Negative
× 100% (4.4)

And the F1-score, which is one way of combining the precision and recall metrics,

is given by:

F1− Score = 2×
Precision× Recall

P recision+ Recall
× 100% (4.5)

The results obtained for video stream are also listed. More samples of the

correctly classified and miss-classified video frames are shown in appendix B and

appendix C, respectively.

4.1 Depth videos classification

The results for depth videos classification were obtained based on two methods. One

method distinguishes between all six classes presented in the dataset. The other

classifies fall events among non-fall events. Following are the results in details.

4.1.1 Six-Class Classification

In this method, each video was given a label as bending, falling, lying-down, sitting,

squatting, or walking. For the training phase, 135 videos were used per each action.

The overall training time was around 32 minutes. A total of 265 videos were used

for testing. The number of videos used for testing per class is as follows: 34 videos

39

for bending, 55 videos for falling, 35 videos for lying-down, 57 videos for sitting, 46

videos for squatting, and 38 videos for walking.

The estimated time for classifying one video is around 23 seconds. So, the

system could achieve real time performance. Table IV shows the number of correctly

classified videos, as well as the miss classified videos among all videos in the test

dataset. The confusion matrix for the 6-class action recognition is shown in table V.

No. of videos Bending Falling Lying-Down Sitting Squatting Walking

34 Bending 31 0 0 0 3 0

55 Falling 0 48 7 0 0 0

35 Lying-Down 0 0 35 0 0 0

57 Sitting 2 0 0 54 0 1

46 Squatting 4 0 0 0 42 0

38 Walking 1 0 0 0 0 37

Table IV. The confusion matrix for the 6-class action recognition. It shows the

numbers of correctly classified and miss classified videos.

The system could achieve 87.28% accuracy on fall events classification. The sys-

tem could also achieve high specificity by correctly identifying daily life activities as

non-falls. Interestingly, all lying-down events were correctly classified. The majority

of miss classified falling events are given a lying-down label. This can be due to the

fact that the dataset have simulated falls. Therefore, some of the fall events were

performed more like lying-down events rather than falling events.

Samples of the correctly classified and miss classified falling video frames are

shown in figures 73 and 22, respectively.

It can be seen that the miss-classified video frames share some patterns with a

40

93.2% Bending Falling Lying-Down Sitting Squatting Walking

Bending 91.18 0 0 0 8.82 0

Falling 0 87.28 12.72 0 0 0

Lying-Down 0 0 100 0 0 0

Sitting 3.51 0 0 94.74 0 1.75

Squatting 8.70 0 0 0 91.30 0

Walking 2.63 0 0 0 0 97.37

Table V. The confusion matrix for the 6-class action recognition. It shows the

percentages for accuracies.

lying-down action, where the human bends towards a mattress.

4.1.2 Fall versus Non-Fall Classification

Since the goal of this research is to correctly classify fall-events as fall-events, oth-

erwise, events should be classified as non-fall events. Several experiments were con-

ducted for fall versus non-fall recognition. Using this approach, each video was given

a label, either fall or non-fall. More details on these experiments are provided in the

following subsections.

4.1.2.1 Use all available training set videos and all available testing set videos

For this classification approach, all videos available in the training set and testing set

were used. Thus, for the training dataset, 275 videos were labeled as non-fall videos,

and 135 videos were labeled as fall videos. For the testing dataset, 210 videos were

labeled as non-fall videos, and 55 videos were labeled as fall videos. The confusion

matrix using this approach is shown in table VI.

41

Figure 21. Sample of a correctly classified falling video frames using the six-class

classification method.

The overall system accuracy using this approach is lower than the previously

obtained accuracy. Both the precision and recall metrics of the system are 0%.

This means that the network has learned to classify all videos as non-fall videos.

The low precision and recall values are obtained due to the fact that the number

of non-fall training videos is much larger the fall training videos. The unbalanced

data distribution during the training phase makes the network more biased towards

non-fall events.

4.1.3 Use a subset of available training videos and a subset of available testing

videos

To overcome the problem of having the network biased towards non-fall events, a

subset of the available training videos were used. Since 135 is the total number of

42

Figure 22. Sample of a miss-classified falling video frames using the six-class clas-

sification method.

fall events in the training dataset, 135 videos were used for falling and a similar

number was used for non-falling events. A total of 110 videos were used for testing.

The number of videos used for testing is 55 for falling, as well as non-falling events.

The confusion matrix using this approach is shown in table VII.

The overall system accuracy is 97.2%. In order to ensure that this way of

training the network and testing it can generalize well a more general approach was

considered. This general approach uses a subset of the dataset for training, and all

the test dataset. The details of this approach are explained in the following section.

