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Abstract: Citrus greening is a severe disease significantly affecting citrus production in the United
States because the disease is not curable with currently available technologies. For this reason,
monitoring citrus disease in orchards is critical to eradicate and replace infected trees before the
spread of the disease. In this study, the canopy shape and vegetation indices of infected and healthy
orange trees were compared to better understand their significant characteristics using unmanned
aerial vehicle (UAV)-based multispectral images. Individual citrus trees were identified using
thresholding and morphological filtering. The UAV-based phenotypes of each tree, such as tree
height, crown diameter, and canopy volume, were calculated and evaluated with the corresponding
ground measurements. The vegetation indices of infected and healthy trees were also compared to
investigate their spectral differences. The results showed that correlation coefficients of tree height
and crown diameter between the UAV-based and ground measurements were 0.7 and 0.8, respectively.
The UAV-based canopy volume was also highly correlated with the ground measurements (R2 > 0.9).
Four vegetation indices—normalized difference vegetation index (NDVI), normalized difference
RedEdge index (NDRE), modified soil adjusted vegetation index (MSAVI), and chlorophyll index
(CI)—were significantly higher in healthy trees than diseased trees. The RedEdge-related vegetation
indices showed more capability for citrus disease monitoring. Additionally, the experimental results
showed that the UAV-based flush ratio and canopy volume can be valuable indicators to differentiate
trees with citrus greening disease.
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1. Introduction

Citrus production, including of oranges, tangerines/mandarins, grapefruits, and lemons/limes,
fell during 2019/2020 due to unfavorable weather, water stress, and global disease [1]. In particular,
orange production in the United States is estimated to fall by five percent from the previous year.
In Florida, orange production has been trending down for a number of years due to citrus greening
disease; production is less than one-third of its level 20 years ago [1]. Citrus greening disease,
also known as Huanglongbing (HLB), is one of the most destructive and severe diseases in citrus trees
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globally. Citrus greening disease is caused by the bacterium Candidatus liberibacter, which is transmitted
by insect vectors known as psyllids in various climates [2,3].

Citrus greening disease affects tree health, fruit development, and the ripening and quality of
products such as citrus fruits and juice [4]. To avoid this potential threat, various management strategies,
such as chemical/biological vector population control, increasing plant resistance, thermotherapy for
graft wood, antibiotics, nutrient enhancement, and genetic manipulation for resistance, have been
required [5]. Because there is currently no cure for citrus greening disease, it is critical to rapidly
remove infected trees to prevent further spread of the disease. In particular, young trees showing
symptoms should be eradicated and replaced [6]. For infected citrus-producing areas, early and
accurate diagnosis of the disease is crucial [7].

In previous studies, remote sensing images with high spatial resolution from high altitude airborne
and spaceborne platforms have been used to delineate individual trees and extract information at the
individual tree level. A plot-based approach was proposed to detect individual citrus trees from high
spatial resolution aerial images and estimate the canopy cover, number of trees, and planting patterns [8].
Ozdarici-Ok [9] adopted an object-based hierarchical operation and spectral information to delineate
citrus trees from GeoEye-1 satellite images, and Vahidi et al. [10] used a template matching-based
approach in urban orchards. Airborne light detection and ranging (LiDAR) data were also employed
to obtain three-dimensional information to estimate tree parameters in orchards. Individual trees
were delineated from the canopy structure and their attributes were estimated, including height,
crown diameter, and volume [11,12]. In addition, it was shown that terrestrial LiDAR can be used to
quantify the structural complexity of orchard trees for informing orchard management [13].

