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Abstract

Spatial analysis extracts meaning and insights from spatially referenced data, where the

results are highly dependent on the quality of the data used and the manipulations on the

data when preparing it for analysis. Users should understand the impacts that data repre-

sentations may have on their results in order to prevent distortions in their outcomes. We

study the consequences of two common data preparations when locating a linear feature

performing shortest path analysis on raster terrain data: 1) the connectivity of the network

generated by connecting raster cells to their neighbors, and 2) the range of the attribute

scale for assigning costs. Such analysis is commonly used to locate transmission lines,

where the results could have major implications on project cost and its environmental

impact. Experiments in solving biobjective shortest paths show that results are highly

dependent on the parameters of the data representations, with exceedingly variable results

based on the choices made in reclassifying attributes and generating networks from the ras-

ter. Based on these outcomes, we outline recommendations for ensuring geographic infor-

mation system (GIS) data representations maintain analysis results that are accurate and

unbiased.

Introduction

Spatial analysis is used to bring meaning and insights out of spatially referenced data, and the

set of methods that are identified as spatial analysis tend to be some of the most heavily used in

geographic information system (GIS) software [1]. As with any sort of analysis, the results

from spatial analysis are highly dependent on the quality of the data provided, as well as the

understanding that the GIS user has with respect to the methods used. A GIS user must almost

always prepare and manipulate spatial data in order to make it suitable for use in analysis, and

thus it is imperative that the user understand the impacts that these manipulations may have

on the final results. Otherwise, the outcome of a spatial analysis may inadvertently be distorted.

While misinformation through cartographic manipulations have been well documented [2, 3],

if the GIS user has a desired outcome from the analysis they may even use data manipulations

to covertly drive the solutions toward a desired goal. Thus, it is important to be aware of the
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effects of spatial data representation, and to establish guidelines that help to ensure that GIS

analyses accurately represent real-world conditions and provide impartial solutions.

While GIS analysis techniques are numerous and broad, and an entire book could be writ-

ten covering all impacts of data representation; the main objective of this article is to focus on

the impacts of two common data transformations when representing terrain as a raster net-

work for locating a linear feature using shortest path analysis: 1) defining the network gener-

ated by connecting raster cells to their neighbors, and 2) the range of the attribute scale that

represents the costs to locate the feature at each raster cell. Raster-based shortest path analysis

is the predominantly used method for locating linear features over terrain, such as new trans-

mission line corridors [4–13], pipelines [14–16], roadways [17, 18], as well as analyzing the

connectivity of a landscape for habitat analysis [19–23] and urban systems [24]. These applica-

tions typically require generating a set of non-inferior options that balance numerous compet-

ing interests such as economic cost, environmental impact, maintenance accessibility, visual

pollution, etc.; and from that set of options a decision-making entity can select the final route

alignment. Multi-objective shortest path (MOSP) analysis is commonly used for generating

such alternatives, since it finds the set of optimal trade-off solutions between multiple compet-

ing objectives, and thus can find compromise solutions to best satisfy various parties with dif-

ferent values and priorities [9]. MOSP analysis is valuable at highlighting the representation

effects of network connectivity and attribute scale since it provides a rich set of path solutions

from which to see the effects of varying parameters of the data representations. When using

just two objectives, MOSP analysis is known as biobjective shortest path (BOSP) analysis.

This study examines the effects of raster connectivity and attribute scale via BOSP analysis,

comparing the number of Pareto-optimal solutions, the layout of the paths in decision space,

and the performance of the solutions in objective space where applicable. We look at the

guidelines found in the literature on locating transmission line corridors, and see how their

recommendations affect the quality of the analytic solutions. In the discussion and conclusion,

we provide guidelines to ensure that such spatial analyses are performed with the appropriate

modeling accuracy and objectivity.

Background

The world is infinitely complex and continuous, and modeling it exactly on a digital computer

is not possible. Thus, representing space on a computer requires discretization of both space

and attributes. In the context of corridor location, information on terrain is often generated

from remote sensing digital imagery that consists of a regular grid of pixels, and thus raster is

the natural representation of such spatial data. Spatial attribute information is categorized into

one of four basic measurement levels: nominal, ordinal, interval, and ratio [25]. Some spatial

analysis techniques can be performed on nominal and interval features, such as go/no-go suit-

ability analysis, spatial overlay, or location set covering. But ratio-level data is required for

shortest path analysis, location-allocation problems such as the p-Median problem [26, 27], or

any other analysis that requires multiplying the attribute value by a distance. When a GIS ana-

lyst uses a dataset that contains nominal or ordinal level data such as landcover type, they will

often have to perform a reclassification to convert it into ratio-scaled data. It is this conversion

that can lead to erroneous or misleading results if the reclassification is performed carelessly,

and in this article we examine the consequences of such inaccurate reclassification. The effects

of representation on the results of spatial analysis have been a known problem with GIS for

quite some time. Miller [28] observed that “Spatial analysis was mostly developed in an era