4.1.4 Use a subset of available training videos and all available testing set videos

Using this approach, 135 fall videos and 135 non-fall videos were used for training the

network. For the testing phase, 55 videos were used for fall events, and 210 videos

43

No. of videos Non-Falling Falling

210 Non-Falling 210 0

55 Falling 55 0

(a) The number of correctly classified and miss classi-
fied videos

79.2 Non-Falling Falling

Non-Falling 100 0

Falling 100 0

(b) The percentages for accuracies

Table VI. The confusion matrix for the fall vs. non-fall action recognition using all

training data and all testing data. (a) The number of correctly classified and miss

classified videos. (b) The percentages for accuracies.

No. of videos Non-Falling Falling

55 Non-Falling 53 2

55 Falling 1 54

(a) The number of correctly classified and miss classi-
fied videos

97.2 Non-Falling Falling

Non-Falling 96.3 3.7

Falling 1.9 98.1

(b) The percentages for accuracies

Table VII. The confusion matrix for the fall vs. non-fall action recognition using a

subset of training data and a subset of testing data. (a) The number of correctly

classified and miss classified videos. (b) The percentages for accuracies.

were used for non-fall events. The confusion matrix using this approach is shown in

table VIII.

With 97% overall system accuracy, 98.18% sensitivity, and 96.7% specificity,

the system could achieve better performance using a statistically balanced dataset

during the training phase. The system could generalize well to all videos in the test

dataset. The precision is found to be 88.5%, the recall is 98.1%, and the F1-score is

94.6%.

44

No. of videos Non-Falling Falling

55 Non-Falling 53 2

55 Falling 1 54

(a) The number of correctly classified and miss classi-
fied videos

97.20 Non-Falling Falling

Non-Falling 96.30 3.70

Falling 1.90 98.10

(b) The percentages for accuracies

Table VIII. The confusion matrix for the fall vs. non-fall action recognition using

a subset of training data and a subset of testing data. (a) The number of correctly

classified and miss classified videos. (b) The percentages for accuracies.

4.2 Binary video classification

In this approach, we stick to the fall versus non-fall classification approach as we aim

to achieve high fall-detection accuracy, rather than identifying daily life activities.

Initially, video frames were resized to 320 × 240. Training the network on these

images were not possible due to the computer's memory limitations. Using large

images, we were able to feed a batch of size 2 to the network. The small batch

size prevented the stabilization of the network's parameters. Thus the results were

random. To address this problem, all video frames were resized to 160 × 120. The

smaller frame size allowed creating batches of 19 videos. The updates of the network

parameters were more stable. Therefore, we could achieve better results.

For the experiments using binary videos, we have created a subset of the original

dataset. This subset contained all fall videos, and an equal number of randomly

chosen non-fall videos from the original dataset. The subset was then quadruplicated.

In each copy of the subset, videos were split to 70% training set, and 30% testing set.

The videos in the training and testing sets were also chosen randomly. The numbers

of fall and non-fall videos for each experiment are listed in table I. The confusion

45

matrix using the four experiments is shown in table IX.

98.2 Non-Falling Falling

Non-Falling 98.3 1.7

Falling 1.9 98.1

(a) experiment 1

96.5 Non-Falling Falling

Non-Falling 100 0

Falling 3.9 96.1

(b) experiment 2

97.4 Non-Falling Falling

Non-Falling 96 4

Fall 2.4 97.6

(c) experiment 3

98.2 Non-Falling Falling

Non-Falling 97.5 2.5

Falling 1.4 98.6

(d) experiment 4

Table IX. The confusion matrix for the fall vs. non-fall action recognition using bi-

nary videos. It shows the percentages for accuracies. (a) experiment 1 (b) experiment

2 (c) experiment 3 (d) experiment 4. It shows the percentages for accuracies.

For the first and fourth experiments, the sytem's precision, recall, and F1-score

are identical; for experiment one all values are 98.1%, and for experiment four all

values are 98.6%. For the second experiment the precision is found to be 100%, the

recall is 96.1%, and the F1-score is 98%. Whereas, for the third experiment the

precision is 98.8%, the recall is 97.6%, and the F1-score is 98.2%.