Although conventional remote sensing data have shown good performance in orchards,
state-of-the-art sensors and unmanned aerial vehicle (UAV) technologies, also known as unmanned
aircraft systems (UASs) or drones, can provide finer spatiotemporal resolution data. UAV cameras
adopting solar or illumination sensors can be radiometrically calibrated without additional equipment
and field surveying. Therefore, UAV data make it possible to delineate individual trees and estimate tree
attributes more accurately and effectively. The ability of a helicopter-based UAV equipped with thermal
and multispectral sensors was demonstrated to generate quantitative remote sensing products in peach
orchards [14,15]. Tree structural properties and conditions, such as tree crown, height, and vegetation
indices (VIs), were measured using UAV-based multispectral images [16,17]. Sarron et al. [18] also
adopted UAV images to extract the tree structure and generate a yield map for a mango orchard.
For a citrus orchard, individual trees were detected using a morphology-based approach from a
UAV-based digital surface model (DSM) [19], and an artificial intelligence (AI) algorithm was adopted
for UAV-based high-throughput phenotyping [20]. UAV-based RGB images and hyperspectral data
were also used to quantify citrus tree health affected by disease [21,22].

To address the challenge of citrus disease monitoring and develop an advanced method, the traits
that allow discrimination between healthy and diseased trees must be examined. Therefore, the main
objective of this study was to: (1) utilize UAV-based aerial mapping platforms to collect fine-resolution
remote sensing imagery; (2) extract phenotypic data of individual citrus trees from UAV data; and (3)
better understand the structural and spectral characteristics of citrus disease with higher accuracy and
efficiency for citrus greening disease monitoring. Figure 1 shows the overall workflow employed to
estimate and compare tree phenotypes from UAV imagery. High-quality multispectral imagery using a
UAV platform was collected and processed to generate radiometrically calibrated orthomosaic images
and an elevation model. After detecting individual trees, the canopy shapes and VIs of healthy and
infested groups were compared.
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Figure 1. Citrus tree characterization procedure from unmanned aerial vehicle (UAV)-based 
multispectral imagery. 

2. Materials and Methods 

2.1. Study Area and Field Measurements 

The study area is located in Hendry County, Florida, USA. The orchard contains 1440 Hamlin 
citrus trees planted in 2016 and surrounded by sentinel trees. There are 10 rows (reps), and each row 
consists of 9 blocks of 16 trees. This site has been managed by a citrus company with a well-
distributed irrigation system. Because the study site was under an experiment related to citrus 
greening disease, 9 treatments were randomly distributed throughout the blocks to find the most 
effective option. 

Six trees in the middle of each block (for a total of 538 trees and 2 missing trees) were selected to 
be measured and used for validation of the UAV-based measurements. Tree structure information, 
such as tree height, diameter at breast height (DBH), crown diameter, and canopy volume, was 
measured on May 4th and September 6th, 2018, on the ground. Citrus greening infection was also 
investigated in the field on April 24th, 2018. Although there was a week-long time gap between the 
ground measurements and UAV data collection, the conditions of trees are not expected to change 
dramatically in a week, so a correspondence was established between the ground and UAV 
measurements. Sixty trees in each block were divided into two groups, citrus greening positive and 
negative groups, based on the field survey (Table 1). In the study area, the first infected tree was 
discovered in 2017, and two-thirds of the trees were infected within one year. 

Table 1. Numbers of trees in the citrus greening positive and negative groups in all blocks. 

Citrus 
Greening 

Block1 Block2 Block3 Block4  Block5 Block6 Block7 Block8 Block9 

Positive 34 43 40 38 37 36 38 46 43 
Negative 26 17 20 21 23 24 22 14 16 

Total 60 60 60 59 * 60 60 60 60 59 * 
* One tree died. 

2.2. UAV Data Collection and Preprocessing 

A multirotor platform, DJI Matrice 100 (DJI, Shenzhen, China), was used to collect multispectral 
images on April 18th and August 23rd, 2018. A SlantRange 3P multispectral camera (SlantRange, San 
Diego, CA, USA) was mounted on the UAV. The SlantRange 3P is equipped with sensors with a 
resolution of 1280 × 1024, 0.0048 mm pixel size, 12 mm focal length, and 28° field of view (FOV). The 
multispectral sensor captures 4 bands with an ambient illumination sensor (AIS) for radiometric 
calibration (Table 2). UAV data were collected at 50 m altitude above the ground with 70% overlap. 
  