when data was scarce and computational power was expensive. Consequently, traditional spa-

tial analysis greatly simplifies its representations of geography”. As technology progresses, he
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suggests an ongoing “re-examination of geographic representation in spatial analysis”. Tong

and Murray [29] point out that “it is well recognized that findings can be highly dependent on

how space is abstracted and represented. This can be due to the way we partition or conceptu-

alize space” and that “much research is needed to reduce or alleviate errors and uncertainties

in abstracting geographical space”. This article addresses the impacts of these representation

issues in the context of shortest path analysis, and provides recommendations for best prac-

tices to avoid such problems. Geospatial representation and its effects on analysis continues to

be an active area of research. For example, Gaboardi and Folch [27] evaluated spatial network

representation for allocating and connecting points on a network, and found this could have

substantive effects on the results of a p-Median and p-Center location analysis.

Any shortest path computation requires a network upon which to find the least-cost route,

as raster data sets do not fundamentally have a built-in network structure. Methods have been

developed to convert a raster into a network by assuming that the center of each raster cell is a

node and defining arcs as links that connect each cell to its neighboring cells. Each arc then

has a cost function which is the distance-weighted sum of the attributes of cells the arc tra-

verses, called the cost-distance function. If the arc has width then the area of the path that

intersects a cell is typically used as a weight instead of the distance of the arc intersecting that

cell [4, 30, 31]. Assuming zero width as is prevalent with most built-in GIS functionality, the

objective cost for any path is thus the sum of these cost-distance weighted arcs that contigu-

ously connect the origin and destination locations. A shortest path problem finds the path that

minimizes this cost. In a multi-objective shortest path algorithm, each arc that makes up a

path has multiple costs corresponding to each objective, and any path will have a set of objec-

tive scores where the scores represent the performance of the path with respect to each

objective.

To convert a raster grid into a raster network, cells are most commonly connected to their

neighbors according to a specified radius R (see Fig 1) [32]. R = 0 denotes connecting cells to

their orthogonal neighbors (rook’s move), R = 1 denotes connecting cells to their orthogonal

and diagonal neighbors (queen’s move), and R = 2 denotes additionally connecting cells via

knight’s moves. In a knight’s move, the network arc spans two raster cells in one direction and

one raster cell in the orthogonal direction, but it is considered a straight-line connection

between the starting and ending points. The cost-distance for such an arc is a function attri-

butes of the four raster cells it passes through multiplied by the total arc length [4]. The higher

the radius used to generate the raster network, the less geometric distortion the network will

Fig 1. Raster network connectivity (a) R = 0, (b) R = 1, (c) R = 2.

https://doi.org/10.1371/journal.pone.0250106.g001
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have due to less restricted movement between cells; but this comes at the cost of a higher net-

work density, resulting in longer computation times. Goodchild [32] calculated the worst-case

geometric elongation for a shortest path when traversing a raster network of uniform cost, and

found the R = 0 network imparts a 41.4% elongation error, the R = 1 network imparts an 8.2%

elongation error, and the R = 2 network imparts a 2.79% elongation error. Higher radius values

could be used to further reduce the elongation error, but Huber and Church [4] found that the

R = 2 network provides the best trade-off between accuracy and computational burden on real

geographic data. Elongation error is also encountered in the transportation literature as the

route factor, defined as the ratio of the graph distance over the Euclidean distance between two

points [33, 34].

Huber and Church [4] demonstrated that different radius-defined networks may result in

optimal paths that take very different routes. This affects not just path objective costs but also

real-world engineering design decisions, and is something our study examines within the con-

text of bi-objective shortest paths. They also discuss raster orientation error, in which the opti-

mal path length and route may also be subject to error due to the orientation of the raster

network relative to the underlying topography. These results were confirmed by Antikainen

[35], who found that with center connected paths the use of larger neighborhoods always

yields better paths with less orientation error, at the expense of moderate increases in process-

ing time. They also proposed an alternate boundary-based raster connectivity scheme,

although we have yet to see their approach adopted in any GIS software. Seegmiller and Shir-

abe [31] propose an interesting method where in regions of constant raster cost (such as dense

forest or water features or deserts), they define a start and end point within the monotonous

region, and perform linear interpolation between the two to generate a corridor. This method

enables much greater flexibility for path directions, but it is limited to straight-line paths

within monotonous regions. Other publications that have looked at additional sources of error

in raster network shortest path analysis include Huber [36] and Hong and Murray [37]; who

found that varying raster cell size can have major implications on the objective value and route

of a shortest path.

A paper recently published by Schito and Moncecchi [38] uses a very interesting and prom-

ising approach to generate their connectivity graph. They generate a bespoke connectivity

graph for the particular origin and destination they select, and use complex geometric decision

rules to connect the nodes with arcs. Like the experiments in this article, their method was

beyond the capabilities of any existing GIS software, and thus they had to program their own

with Python. While they are unable to share their code due to non-disclosure agreements, the

paths they generate are free of geometric distortions and were deemed highly satisfactory by

their stakeholders. If their code is ever released publicly, it would certainly warrant an exami-

nation with the methods used in this paper.