While it could be expected that using low resolution frames, the accuracy of the

system would drop, the average accuracy of the system is 97.58%. To the best of

our knowledge, this is the highest accuracy reported for fall-event recognition using

this dataset. In other work published on the dataset used in this research described

in [2][3][34], different authors disagree on the average video length. This leaves an

open question for a clarification on handling the variations of video lengths. It is

46

also noted that there is no mention of the number of fall-event videos included in

the test dataset. The ration of fall events to non-fall events in the test dataset is

important as it highly affects the reported accuracy. Though, better performance

than the approaches which uses hand-crafted features such as the orientation volume

and the curvature scale space of human silhouettes described in [2][34] respectively.

The results on the SDUFall dataset were further generalized and tested on online

data stream.

Table X, shows a comparison of our approach to approaches which uses hand-

crafted features and shallow classifiers.

BoW-VPSO- ELM[34] FV-SVM[3] BoSOV-Bayes[2] Proposed method

Accuracy 86.83 88.83 91.89 97.58

Table X. Comparison of the performance of the fall vs. non-fall action recognition.

It shows the percentages for accuracies.

Samples of the correctly classified and miss classified falling video frames for the

four experiments are shown in figures 23 to 30.

Unlike other videos in the test dataset, the miss-classified video frames in figure

26 has lots of noise. It could be that due to the huge noise that the video was

miss-classified. For the video frames in figures 24, 28, and 30, a human can be easily

deceived by the action performed, since it shows minimum similarities with an actual

fall-event. Thus, it is expected that the machine would also miss-classify the actions

in these videos.

We can see that due to the fact that the dataset has falls performed by stunt

actors, some of the fall actions share lots of the characteristics of a lying-down or

bending actions. Other fall events that are performed in a more realistic way are

47

Figure 23. Sample of correctly classified falling video frames in the first experiment

of fall versus non-fall binary video classification.

always correctly classified.

4.3 Data stream classification

For the data stream classification, a buffer was setup to fit 99 video frames. At each

time step, a new frame is read from a camera, and the oldest video frame in the

buffer is discarded. A class label is produced with each frame added to the buffer.

The experiments were conducted in the computer vision lab, Bina, using a regular

web camera. The camera was placed at a height of 1.5m. Background subtraction

was performed to binarize all video frames.

Having a fall-detection system with high recall is more important than having

a system with high precision. Higher recall means the system has higher ability of

identifying fall events correctly. Higher precision means that the system generates

48

Figure 24. Sample of miss-classified falling video frames in the first experiment of

fall versus non-fall binary video classification.

less false alarms. Therefore, the recall metric is more critical for our application.

The classifier generated using binary video frames as described in experiment four

in section 3.2.2 was used. This classifier could achieve the highest fall-detection

accuracy on a test dataset. This classifier also has the highest recall percentage

among the other classifiers.

In daily life, different human actions have similarities in video frame sequences.

To avoid high false alarm ration, due to these similarities, a threshold was used.

As a new video frame is read and an old frame is discarded, the system produces a

class label. The label can be fall, or non-fall. For a threshold of value n the system

would generate an alarm signal after n consecutive fall labels. The system was tested

using several values of n. The actions performed are: sitting, bending, squatting,

lying-down, and throwing an object. The low threshold values, 10 and 15, produced

49

Figure 25. Sample of correctly classified falling video frames in the second experi-

ment of fall versus non-fall binary video classification.

too many false alarms. Higher threshold values, 60 and 70, did not produce any

false alarms even for lying-down events. Samples of the video frames for the actions

performed are shown in figures 31 to 36.

50

Figure 26. Sample of miss-classified falling video frames in the second experiment

of fall versus non-fall binary video classification.

Figure 27. Sample of correctly classified falling video frames in the thirds experi-

ment of fall versus non-fall binary video classification.

51

Figure 28. Sample of miss-classified falling video frames in the third experiment of

fall versus non-fall binary video classification.

Figure 29. Sample of correctly classified falling video frames in the fourth experi-

ment of fall versus non-fall binary video classification.

52

Figure 30. Sample of miss-classified falling video frames in the fourth experiment

of fall versus non-fall binary video classification.

Figure 31. Sample of the walking action performed for the online data stream

processing.

Figure 32. Sample of the bending action performed for the online data stream

processing.

Figure 33. Sample of the throw object action performed for the online data stream

processing.

53

Figure 34. Sample of the squatting action performed for the online data stream

processing.

Figure 35. Sample of the sitting action performed for the online data stream pro-

cessing.

Figure 36. Sample of the lying-down action performed for the online data stream

processing.

54

CHAPTER 5

CONCLUSION

In conclusion, the research presented in this study shows that deep learning based al-

gorithms are suitable for recognizing fall-event patterns. It is observed that the deep

learning based pattern representations help increasing the accuracy for fall-detection

systems as compared to traditional pattern representation techniques such as the

orientation volume and the curvature scale space of human silhouettes described

in [2][34] respectively. The main idea in this research is to identify the aforemen-

tioned patterns using spatio-temporal features. These spatio-temporal features were

automatically learned and extracted using 3D convolution neural network.