Figure 1. Citrus tree characterization procedure from unmanned aerial vehicle (UAV)-based
multispectral imagery.

2. Materials and Methods

2.1. Study Area and Field Measurements

The study area is located in Hendry County, Florida, USA. The orchard contains 1440 Hamlin
citrus trees planted in 2016 and surrounded by sentinel trees. There are 10 rows (reps), and each row
consists of 9 blocks of 16 trees. This site has been managed by a citrus company with a well-distributed
irrigation system. Because the study site was under an experiment related to citrus greening disease,
9 treatments were randomly distributed throughout the blocks to find the most effective option.

Six trees in the middle of each block (for a total of 538 trees and 2 missing trees) were selected to be
measured and used for validation of the UAV-based measurements. Tree structure information, such as
tree height, diameter at breast height (DBH), crown diameter, and canopy volume, was measured on
May 4th and September 6th, 2018, on the ground. Citrus greening infection was also investigated in the
field on April 24th, 2018. Although there was a week-long time gap between the ground measurements
and UAV data collection, the conditions of trees are not expected to change dramatically in a week,
so a correspondence was established between the ground and UAV measurements. Sixty trees in each
block were divided into two groups, citrus greening positive and negative groups, based on the field
survey (Table 1). In the study area, the first infected tree was discovered in 2017, and two-thirds of the
trees were infected within one year.

Table 1. Numbers of trees in the citrus greening positive and negative groups in all blocks.

Citrus Greening Block1 Block2 Block3 Block4 Block5 Block6 Block7 Block8 Block9

Positive 34 43 40 38 37 36 38 46 43
Negative 26 17 20 21 23 24 22 14 16

Total 60 60 60 59 * 60 60 60 60 59 *

* One tree died.

2.2. UAV Data Collection and Preprocessing

A multirotor platform, DJI Matrice 100 (DJI, Shenzhen, China), was used to collect multispectral
images on April 18th and August 23rd, 2018. A SlantRange 3P multispectral camera (SlantRange,
San Diego, CA, USA) was mounted on the UAV. The SlantRange 3P is equipped with sensors with
a resolution of 1280 × 1024, 0.0048 mm pixel size, 12 mm focal length, and 28◦ field of view (FOV).
The multispectral sensor captures 4 bands with an ambient illumination sensor (AIS) for radiometric
calibration (Table 2). UAV data were collected at 50 m altitude above the ground with 70% overlap.



Remote Sens. 2020, 12, 4122 4 of 12

Table 2. Center wavelength and full width at half maximum (FWHM) of the SlantRange 3P camera.

Band Center Wavelength (nm) FWHM (nm)

Green 560 40
Red 655 35

RedEdge 710 20
NIR 830 110

The software developed by the camera company was used to perform the radiometric calibration
for converting the pixel values of raw images to reflectance values without reflectance panels [23].
The range of pixel values in the converted images was 0 to 1. The calibrated UAV images were then
processed using Agisoft Photoscan Pro (Agisoft LLC, St. Petersburg, Russia), which is a structure from
motion (SfM) software package, to generate a DSM and orthomosaic images. When the UAV was
flown at 50 m altitude, the spatial resolution of the orthomosaic and elevation models were 2 and 4 cm,
respectively. A canopy height model (CHM) was generated by subtracting the digital terrain model
(DTM) from the DSM to eliminate the ground elevation for estimating tree height and canopy volume.
The DTM was created by manually digitizing ground points on the orthomosaic images. The elevation
of the digitized ground points was obtained from the DSM. A triangular irregular network (TIN)
algorithm was applied to the ground point for interpolating and generating the DTM interpolation.