Transmission line corridor location affects many nearby people, all with different concerns

and priorities. A proposed design must consider all stakeholder interests, which oftentimes

contain conflicting priorities. For example, a utility company may want to build the cheapest

power lines taking a straight-line path, whereas environmentalists may want the route to divert

around a sensitive habitat. Multiple objectives are commonly encountered in such contentious

public projects where the interests of diverse stakeholders must be considered when develop-

ing a set of alternatives for debate and decision-making. This is especially true for transmission

line location, since these are often considered undesirable to locate near humans or wildlife

[39–41]. These contentious design problems, affectionately known as wicked problems [42],

may be subject to sneaky manipulations in order to guide the decision toward one party’s

desired outcome. This study uses biobjective shortest paths to shed light on the subtle tech-

niques that GIS practitioners may use to accomplish such a desired outcome.
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Because of the often-wicked nature of such problems, multi-objective optimization is com-

monly used for locating transmission lines. A multi-objective optimization problem entails

finding the solutions that represent an optimal set of trade-off solutions between two or more

objectives [24]. Aside from the methodologies we analyze, recent publications using multi-

objective shortest paths to locate transmission lines over terrain raster data include [9–12]. All

of these recent publications contain results with geometric distortions caused by the limita-

tions on raster network connectivity in the GIS software they used, effects that we examine in

this article.

Biobjective shortest path solutions are visualized and evaluated in both decision space and

objective space (see Fig 2), where decision space is the real-world cartographic representation

of the region where the path is being placed, and objective space depicts how that path per-

forms with regards to each objective in comparison to other paths. Paths are linear features in

decision space, and have corresponding point features in objective space (three paths are

depicted in Fig 2a and the performance of those three paths are highlighted in Fig 2b). The set

of non-dominated or Pareto-optimal solutions are those where there does not exist any other

feasible solution that performs better in all objectives. These solutions form the trade-off fron-

tier, which in the case presented in Fig 2 involves both minimizing cost and minimizing envi-

ronmental impact.

Supported non-dominated solutions consist of the convex set of Pareto-optimal solutions

and can be computed by solving single-objective problems combining the multiple-objectives

via carefully selected weights [43]. Un-supported non-dominated solutions are the Pareto-

optimal solutions that are not part of the convex frontier, and require specialized multi-objec-

tive algorithms to compute. Finding the set of all supported non-dominated solutions is com-

putationally weakly polynomial, while computing the unsupported solutions is NP-Hard [44].

This study considers only the supported non-dominated solutions, as they provide a

Fig 2. Evaluating three paths in both (a) decision space, and (b) objective space.

https://doi.org/10.1371/journal.pone.0250106.g002
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sufficiently rich solution set for demonstrating terrain raster representation errors with short-

est path analysis.

Materials and methods

Data

The analysis in this study used GIS raster data sets assembled and used by the Eastern Inter-

connection States’ Planning Council (EISPC). These data sets are intended to facilitate the

identification of potential energy sites and transmission line corridors within the EISPC

region, which spans 39 eastern US states, Washington D.C. and 8 Canadian provinces. The

data was assembled jointly by Argonne National Laboratory, Oak Ridge National Laboratory

and the National Renewable Energy Laboratory as a part of their EISPC Energy Zones Study

(EZS) [45].

The EZS data contains numerous geographical information layers that would be used in a

suitability analysis for locating new energy infrastructure, and is available through the EISPC

Energy Zones Mapping Tool (ezmt.anl.gov). As of December 2020, the EZS contained 332

data layers, including land cover type, slope, water bodies, watersheds, essential habitats, earth-

quake intensities, existing transmission lines, substations, rail and roadways, just to name a

few. Our study uses a 1000×1000 raster subset of the EZS data, with a 250 meter cell size cen-

tered at 36.516˚ N, 88.687˚ W. The region analyzed is in the Kentucky Lake region where the

Tennessee River and the Cumberland River intersect the Ohio River, and includes portions of

Tennessee, Kentucky, Illinois and Missouri. All maps in this article were created using the EZS

numerical data, rendered programmatically with Java and the Processing API. No GIS soft-

ware was used, and all code and data used to generate the maps is contained in the public

Github repository [46]. All maps are oriented with North as up, and at this scale all maps in

this article have an extent of 250km × 250km.

The EZS raster data was used to create two cost surfaces for a bi-objective optimization,

where the competing objectives were to minimize 1) the infrastructure construction cost, and

2) the environmental impact. Since these objectives are not explicitly in the EZS data set, it was

necessary to derive ratio-scale cost surfaces from the available layers. The slope layer, in per-

cent slope, was used to develop a construction cost surface. The land cover type layer, catego-

rized according to the National Land Cover Database 2016 (NLCD2016) which was publicly

released in May 2019 [47, 48], was used to generate an environmental impact cost surface. The

slope and land category attributes were then converted to ratio-scaled cell costs according to

the terrain cost multipliers recommended by the Western Electricity Coordinating Council

(WECC) [7], listed in Table 1. In all experiments, all cost-surfaces were scaled to equal ranges

between the two objectives.