The main contribution of this research lies in presenting an extensive effort to

come up with a best representation of videos which would allow the system to detect

fall events with high accuracy. The classification approaches of the experiments

conducted in this study are twofold: the first is based on depth video classification,

and the second is based on binary video classification.

The experimental results reveal that the presented approach improved the over-

all accuracy of the system. Since the results are encouraging, the system was setup

for online data stream processing. This system can be employed under real life

conditions.

As a future work, we would like to evaluate the performance of the overall system

by incorporating the algorithm we implemented with the communication system to

inform a health care provider about the occurance of a fall-event. Moreover, we also

would like to consider more specific fall events. As described in [42], a considerable

amount of falls among the elderly committee occurs while using wheel chairs or

55

walkers. More tests can be done to verify the ability of the system to detect such

falls. More data to simulate these specific fall events and train the system to correctly

classify them can be added as necessary.

56

REFERENCES

[1] Abbate, S., Avvenuti, M., Bonatesta, F., Cola, G., Corsini, P., and

Vecchio, A. A smartphone-based fall detection system. Pervasive and Mobile

Computing 8, 6 (2012), 883–899.

[2] Akagunduz, E., Aslan, M., Sengur, A., Wang, H., and Ince, M.

Silhouette orientation volumes for efficient fall detection in depth videos. IEEE

journal of biomedical and health informatics (2016).

[3] Aslan, M., Sengur, A., Xiao, Y., Wang, H., Ince, M. C., and Ma,

X. Shape feature encoding via fisher vector for efficient fall detection in depth-

videos. Applied Soft Computing 37 (2015), 1023–1028.

[4] Bengio, Y., Goodfellow, I. J., and Courville, A. Deep learning. An

MIT Press book in preparation. Draft chapters available at http://www. iro.

umontreal. ca/ bengioy/dlbook (2015).

[5] Bosch-Jorge, M., Sánchez-Salmerón, A.-J., Valera, Á., and

Ricolfe-Viala, C. Fall detection based on the gravity vector using a wide-

angle camera. Expert Systems with Applications 41, 17 (2014), 7980–7986.

[6] Chen, C., Liu, K., and Kehtarnavaz, N. Real-time human action recog-

nition based on depth motion maps. Journal of real-time image processing 12,

1 (2016), 155–163.

[7] Cho, K., Van Merriënboer, B., Gulcehre, C., Bahdanau, D.,

Bougares, F., Schwenk, H., and Bengio, Y. Learning phrase repre-

sentations using rnn encoder-decoder for statistical machine translation. arXiv

preprint arXiv:1406.1078 (2014).

57

[8] Choi, Y., Ralhan, A., and Ko, S. A study on machine learning algorithms

for fall detection and movement classification. In Information Science and Ap-

plications (ICISA), 2011 International Conference on (2011), IEEE, pp. 1–8.

[9] Chu, H., Urtasun, R., and Fidler, S. Song from pi: A musically plausible

network for pop music generation. arXiv preprint arXiv:1611.03477 (2016).

[10] Cucchiara, R., Prati, A., and Vezzani, R. A multi-camera vision system

for fall detection and alarm generation. Expert Systems 24, 5 (2007), 334–345.

[11] Dai, J., Bai, X., Yang, Z., Shen, Z., and Xuan, D. Perfalld: A pervasive

fall detection system using mobile phones. In Pervasive Computing and Com-

munications Workshops (PERCOM Workshops), 2010 8th IEEE International

Conference on (2010), IEEE, pp. 292–297.

[12] Donahue, J., Anne Hendricks, L., Guadarrama, S., Rohrbach, M.,

Venugopalan, S., Saenko, K., and Darrell, T. Long-term recurrent

convolutional networks for visual recognition and description. In Proceedings

of the IEEE Conference on Computer Vision and Pattern Recognition (2015),

pp. 2625–2634.

[13] for Community Living, A. Administration for community living, 2016.

[14] for Disease, C., and Prevention. Centers for disease and prevention,

2016.

[15] Goolge. Tensorflow, 2016.

[16] Graves, A. Generating sequences with recurrent neural networks. arXiv

preprint arXiv:1308.0850 (2013).

58

[17] Graves, A., and Jaitly, N. Towards end-to-end speech recognition with

recurrent neural networks. In ICML (2014), vol. 14, pp. 1764–1772.