2.3. Individual Tree Detection

Because the objective of this study was to examine the characteristics of citrus greening disease
at the individual tree level, an algorithm was proposed to delineate an individual tree using the
normalized difference vegetation index (NDVI) and CHM. A threshold value of 0.6 for NDVI was
used to classify pixels to vegetation cover or non-vegetation. In vegetation class, tree canopy, grass,
and weeds could be included. Because potential canopy pixels can include objects other than trees,
we adopted a second layer of filtering based on the CHM. Non-tree pixels were eliminated with the
height using a threshold of 30 cm, which was determined by field conditions when the UAV data was
collected, and any pixel whose CHM value was smaller than the threshold value was filtered out.
In addition to the two-stage morphological filtering, opening and closing operations were also applied
to remove speckle noise and to fill holes. Each segment, namely, each connected component of the tree
canopy map, was considered an individual tree. The centroid of the segment was used as a center of a
2 × 2 m rectangle to draw individual tree boundaries (Figure 2). The 2 m was converted to 100 pixels
in orthomosaic images because the spatial resolution was 2 cm. The rectangle size was determined
by the field layout, such as the distance between trees, and visual assessment. All tree attributes,
including the canopy shape and vegetation indices, were calculated within the polygon boundary.
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Figure 2. Example of individual tree detection: (a) a tree in a color-infrared (CIR) image, (b) canopy
cover from the normalized difference vegetation index (NDVI) and the canopy height model (CHM),
(c) individual tree segment after morphological filtering with the equivalent diameter (red circle),
and (d) centroid of the individual tree (yellow dot) and individual tree boundary (yellow square).
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2.4. Canopy Shape and Vegetation Indices

Traits of the canopy shape, including tree height canopy volume, were calculated from the CHM
using the delineated individual tree boundaries. The maximum CHM value within the boundary was
considered the tree height, and the equivalent diameter of an individual tree segment was computed
as the crown diameter (Figure 2c). Canopy volume was calculated in two different ways: (1) the sum
of individual canopy pixels’ volume within the tree boundary, where volume of the canopy pixel can
be calculated by multiplying pixel area and height of the pixel, and (2) using an allometric equation
(Equation (1)) for tree volume with tree height and crown diameter derived from the UAV imagery as
inputs to the equation [24].

Canopy Volume =
2
3
× π × Tree Height ×

(Crown Diameter
2

)2
(1)

It was demonstrated that the RedEdge and near-infrared (NIR)-based VIs show better performance
than RGB-based VIs [25]. In particular, the modified soil adjusted vegetation index (MSAVI) was
outperformed to quantify the crop status. In the spectral response, the RedEdge wavelength is known
to be more sensitive to young leaves (leaf flushing) than are NIR wavelengths [26,27]. Li et al. [28] also
analyzed the spectral signature of citrus greening infected trees using multispectral and hyperspectral
airborne images. As a result, a significant difference in the RedEdge spectral range between healthy
and infected trees was reported. Therefore, four VIs—NDVI, MSAVI, normalized difference RedEdge
index (NDRE), and chlorophyll index (CI)—were employed to compare the differences between healthy
and citrus greening-infected trees (Table 3). NDVI and MSAVI were selected because they are widely
and frequently used in crop research, whereas two RedEdge-based vegetation indices, NDRE and CI,
were calculated using red and RedEdge bands. Figure 3 shows an example of VIs of the same tree.
The average VI values within the individual tree canopies were calculated as the representative VIs of
each tree.

Table 3. Equations of vegetation indices (VIs).