Fig 3 graphically displays the EISPC data maps used in the analysis, represented as the raw

1000×1000 rasters for (a) land use type and (b) slope, and then reclassified as (c) environmen-

tal impact and (d) economic cost. All maps in Fig 3 were created using Java for this study, but

Fig 3a uses the same colors as the NLCD2016 class legend (https://www.mrlc.gov/sites/default/

files/NLCD_Colour_Classification_Update.jpg), and the other maps in Fig 3 use light colors

represent low slope or cost, and dark colors to represent high slope or cost according to the

classifications in Table 1. Note that in cost layers derived from the land cover layer (Fig 3c),

rivers and lakes have a high cost because it is expensive to build over water. In costs derived

from the slope layers (Fig 3d), water features have a low cost because water is represented as

flat. In a real-world transmission line location analysis, water would likely have a high cost

with respect to both environmental impact and monetary cost. The WECC classifications were

developed as single-objective cost multipliers where a high cost in one measure would carry
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over to the overall composite cost. Rather than divert from the published WECC values, we

chose to keep them since for all other attributes they provide a very good ratio-scaled mapping

to objective costs and it does not affect the overall evaluation of terrain network representation

parameters. But it is important to note that any real-world analysis should develop custom

application-specific costs to map the attributes to the modeled objectives.

Algorithms

This analysis implemented the parallel bi-objective shortest path algorithm described in

Medrano and Church [49] to compute the complete set of supported (convex) non-dominated

path solutions using an origin at the lower-left corner of the raster region, and a destination at

the top-right corner. This algorithm, called pNISE is a parallel implementation of the NISE

algorithm commonly used to find the supported solutions of biobjective network optimization

problems [23]. The algorithm is efficient at computing the Pareto-optimal path sets for biob-

jective shortest path problems of reasonably large graph size, which in the case of the R = 2 net-

work contains 1 million nodes and approximately 16 million arcs. All code was written in Java,

and visual results were rendered using the Processing API (processing.org). The reader is

invited to download both the Java and the Processing codes from Github [46]. Coding a cus-

tom geospatial analysis tool rather than depending on existing GIS software allowed for

exploring capabilities beyond those built-in to existing GIS tools. By evaluating if there are

benefits to expanding how GIS software represents raster terrain as a network, we can make

recommendations for features that should be added to GIS software.

Raster network connectivity

Huber and Church [4] previously examined the effects of network connectivity on single-

objective shortest paths on fabricated data, finding that altering the connectivities resulted in

Table 1. Attribute reclassification for fixed Cmin and varying amplitude.

NLCD2016Value NLCD2016 Feature WECC Feature WECCValue [1,2] [1,5] [1,10] [1,20] [1,50] [1,100]

11 open water n/a 3.250 2.000 5.000 10.000 20.000 50.000 100.000

21 developed, open space suburban 1.270 1.120 1.480 2.080 3.280 6.880 12.880

22 developed, low intensity suburban 1.270 1.120 1.480 2.080 3.280 6.880 12.880

23 developed, medium intensity urban 1.590 1.262 2.049 3.360 5.982 13.849 26.960

24 developed, high intensity urban 1.590 1.262 2.049 3.360 5.982 13.849 26.960

31 barren land (rock/sand/clay) scrub/flat 1.000 1.000 1.000 1.000 1.000 1.000 1.000

41 deciduous forest forested 2.250 1.556 3.222 6.000 11.556 28.222 56.000

42 evergreen forest forested 2.250 1.556 3.222 6.000 11.556 28.222 56.000

43 mixed forest forested 2.250 1.556 3.222 6.000 11.556 28.222 56.000

52 shrub/scrub scrub/flat 1.000 1.000 1.000 1.000 1.000 1.000 1.000

71 grassland/herbaceous scrub/flat 1.000 1.000 1.000 1.000 1.000 1.000 1.000

81 pasture/hay farmland 1.000 1.000 1.000 1.000 1.000 1.000 1.000

82 cultivated crops farmland 1.000 1.000 1.000 1.000 1.000 1.000 1.000

90 woody wetlands wetland 1.200 1.089 1.356 1.800 2.689 5.356 9.800

95 herbaceous wetlands wetland 1.200 1.089 1.356 1.800 2.689 5.356 9.800

Slope WECC Feature WECC Value [1,2] [1,5] [1,10] [1,20] [1,50] [1,100]