[18] Habib, M. A., Mohktar, M. S., Kamaruzzaman, S. B., Lim, K. S.,

Pin, T. M., and Ibrahim, F. Smartphone-based solutions for fall detection

and prevention: challenges and open issues. Sensors 14, 4 (2014), 7181–7208.

[19] Hazelhoff, L., Han, J., et al. Video-based fall detection in the home

using principal component analysis. In International Conference on Advanced

Concepts for Intelligent Vision Systems (2008), Springer, pp. 298–309.

[20] He, K., Zhang, X., Ren, S., and Sun, J. Deep residual learning for image

recognition. In Proceedings of the IEEE Conference on Computer Vision and

Pattern Recognition (2016), pp. 770–778.

[21] Igual, R., Medrano, C., and Plaza, I. Challenges, issues and trends in

fall detection systems. Biomedical engineering online 12, 1 (2013), 1.

[22] Irsoy, O., and Cardie, C. Opinion mining with deep recurrent neural net-

works. In EMNLP (2014), pp. 720–728.

[23] Ji, S., Xu, W., Yang, M., and Yu, K. 3d convolutional neural networks for

human action recognition. IEEE transactions on pattern analysis and machine

intelligence 35, 1 (2013), 221–231.

[24] KaewTraKulPong, P., and Bowden, R. An improved adaptive back-

ground mixture model for real-time tracking with shadow detection. In Video-

based surveillance systems. Springer, 2002, pp. 135–144.

[25] Karpathy, A. Andrej karpathy blog, 2016.

59

[26] Karpathy, A., Johnson, J., and Fei-Fei, L. Visualizing and understand-

ing recurrent networks. arXiv preprint arXiv:1506.02078 (2015).

[27] Karpathy, A., Toderici, G., Shetty, S., Leung, T., Sukthankar, R.,

and Fei-Fei, L. Large-scale video classification with convolutional neural net-

works. In Proceedings of the IEEE conference on Computer Vision and Pattern

Recognition (2014), pp. 1725–1732.

[28] Kingma, D., and Ba, J. Adam: A method for stochastic optimization. arXiv

preprint arXiv:1412.6980 (2014).

[29] Koutnık, J., Greff, K., Gomez, F., and Schmidhuber, J. A clockwork

rnn. arxiv preprint. arXiv 1402 (2014).

[30] Krizhevsky, A., Sutskever, I., and Hinton, G. E. Imagenet classifica-

tion with deep convolutional neural networks. In Advances in neural information

processing systems (2012), pp. 1097–1105.

[31] Kwolek, B., and Kepski, M. Improving fall detection by the use of depth

sensor and accelerometer. Neurocomputing 168 (2015), 637–645.

[32] Li, H., and Yang, Y.-L. Research of elderly fall detection based on dy-

namic time warping algorithm. In Control Conference (CCC), 2016 35th Chi-

nese (2016), IEEE, pp. 5190–5194.

[33] Li, Y., Ho, K., and Popescu, M. A microphone array system for au-

tomatic fall detection. IEEE Transactions on Biomedical Engineering 59, 5

(2012), 1291–1301.

60

[34] Ma, X., Wang, H., Xue, B., Zhou, M., Ji, B., and Li, Y. Depth-based

human fall detection via shape features and improved extreme learning machine.

IEEE journal of biomedical and health informatics 18, 6 (2014), 1915–1922.

[35] Mnih, V., Heess, N., Graves, A., et al. Recurrent models of visual atten-

tion. In Advances in neural information processing systems (2014), pp. 2204–

2212.

[36] Mubashir, M., Shao, L., and Seed, L. A survey on fall detection: Princi-

ples and approaches. Neurocomputing 100 (2013), 144–152.

[37] Nielsen, M. A. Neural networks and deep learning, 2016.

[38] Olah, C. Colahs blog, 2016.

[39] Planinc, R., and Kampel, M. Robust fall detection by combining 3d data

and fuzzy logic. In Asian Conference on Computer Vision (2012), Springer,

pp. 121–132.

[40] Rezaee, K., Haddadnia, J., and Delbari, A. Modeling abnormal walking

of the elderly to predict risk of the falls using kalman filter and motion estimation

approach. Computers & Electrical Engineering 46 (2015), 471–486.

[41] Rimminen, H., Lindström, J., Linnavuo, M., and Sepponen, R. De-

tection of falls among the elderly by a floor sensor using the electric near field.

IEEE transactions on information technology in biomedicine: a publication of

the IEEE Engineering in Medicine and Biology Society 14, 6 (2010), 1475–1476.