VI Equation Reference

NDVI NIR − Red
NIR + Red [29]

NDRE NIR − RedEdge
NIR + RedEdge

[30]

MSAVI 2 × NIR+1 −
√
(2×NIR + 1)2

− 8 × (NIR − Red)
2

[31]

CI NIR
RedEdge − 1 [32]
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2.5. Flush Ratio of Orange Tree

The main symptoms of citrus greening infected trees are yellow shoots, leaves with blotchy mottle,
and small lopsided fruits [33]. Vector insects lay eggs on young flush and nymphs develop exclusively
on tender flush [34]. Flush is a newly developing cluster of very young leaves on the expanding
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terminal end of a shoot [35]. Ultimately, infected branches die, and then the tree dies. Because a young
tree with sustained growth has new leaves at the branch tip [36], we can assume that flushing on the
tree canopy surface can be detected using UAV images. Based on our visual observations and the study
of Li et al. [28], the flush ratio could be a useful indicator to detect citrus greening infection in citrus
groves. Because citrus greening disease affects flushing, heathy trees should show more flushing than
infected trees. In this study, A method of quantifying the flush ratio in individual trees was proposed.
Figure 4a,b shows false color composite images with different band combinations. These examples
demonstrate that the RedEdge band is more sensitive to flushing, which is not easily visible from a
conventional color infrared (CIR) image. Therefore, in this study, CI calculated from the RedEdge
and NIR bands was employed to quantify the flush ratio at the individual tree level. We determined
the range of CI values from a CI map inductively, and the lower and upper threshold values were
empirically determined. Because the reflectance for young leaves at NIR wavelengths is less than
that for older leaves [37], we extracted the pixels in the CI range from 0.85 to 2 in the canopy area
(Figure 4c,d). The percentage of flush pixels over the canopy area was then calculated as the flush ratio
of the individual tree.
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Figure 4. An individual tree in a multispectral orthomosaic image with different RGB color compositions:
(a) conventional CIR (B: green, G: red and R: near-infrared (NIR)) and (b) RedEdge CIR (B: red,
G: RedEdge and R: NIR). Flush cluster pixels show different colors from older leaves (yellow circles).
Based on the threshold ranges, (d) flush cluster pixels were extracted from the (c) CI map.

3. Results and Discussion

3.1. Evaluation of Canopy Shape Traits

The crown diameter, tree height, and canopy volume data derived from the UAV imagery captured
on 23 August 2020 were compared with the ground measurements collected on 6 September 2020.
The ground-measured DBH collected on 5 May was also correlated with the crown diameter estimated
from the UAV data captured on 18 April. Tree structural parameters, such as tree height and crown
diameter, showed strong correlations between the ground measurement and UAV-derived parameters
(Figure 5). Because previous studies have shown crown diameter is strongly correlated to DBH [38,39],
the ground-measured DBH and UAV-derived crown diameter also produced a strong correlation with
an R2 value of 0.75 (Figure 5a). Although the UAV-derived crown diameter was slightly underestimated
relative to the ground measurements, the slope of the linear regression line was 0.9 with an R2 value
of 0.72 (Figure 5b). When calculating the correlation coefficient between the ground-measured and
UAV-derived tree height, the experimental results yielded an R2 value of 0.83 and the slope of the
linear regression line was 0.88 (Figure 5c).
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Canopy volume was estimated by accumulating canopy pixels’ volume and multiplying the tree
height by the crown diameter to compare them with ground-measured canopy volume. In Figure 4d,
the estimated canopy volume by both UAV-based methods resulted in high R2 values of over 0.8 with the
ground measurements. In particular, the regression line of the canopy volume based on the allometric
equation using tree height and crown diameter was close to the 1-on-1 line. These experimental results
demonstrate that UAV-based measurements can be used to extract tree structural parameters, such as
tree height, DBH, crown diameter, and canopy volume, with reasonable accuracy. All UAV-based
measurements explained over 70% of the variation in the ground measurements.

3.2. Differences in VIs

The average of the representative VIs in each treatment was compared to examine the spectral
differences between the citrus greening positive and negative trees. Healthy groups should show
higher VIs. In Figure 6, non-infected trees in all blocks always have higher NDVI, NDRE, MSAVI,
and CI values. The differences in the NDRE and CI values calculated using the RedEdge and NIR
bands were relatively larger than those in the NDVI and MSAVI values.