< 2% flat 1.000 1.000 1.000 1.000 1.000 1.000 1.000

2–8% rolling hill 1.300 1.600 3.400 6.400 12.400 30.400 60.400

> 8% mountain 1.500 2.000 5.000 10.000 20.000 50.000 100.000

https://doi.org/10.1371/journal.pone.0250106.t001

PLOS ONE GIS raster terrain representation

PLOS ONE | https://doi.org/10.1371/journal.pone.0250106 April 15, 2021 7 / 19

https://doi.org/10.1371/journal.pone.0250106.t001
https://doi.org/10.1371/journal.pone.0250106


differences in both path-objective performance and path topologies. In this section we perform

a similar analysis with varying the network connectivity, and with biobjective shortest paths

on the much larger EISPC real-world raster data. With the different connectivities we analyze

in objective space the objective values of the Pareto-optimal path set in objective space and the

number of paths that compose the complete convex Pareto-optimal path set. Qualitatively we

compare the effects on path topologies in decision space, examining if the analyses exhibit dif-

ferent geometric distortions due to the parameters we vary when run on the same data. This

multi-objective approach allows us to test the impacts of network connectivity on path delinea-

tion and performance on multiple network topologies via multiple weightings of the underly-

ing raster layers, rather than just one single raster network used in previous studies.

Fig 4 displays the complete set of non-dominated paths with the South-West corner as the

origin and the North-East corner as the destination, using networks with R = 0, 1, and 2. All

use the WECC attributes scaled to [1, 10] for both objectives. What is immediately noticeable

are the geometric artifacts for each type of network connectivity in the region west of the river

Fig 3. 1000×1000 EISPC raster data (a) land cover (b) slope (c) environmental impact (d) economic cost. In (b)

light color is less slope and dark color is more slope, and in (c) and (d) dark color is high cost and light color is low

cost.

https://doi.org/10.1371/journal.pone.0250106.g003

PLOS ONE GIS raster terrain representation

PLOS ONE | https://doi.org/10.1371/journal.pone.0250106 April 15, 2021 8 / 19

https://doi.org/10.1371/journal.pone.0250106.g003
https://doi.org/10.1371/journal.pone.0250106


with relatively constant cost in both objectives. In this region, the R = 0 paths have a strong

tendency to traverse either vertically or to alternate between vertical and horizontal arcs in

order to approximate a diagonal traversal. The alternating artifacts are a clear indicator of an

orientation error of the type illustrated in Huber and Church [4]. The R = 1 paths display clear

regions of vertical or diagonal routes, aligned with the restrictions imposed by the available arc

directions. The R = 2 paths do sometimes align with knight’s move directions, but overall dis-

play the least amount of visible geometric distortion due to having the fewest route alignment

restrictions. While discretizing continuous space will always result in some level of geometric

distortion, it is clear that R = 2 connectivity dramatically reduces geometric distortion with

minimal additional complexity as compared to the R = 1 connectivity that most GIS software

currently uses.

Fig 5 shows the supported, Pareto-optimal paths for all three connectivities in objective

space. The R = 0 Pareto set (blue) contains 88 distinct paths, the R = 1 Pareto set (red) contains

145 paths, and the R = 2 Pareto set (green) contains 270 paths. There are major differences in

the location of the Pareto-frontiers in objective space: as the network connectivities increase

the objective scores decrease, and are in agreement with the theory developed in Goodchild

[32] and previous experiments in Huber and Church [4]. The most pronounced difference is

in going from R = 0 to R = 1, but there is still a distinct difference also between R = 1 and

R = 2. If using the objective values to calculate expected costs of multi-million-dollar projects,

a three to four percent increase in path length can mean significant errors in the budgetary

estimates of potential alternatives. Presumably in the interest of minimizing computation time

to determine optimal routes with older hardware, common GIS software packages do not

Fig 4. Non-dominated solutions in decision space for (a) R = 0 (blue); (b) R = 1 (red); and (c) R = 2 (green).

https://doi.org/10.1371/journal.pone.0250106.g004
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include R = 2 network connectivity as an option; this capability currently has to be manually

scripted into the analysis. Since R = 2 shortest path computation has become trivial for most

real-world data sets using modern computing hardware, GIS software makers absolutely

should incorporate an option to generate R = 2 networks as a built-in functionality.

Attribute scale classification

A GIS practitioner will often need to reclassify attributes in order to prepare spatial data for

analysis. Any shortest path analysis requires ratio-scaled data since a path cost is calculated as

the sum of products of the attribute values and distances; the calculation is not associative. In

other words, one cannot add a constant value to the costs of all nodes in a raster network and

expect to get the same shortest path result. By adding a constant value, the shortest path algo-

rithm will then be biased more towards finding a path that minimizes the number of arcs

rather than the path of combined least impact with respect to the objectives. Thus, if an analy-

sis is to be performed on land cover type and slope raster raw data, but decision-makers are

actually trying to measure environmental impact and economic cost for locating the feature,

then the data requires an attribute value conversion. Past literature for transmission line loca-

tion has used a variety of approaches for these conversions:

1. The Georgia Transmission Corporation [5]

• Scale all costs from 1 to 9 for all feature layers

Fig 5. Non-dominated solutions in objective space for R = 0 (blue), R = 1 (red), and R = 2 (green).