[42] Robinovitch, S. N., Feldman, F., Yang, Y., Schonnop, R., Leung,

P. M., Sarraf, T., Sims-Gould, J., and Loughin, M. Video capture

61

of the circumstances of falls in elderly people residing in long-term care: an

observational study. The Lancet 381, 9860 (2013), 47–54.

[43] Rougier, C., Meunier, J., St-Arnaud, A., and Rousseau, J. Robust

video surveillance for fall detection based on human shape deformation. IEEE

Transactions on Circuits and Systems for Video Technology 21, 5 (2011), 611–

622.

[44] Simonyan, K., and Zisserman, A. Two-stream convolutional networks for

action recognition in videos. In Advances in Neural Information Processing

Systems (2014), pp. 568–576.

[45] Srivastava, N., Hinton, G. E., Krizhevsky, A., Sutskever, I., and

Salakhutdinov, R. Dropout: a simple way to prevent neural networks from

overfitting. Journal of Machine Learning Research 15, 1 (2014), 1929–1958.

[46] Stanford. Cs231n convolutional neural networks for visual recognition, 2016.

[47] Stone, E. E., and Skubic, M. Fall detection in homes of older adults using

the microsoft kinect. IEEE journal of biomedical and health informatics 19, 1

(2015), 290–301.

[48] Su, B. Y., Ho, K., Rantz, M. J., and Skubic, M. Doppler radar fall ac-

tivity detection using the wavelet transform. IEEE Transactions on Biomedical

Engineering 62, 3 (2015), 865–875.

[49] Sutskever, I., Vinyals, O., and Le, Q. V. Sequence to sequence learning

with neural networks. In Advances in neural information processing systems

(2014), pp. 3104–3112.

62

[50] Sutskever, I., Vinyals, O., and Le, Q. V. Sequence to sequence learning

with neural networks. In Advances in Neural Information Processing Systems

27, Z. Ghahramani, M. Welling, C. Cortes, N. D. Lawrence, and K. Q. Wein-

berger, Eds. Curran Associates, Inc., 2014, pp. 3104–3112.

[51] Szegedy, C., Toshev, A., and Erhan, D. Deep neural networks for ob-

ject detection. In Advances in Neural Information Processing Systems (2013),

pp. 2553–2561.

[52] Tang, D., Qin, B., and Liu, T. Document modeling with gated recurrent

neural network for sentiment classification. In EMNLP (2015), pp. 1422–1432.

[53] Tong, L., Song, Q., Ge, Y., and Liu, M. Hmm-based human fall detection

and prediction method using tri-axial accelerometer. IEEE Sensors Journal 13,

5 (2013), 1849–1856.

[54] Tzeng, H.-W., Chen, M.-Y., and Chen, J.-Y. Design of fall detection

system with floor pressure and infrared image. In 2010 International Conference

on System Science and Engineering (2010), IEEE, pp. 131–135.

[55] Venugopalan, S., Rohrbach, M., Donahue, J., Mooney, R., Dar-

rell, T., and Saenko, K. Sequence to sequence-video to text. In Proceedings

of the IEEE International Conference on Computer Vision (2015), pp. 4534–

4542.

[56] Vinyals, O., Toshev, A., Bengio, S., and Erhan, D. Show and tell:

A neural image caption generator. In Proceedings of the IEEE Conference on

Computer Vision and Pattern Recognition (2015), pp. 3156–3164.

63

[57] Vishwakarma, V., Mandal, C., and Sural, S. Automatic detection of

human fall in video. In International conference on pattern recognition and

machine intelligence (2007), Springer, pp. 616–623.

[58] Yao, K., Cohn, T., Vylomova, K., Duh, K., and Dyer, C. Depth-gated

recurrent neural networks. arXiv preprint arXiv:1508.03790 (2015).

[59] Yuwono, M., Moulton, B. D., Su, S. W., Celler, B. G., and Nguyen,

H. T. Unsupervised machine-learning method for improving the performance of

ambulatory fall-detection systems. Biomedical engineering online 11, 1 (2012),

1.

[60] Zhou, B., Lapedriza, A., Xiao, J., Torralba, A., and Oliva, A. Learn-

ing deep features for scene recognition using places database. In Advances in

neural information processing systems (2014), pp. 487–495.

[61] Zivkovic, Z., and Van Der Heijden, F. Efficient adaptive density estima-

tion per image pixel for the task of background subtraction. Pattern recognition

letters 27, 7 (2006), 773–780.

64

Appendices

65

Appendix A

SAMPLE TRAINING VIDEO FRAMES

This chapter includes samples of the video frames used for training the deep neural

network in different experiments.