The error bars in Figure 6 indicate one standard deviation (SD) in the positive and negative
directions, showing the variability of the observations. Although all VIs were able to distinguish
healthy and infected trees, the RedEdge-related VIs were more successful in showing the difference in
the citrus greening disease effect. Based on a two-sample t-test with a 5% significance level, the NDVI,
NDRE, MSAVI, and CI values over all blocks were significantly different between the citrus greening
positive and negative groups. Among the VIs adopted in this study, CI was the most efficient feature
for monitoring citrus greening infection in the citrus orchard.
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Although recently developed multispectral sensors provide the RedEdge band in addition to the
NIR band, the multispectral cameras typically equipped on satellites, airplanes, and UAVs capture only
the NIR band in an invisible wavelength range. Our study demonstrates that the typical NDVI and
MSAVI, which are the most frequently used VIs in remote sensing, can also be useful for monitoring
the difference due to disease. As mentioned in Section 2, the RedEdge wavelength is more sensitive to
flushing and thus is more effective for the detection of flushing related to tree health. Healthy trees,
which are not infected and display leaf flushing, result in higher NDRE and CI values than infected trees.

3.3. Flush Ratio and Canopy Volume Difference from Citrus Greening

In this study, a thresholding method was proposed to extract flush clusters using CI for calculating
the flush ratio for individual citrus trees. Healthy trees show a higher percentage of trees with flushing
(Figure 7a). In the healthy group, 10–40% more trees contain flush clusters indicating young leaves
than diseased trees. Figure 7b shows that healthy trees include larger flushing area than infected trees.
Different patterns in blocks 5 and 8 could be caused by the effective treatments for citrus greening disease.
In general, a larger flushing area was detected for non-infected trees. This experiment demonstrated
that citrus greening disease prevents flushing on trees and affects tree growth. In addition, when the
disease affects tree growth, the canopy volume should be different between citrus greening positive and
negative trees. Figure 8 shows the average canopy volumes throughout all blocks. The canopy volume
of the healthy trees was more than twice that of the citrus greening infected trees. This result implies
that it is possible to monitor the disease in orange groves via the canopy volume. If a CHM can be
successfully generated to estimate canopy volumes, UAV images from any type of sensor (including not
only multispectral but also RGB sensors) could be used to monitor citrus greening disease.
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4. Conclusions

In this study, we used UAV-based multispectral images to compare the canopy shape and VIs
of citrus trees in an orange grove. The UAV raw images were collected over the experiment site of
treatments for citrus greening disease. Geo-rectification and radiometric calibration were conducted in
pre-processing. In the orthomosaic images, individual trees were detected, and tree boundaries were
delineated to extract the representative tree characteristics from CHM and VI maps. The UAV-based
canopy shape characteristics, such as tree height, crown diameter, and canopy volume, were compared
with the ground measurements. The estimated tree structural attributes were highly correlated with
the actual measurements on the ground. The NDVI, NDRE, MSAVI, and CI values of individual trees
were compared between the citrus greening positive and negative trees throughout all blocks. All VIs
were higher in healthy trees, and their differences were statistically significant. Our experiment shows
that NDRE and CI are more capable of monitoring citrus greening disease. Based on the detection of
flushing on the trees, the leaf flushing ratio strongly reflects the difference in infection. In addition,
the canopy volume estimated from UAV data was valuable for distinguishing the presence of citrus
greening disease.

The proposed methodology demonstrated that the UAV-based canopy shape and VIs can be used
to monitor citrus greening infection in citrus orchards. Both spectral characteristics and canopy volume
are significantly capable of citrus orchard monitoring. Although the VIs from multispectral images were
adopted in this study, RGB images can also be an alternative to estimate canopy structural attributes,
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such as canopy volume, for citrus disease monitoring. In the future, multi-temporal UAV datasets and
machine learning techniques will be used to develop an advanced citrus disease monitoring method.
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