https://doi.org/10.1371/journal.pone.0250106.g005
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• No mention that scaling should reflect actual costs

2. Bagli and Geneletti [6]

• All costs scaled from 0 to 1

• No mention that scaling should reflect actual costs

3. Western Electricity Coordinating Council (WECC) [7]

• Costs/mile for different kinds of transmission lines

• Costs/acre to purchase or lease land

• Cost multipliers for terrain type and slope

4. Esri cost surface online tutorials [50, 51]

• All costs scaled from 1 to 10

• No mention that scaling should reflect actual costs

Approaches 1 and 2 were made for performing multi-objective shortest path analysis on

raster terrain networks, and are problematic because they use arbitrary ranges for the cost val-

ues that have no real-world meaning for path performance. Approach 3 is intended for cost

estimation of a potential route, and does use true ratio-scaled cost multipliers to reclassify data

according to slope or land use. The output of this approach gives results in actual dollar values

for each route analyzed. Approach 4 is intended as a how-to online tutorial and casually scales

everything from 1 to 10, and makes no mention that attributes should in-fact be scaled to

actual real-world costs.

The geospatial analyses in this article demonstrate what can go wrong when cost ranges are

picked arbitrarily without any correlation to actual costs. The analysis in the next section varies

the amplitude while maintaining the same minimum cost and relative classification breaks.

For example, suppose you have to reclassify features that are deemed as low, medium and high

environmental impact into ratio scaled data. One could assign a cost of 1 to low-impact cells, a

cost of 2 to medium-impact cells, and a cost of 4 to high-impact cells. We define the minimum

cost as Cmin, the maximum cost as Cmax, and shorthand for reclassification range as [Cmin,

Cmax]. We define the amplitude as Cmax − Cmin. In the above example, Cmin = 1, Cmax = 4, the

range is [1, 4], and the amplitude is 3. Now suppose we want to double the amplitude to 6 but

maintain the same minimum cost, then low-impact would cost 1, medium-impact would cost

3, and high-impact would cost 7, i.e. [1, 7]. Overall, this is equivalent to marking the classifica-

tion breaks on a rubber band, then anchoring the lower bound and stretching the upper

bound, as shown in Fig 6a.

The analysis in the following section varies the minimum cost for the reclassification while

maintaining the same amplitude and relative classification breaks, as shown in Fig 6b. A [2, 5]

shift would have a cost of 2 for low-impact, 3 for medium-impact, and 5 for high-impact, effec-

tively adding 1 to every value as compared to a [1, 4] classification.

In both experiments, the same underlying data is used using the exact same relative interval

proportions, while varying only the amplitudes or the minimum costs. In other words, all

experiments use the same WECC feature costs for each land category or slope, but the costs

are then stretched according to the amplitude or are shifted by the minimum cost value, as

shown graphically in Fig 6. All classification experiments here use the same R = 2 network

connectivity.
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Both experiments yield results allowing for both quantitative and qualitative comparisons.

When varying the range and amplitude of the raster attributes, one cannot directly compare

the objective values of the results. The key analysis is the qualitative comparison of how varia-

tions in the attribute ranges affect the path topologies in decision space. The number of paths

in the Pareto-optimal path set can be compared quantitatively as well. Combined, these two

measures indicate how choices made in selecting the attribute ranges affect the character and

diversity of the resulting optimal path alternatives.

Let us informally define the dynamic range of a reclassification scale as the following, as this

is a useful measure to compare the effects of the reclassification schemes:

Dynamic Range ¼
maximum attribute cost
minimum attribute cost

¼
Cmax

Cmin
ð1Þ

In Fig 6a, the shorter bars represent reclassifications with small dynamic range, and the lon-

ger bars with large dynamic range. In Fig 6b, the reclassifications on the left (close to zero) will

have large dynamic ranges due to the smaller denominator, and those on the right will have

smaller dynamic ranges.

Reclassification: Varying the amplitude

This experiment maintained Cmin = 1 while changing the attribute scale amplitude. Attribute

reclassification values are shown in Table 1, varying Cmax from 2 to 100. Land use features

were used for one objective layer, and the slope was used for the other objective layer. All

experiments used the equal ranges for the two objectives in order to maintain equal emphasis

between them.

Fig 7 displays the results of this analysis in decision space. Low amplitude small dynamic

range solutions tended toward straight paths that are approximated by a Euclidean shortest

path, while high amplitude large dynamic range solutions tended to have greater deviations

and spatial diversity. Recalling that arc costs are a product of the arc distance and the cell attri-

bute values, it is clear that varying the ranges in this manner results in a trade-off between min-

imizing the spatial length of a shortest path, i.e. the Euclidean tendency, and the need to avoid

cells with high cost attributes. As attribute amplitudes increase, the total number of non-domi-

nated path solutions increase as well. This, too, is an indicator of the spatial vs. attribute trade-

off, as the extreme and unrealistic case of a homogenous flat-cost geographic space would have

a single non-dominated solution consisting of the Euclidean shortest path.