Figure 37. Sample of the bending frames used for training in the 6-class classifica-

tion method.

Figure 38. Sample of the falling frames used for training in the 6-class classification

method.

66

Figure 39. Sample of the lying-down frames used for training in the 6-class classi-

fication method.

Figure 40. Sample of the bending frames used for training in the 6-class classifica-

tion method.

67

Figure 41. Sample of the bending frames used for training in the 6-class classifica-

tion method.

Figure 42. Sample of the bending frames used for training in the 6-class classifica-

tion method.

68

Figure 43. Sample of the non-fall frames used for training in the fall versus non-fall

classification method.

Figure 44. Sample of the fall frames used for training in the the fall versus non-fall

classification method.

69

Figure 45. Sample of the non-fall frames used for training in the the fall versus

non-fall classification method.

Figure 46. Sample of the non-fall frames used for training in the the fall versus

non-fall classification method.

70

Figure 47. Sample of the non-fall frames used for training in the the fall versus

non-fall classification method.

Figure 48. Sample of the non-fall frames used for training in the the fall versus

non-fall classification method.

71

Figure 49. Sample of the non-fall frames used for training in the the fall versus

non-fall classification method in experiment 1.

Figure 50. Sample of the falling frames used for training in the the fall versus

non-fall classification method in experiment 1.

72

Figure 51. Sample of the non-fall frames used for training in the the fall versus

non-fall classification method in experiment 1.

Figure 52. Sample of the non-fall frames used for training in the the fall versus

non-fall classification method in experiment 1.

73

Figure 53. Sample of the non-fall frames used for training in the the fall versus

non-fall classification method in experiment 1.

Figure 54. Sample of the non-fall frames used for training in the the fall versus

non-fall classification method in experiment 2.

74

Figure 55. Sample of the falling frames used for training in the the fall versus

non-fall classification method in experiment 2.

Figure 56. Sample of the non-fall frames used for training in the the fall versus

non-fall classification method in experiment 2.

75

Figure 57. Sample of the non-fall frames used for training in the the fall versus

non-fall classification method in experiment 2.

Figure 58. Sample of the non-fall frames used for training in the the fall versus

non-fall classification method in experiment 2.

76

Figure 59. Sample of the non-fall frames used for training in the the fall versus

non-fall classification method in experiment 2.

Figure 60. Sample of the non-fall frames used for training in the the fall versus

non-fall classification method in experiment 3.

77

Figure 61. Sample of the falling frames used for training in the the fall versus

non-fall classification method in experiment 3.

Figure 62. Sample of the non-fall frames used for training in the the fall versus

non-fall classification method in experiment 3.

78

Figure 63. Sample of the non-fall frames used for training in the the fall versus

non-fall classification method in experiment 3.

Figure 64. Sample of the non-fall frames used for training in the the fall versus

non-fall classification method in experiment 3.

79

Figure 65. Sample of the non-fall frames used for training in the the fall versus

non-fall classification method in experiment 3.

Figure 66. Sample of the non-fall frames used for training in the the fall versus

non-fall classification method in experiment 4.

80

Figure 67. Sample of the falling frames used for training in the the fall versus

non-fall classification method in experiment 4.

Figure 68. Sample of the non-fall frames used for training in the the fall versus

non-fall classification method in experiment 4.

81

Figure 69. Sample of the non-fall frames used for training in the the fall versus

non-fall classification method in experiment 4.

Figure 70. Sample of the non-fall frames used for training in the the fall versus

non-fall classification method in experiment 4.

82

Figure 71. Sample of the non-fall frames used for training in the the fall versus

non-fall classification method in experiment 4.

83

Appendix B

CORRECTLY CLASSIFIED VIDEO FRAMES

In the following sections we show samples of the correctly classified video frames using

the two classification approaches followed in this research; depth video classification,

and binary video classification.

Figure 72. Sample of a correctly classified bending video frames using the six-class

classification method.

84

Figure 73. Sample of a correctly classified falling video frames using the six-class

classification method.

Figure 74. Sample of a correctly classified lying-down video frames using the six-

class classification method.

85

Figure 75. Sample of a correctly classified sitting video frames using the six-class

classification method.

Figure 76. Sample of a correctly classified squatting video frames using the six-class

classification method.

86

Figure 77. Sample of a correctly classified walking video frames using the six-class

classification method.

Figure 78. Sample of a correctly classified non-fall video frames using the fall versus

non-fall classification method.

87

Figure 79. Sample of a correctly classified falling video frames using the fall versus

non-fall classification method.

Figure 80. Sample of a correctly classified non-fall video frames using the fall versus

non-fall classification method.