Fig 6. Attribute classification modification via (a) stretching, or (b) shifting.

https://doi.org/10.1371/journal.pone.0250106.g006

PLOS ONE GIS raster terrain representation

PLOS ONE | https://doi.org/10.1371/journal.pone.0250106 April 15, 2021 12 / 19

https://doi.org/10.1371/journal.pone.0250106.g006
https://doi.org/10.1371/journal.pone.0250106


Reclassification: Varying the minimum value

This experiment maintained a constant amplitude of 1 while varying the value of Cmin. Attri-

bute reclassification values are shown in Table 2, varying Cmin from 0 to 5. The land use fea-

tures were used for one objective layer, and the slope was used for the other objective layer. All

experiments used the equal ranges for the two objectives in order to maintain equal emphasis

between them.

Fig 8 displays the results of this analysis in decision space using the shifted attribute scales

all with an amplitude of 1. What is immediately noticeable is the extreme behavior of the [0,1]

range. In the western area with homogenous regions of zero cost, the paths appear to wander

aimlessly in a sort of Brownian motion. The zero cost cell attributes mean that arc costs in this

region are also zero, and there is no penalty for taking a long and windy path. Thus, the path

generated by Dijkstra’s algorithm is subject to the pseudo-random motion that comes from

Fig 7. Decision space solutions for a constant Cmin while varying the amplitude to the following ranges: (a) [1,2];

(b) [1,5]; (c) [1,10]; (d) [1,20]; (e) [1,50]; and (f) [1,100].

https://doi.org/10.1371/journal.pone.0250106.g007
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the tie-breaking rules that were used in the particular implementation. In terms of dynamic

range, zero costs represent a denominator of zero, which results in an undefined ratio. These

model results are clearly unrealistic to any real-world behaviors, and as such, zero-cost attri-

butes should always be avoided. Slightly above the [0,1] range, the solutions were diverse and

mostly influenced by the attributes. This represents a large dynamic range due to the small

denominator in the minimum attribute costs. As the ranges continue to shift higher, i.e.

smaller dynamic range, the paths become more Euclidean as the arc costs gradually emphasize

geometry over attribute values. The attribute cost values increase, but the relative dynamic

range ratios between high and low costs become minimal. With regards to the number of solu-

tions, the higher the range is shifted the fewer non-dominated solutions that exist; with the

exception of the pathological [0,1] case, which had far fewer solutions than the slightly higher

[0.1, 1.1] range.

Discussion: The impacts of dynamic range

The experiments here found that a lower dynamic range will bias results toward Euclidian

shortest paths, with fewer and less-diverse solutions. A higher dynamic range will bias results

that emphasize minimizing objective costs, with more solutions of greater spatial diversity.

Even in regions that appear relatively homogenous on the map, if the selected attribute scale

has a large dynamic range then the resulting paths will include large deviations to avoid

regions of slightly higher cost (see Figs 7 and 8). And in the case where Cmin = 0 the dynamic

range is undefined; and results showed that such a reclassification scheme to be problematic

with path solutions that were random and unrealistic, and should be avoided at all costs.

Because these results are derived from analysis on numerous raster terrain networks via the

various weightings between the two objectives, as opposed to previous literature that only

looked at one single-objective network, it is safe to say that these path deviation correlations

with the dynamic range are more general than those from the previous literature.

Table 2. Attribute reclassification for fixed amplitude and varying Cmin.

NLCD2016Value NLCD2016 Feature WECC Feature WECC Value [0,1] [0.1,1.1] [0.2,1.2] [1,2] [2,3] [5,6]

11 open water n/a 3.250 1.000 1.100 1.200 2.000 3.000 6.000

21 developed, open space suburban 1.270 0.120 0.220 0.320 1.120 2.120 5.120

22 developed, low intensity suburban 1.270 0.120 0.220 0.320 1.120 2.120 5.120

23 developed, medium intensity urban 1.590 0.262 0.362 0.462 1.262 2.262 5.262

24 developed, high intensity urban 1.590 0.262 0.362 0.462 1.262 2.262 5.262

31 barren land (rock/sand/clay) scrub/flat 1.000 0.000 0.100 0.200 1.000 2.000 5.000

41 deciduous forest forested 2.250 0.556 0.656 0.756 1.556 2.556 5.556

42 evergreen forest forested 2.250 0.556 0.656 0.756 1.556 2.556 5.556

43 mixed forest forested 2.250 0.556 0.656 0.756 1.556 2.556 5.556

52 shrub/scrub scrub/flat 1.000 0.000 0.100 0.200 1.000 2.000 5.000

71 grassland/herbaceous scrub/flat 1.000 0.000 0.100 0.200 1.000 2.000 5.000

81 pasture/hay farmland 1.000 0.000 0.100 0.200 1.000 2.000 5.000

82 cultivated crops farmland 1.000 0.000 0.100 0.200 1.000 2.000 5.000

90 woody wetlands wetland 1.200 0.089 0.189 0.289 1.089 2.089 5.089

95 herbaceous wetlands wetland 1.200 0.089 0.189 0.289 1.089 2.089 5.089

Slope WECC Feature WECC Value [0,1] [0.1,1.1] [0.2,1.2] [1,2] [2,3] [5,6]