88

Figure 81. Sample of a correctly classified non-fall video frames using the fall versus

non-fall classification method.

Figure 82. Sample of a correctly classified non-fall video frames using the fall versus

non-fall classification method.

89

Figure 83. Sample of a correctly classified non-fall video frames using the fall versus

non-fall classification method.

Figure 84. Sample of the correctly classified non-fall video frames for the fall versus

non-fall classification method in experiment 1.

90

Figure 85. Sample of the correctly classified falling video frames for the fall versus

non-fall classification method in experiment 1.

Figure 86. Sample of the correctly classified non-fall video frames for the fall versus

non-fall classification method in experiment 1.

91

Figure 87. Sample of the correctly classified non-fall video frames for the fall versus

non-fall classification method in experiment 1.

Figure 88. Sample of the correctly classified non-fall video frames for the fall versus

non-fall classification method in experiment 1.

92

Figure 89. Sample of the correctly classified non-fall video frames for the fall versus

non-fall classification method in experiment 2.

Figure 90. Sample of the correctly classified falling video frames for the fall versus

non-fall classification method in experiment 2.

93

Figure 91. Sample of the correctly classified non-fall video frames for the fall versus

non-fall classification method in experiment 2.

Figure 92. Sample of the correctly classified non-fall video frames for the fall versus

non-fall classification method in experiment 2.

94

Figure 93. Sample of the correctly classified non-fall video frames for the fall versus

non-fall classification method in experiment 3.

Figure 94. Sample of the correctly classified falling video frames for the fall versus

non-fall classification method in experiment 3.

95

Figure 95. Sample of the correctly classified non-fall video frames for the fall versus

non-fall classification method in experiment 3.

Figure 96. Sample of the correctly classified non-fall video frames for the fall versus

non-fall classification method in experiment 3.

96

Figure 97. Sample of the correctly classified non-fall video frames for the fall versus

non-fall classification method in experiment 3.

Figure 98. Sample of the correctly classified non-fall video frames for the fall versus

non-fall classification method in experiment 3.

97

Figure 99. Sample of the correctly classified non-fall video frames for the fall versus

non-fall classification method in experiment 3.

Figure 100. Sample of the correctly classified non-fall video frames for the fall

versus non-fall classification method in experiment 4.

98

Figure 101. Sample of the correctly classified falling video frames for the fall versus

non-fall classification method in experiment 4.

Figure 102. Sample of the correctly classified non-fall video frames for the fall

versus non-fall classification method in experiment 4.

99

Figure 103. Sample of the correctly classified non-fall video frames for the fall

versus non-fall classification method in experiment 4.

Figure 104. Sample of the correctly classified non-fall video frames for the fall

versus non-fall classification method in experiment 4.

100

Figure 105. Sample of the correctly classified non-fall video frames for the fall

versus non-fall classification method in experiment 4.

101

Appendix C

MISS CLASSIFIED VIDEO FRAMES

In the following sections we show samples of the miss-classified video frames using

the two classification approaches followed in this research; depth video classification,

and binary video classification.

Figure 106. Sample of a miss-classified bending video frames using the six-class

classification method.

102

Figure 107. Sample of a miss-classified falling video frames using the six-class

classification method.

Figure 108. Sample of a miss-classified sitting video frames using the six-class

classification method.

103

Figure 109. Sample of a miss-classified squatting video frames using the six-class

classification method.

Figure 110. Sample of a miss-classified walking video frames using the six-class

classification method.

104

Figure 111. Sample of a miss-classified non-fall video frames using the fall versus

non-fall classification method.

Figure 112. Sample of a miss-classified falling video frames using the fall versus

non-fall classification method.

105

Figure 113. Sample of a miss-classified non-fall video frames using the fall versus

non-fall classification method.

Figure 114. Sample of a miss-classified non-fall video frames using the fall versus

non-fall classification method.

106

Figure 115. Sample of a miss-classified non-fall video frames using binary frames

approach in experiment 1.

Figure 116. Sample of a miss-classified falling video frames using binary frames

approach in experiment 1.

107

Figure 117. Sample of a miss-classified falling video frames using binary frames

approach in experiment 2.

Figure 118. Sample of a miss-classified non-fall video frames using binary frames

approach in experiment 3.

108

Figure 119. Sample of a miss-classified falling video frames using binary frames

approach in experiment 3.

Figure 120. Sample of a miss-classified non-fall video frames using binary frames

approach in experiment 4.

109

Figure 121. Sample of a miss-classified falling video frames using binary frames

approach in experiment 4.

110