< 2% flat 1.000 0.000 0.100 0.200 1.000 2.000 5.000

2–8% rolling hill 1.300 0.600 0.700 0.800 1.600 2.600 5.600

> 8% mountain 1.500 1.000 1.100 1.200 2.000 3.000 6.000

https://doi.org/10.1371/journal.pone.0250106.t002
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While in this article we display the classification results for R = 2 networks only, we

observed similar trends for R = 1 and R = 0 connectivities as well. The Github repository [46]

contains a folder with screen captures for the analysis results of all combinations of R-values

and classifications mentioned in this article, and we invite the reader to review them.

The variability of results as a function of the attribute scales is why it is imperative that

reclassification costs are assigned as ratio-scaled values based on real-world metrics, and not

arbitrary interval-scaled values. This might seem obvious, but for a spatially unaware user

learning how to perform this analysis, three out of the four methodologies cited earlier make

no mention of scaling to real-world costs and instead instruct users to scale to arbitrary cost

ranges. Calculating ratio-scaled costs are simple for tangible expenses such as the economic

cost to locate in a particular cell, and is done quite well in the WECC cost estimation guide-

lines. But for somewhat intangible costs such as environmental impact or maintenance accessi-

bility the process is less clear. Questionnaires [52] or approaches like that of AHP [53] should

Fig 8. Decision space solutions for a constant amplitude while varying Cmin to the following ranges: (a) [0,1]; (b)

[0.1,1.1]; (c) [0.2,1.2]; (d) [1,2]; (e) [2,3]; and (f) [5,6].

https://doi.org/10.1371/journal.pone.0250106.g008
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be implemented to develop true ratio scales for such intangible costs, so that there is support-

ing evidence to justify the relative cost-ratios despite the subjective nature of the criteria.

Conclusions

Normative spatial analysis is used when decisions must be made on how to spatially configure

a new design in order to maximize its utility or minimize its cost. The process of performing

this analysis requires first generating a model from available data that reflects the conditions

within the regional extent and relevant design factors. When designing projects to be located

on natural landscapes, raster data is often the most appropriate; but as with any model, there

are many considerations that must be made to ensure model accuracy. In this study, we have

examined the errors and distortions associated with shortest path analysis when using raster

representation of terrain, and how decisions made in the data preparation stage affected the

results of the analysis.

First, we examined the effects of raster network connectivity on biobjective shortest path

analysis, and found that the number of solutions, the spatial configurations of the routes, and

the objective values of the Pareto-optimal set were all affected by the choice of the network

connectivity used. While most popular GIS software packages only provide the ability to run

analyses on R = 0 and R = 1 networks, it was found that R = 2 networks provided more alterna-

tives, with less orientation error, and that their solutions consistently had lower objective costs

than the R = 1 network paths. Given that continuing advances in computational power make

shortest path analysis a trivial task for most common data, we unequivocally believe it is long

overdue for major GIS software companies to add the built-in ability to generate R = 2 net-

works for spatial analysis.

Next, we examined the effects of reclassification to convert raw data features into cost sur-

face rasters. We defined the dynamic range as being the ratio of the maximum cost divided by

the minimum cost. We then ran the same analysis with the same relative interval breaks

between different attribute costs, varying only the range of the attribute cost mappings. The

purpose of this experiment was to demonstrate that selecting arbitrary cost ranges, such as

from 1 to 5 or 9 or 10, will significantly impact the results. We found that lower dynamic range

reclassifications resulted in fewer path solutions that tended toward straight-line Euclidean

shortest paths, while higher dynamic range reclassifications tended toward more path solu-

tions that emphasized avoiding high attribute costs more than geometric factors. If an analyst

has a motivation or preference for a more Euclidean solution, they could shift the classification

range to a lower dynamic range to achieve this while still giving the appearance of a truly

objective analysis. It should always be emphasized in all methodologies and tutorials that in

order to maintain complete objectivity, ratio-scaled reclassifications should always be used: via

direct conversion for tangible costs such as construction costs, or via surveys of relevant parties

to gauge the proportional attribute impacts. These considerations are completely missing in all

but one of the cited tutorials, resulting in methodologies unrepresentative of real-world condi-

tions. Constituents should also inquire about the methods used in such an analysis when pre-

sented with alternatives developed by an entity who may have their own motives.

The geographic world is infinitely complex, and no model can perfectly capture every

nuance of the spatial features that will affect the outcome of a normative spatial analysis.

Approximations must be made in order to represent the world in a manner that can be com-

puted upon, and these approximations will always come with sources of error and distortions.

But it is important to be aware of these representation errors, and to use the best practices out-

lined here to mitigate their effects on the analysis so that the model can best reflect accurate

real-world criteria and result in objectively unbiased solutions.
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