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Abstract: Temporal gaps within the Gravity Recovery and Climate Experiment (GRACE) (gap:
20 months), between GRACE and GRACE Follow-On (GRACE-FO) missions (gap: 11 months), and
within GRACE-FO record (gap: 2 months) make it difficult to analyze and interpret spatiotemporal
variability in GRACE- and GRACE-FO-derived terrestrial water storage (TWSGRACE) time series. In
this study, an overview of data and approaches used to fill these gaps and reconstruct the TWSGRACE

record at the global scale is provided. In addition, the study provides an innovative approach that
integrates three machine learning techniques (deep-learning neural networks [DNN], generalized
linear model [GLM], and gradient boosting machine [GBM]) and eight climatic and hydrological
input variables to fill these gaps and reconstruct the TWSGRACE data record at both global grid
and basin scales. For each basin and grid cell, the model performance was assessed using Nash–
Sutcliffe efficiency coefficient (NSE), correlation coefficient (CC), and normalized root-mean-square
error (NRMSE), a leader model was selected based on the model performance, and variables that
significantly control leader model outputs were defined. Results indicate that (1) the leader model
reconstructed the TWSGRACE with high accuracy over both grid and local scales, particularly in wet
and low anthropogenically active regions (grid scale: NSE = 0.65 ± 0.20, CC = 0.81 ± 0.13, and
NSE = 0.56 ± 0.16; basin scale: NSE = 0.78 ± 0.14, CC = 0.89 ± 0.07, and NRMSE = 0.43 ± 0.14); (2) no
single model was flawless in reconstructing the TWSGRACE over all grids or basins, so a combination
of models is necessary; (3) basin-scale models outperform grid-scale models; (4) the DNN model
outperforms both GLM and GBM at the basin scale, whereas the GBM outperforms at the grid scale;
(5) among other inputs, the Global Land Data Assimilation System (GLDAS)-derived TWS controls
the model performance on both basin and grid scales; and (6) the reconstructed TWSGRACE data
captured extreme climatic events over the investigated basins and grid cells. The developed approach
is robust, effective, and could be used to accurately reconstruct TWSGRACE for any hydrologic system
across the globe.

Keywords: GRACE; GRACE-FO; gap filling; grid scale; basin scale; machine learning

1. Introduction

The Gravity Recovery and Climate Experiment (GRACE) mission launched jointly
by the U.S. National Aeronautics and Space Administration and the German Aerospace
Center on 17 March 2002 was designed to map both spatial variability in the Earth’s static
gravity field and the spatiotemporal variations in Earth’s gravity field with unprecedented
accuracy [1]. The spatiotemporal variability in gravity field solutions delivered by the
GRACE mission is directly related to the natural and anthropogenic variations in terres-
trial water storage (TWS) components such as surface water, groundwater, soil moisture,
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permafrost, snow, ice, and wet biomass [2]. The GRACE-derived TWS (TWSGRACE) empow-
ers the scientific community to address previously unresolvable questions in hydrology,
oceanology, cryosphere, and solid Earth fields at both regional and global scales [3–21].
However, the global monthly TWSGRACE record (April 2002–June 2017) suffers from tem-
poral gaps (20 months) caused by battery performance issues with approximately 10% of
the TWSGRACE record missing.

Because of the impressive success of the GRACE mission, the GRACE Follow-On
(GRACE-FO) mission launched in May 2018 and is continuing the extremely successful
work of its predecessor [22]. However, there is an 11-month gap in TWS data (July 2017–
May 2018) between the two missions. Two additional months are missing from the current
GRACE-FO record (August 2018–September 2018). Currently, an estimated 15% of the
available TWSGRACE data record is missing from the combined GRACE and GRACE-FO
missions (April 2002–April 2021). In this study, the term TWSGRACE refers to both the
GRACE- and GRACE-FO-derived TWS records (i.e., the combined data record).

Similar to any other temporal dataset, temporal gaps in TWSGRACE hinder their
analysis and interpretation [23–25]. Gaps in TWSGRACE introduce errors in amplitude and
phase of the annual cycle, residual variabilities, and secular trends, and increase the level
of uncertainty in their spectral modeling [26]. Long gaps could also obscure the temporal
patterns of TWS data and consequently distort the results of any statistical analysis [27].

In this article, we provide an overview of previous approaches that have been used
to reconstruct, and/or fill gaps in the TWSGRACE record and discuss the advantages and
limitations of each approach. In addition, we provide an innovative approach to fill current
gaps in the TWSGRACE record, between GRACE and GRACE-FO missions, and within the
GRACE-FO record. Specifically, three machine learning techniques (generalized linear
model [GLM], gradient boosting machine [GBM], and deep-learning neural networks
[DNN]) and eight climatic and hydrological input variables were integrated and used to
reconstruct TWSGRACE data at both the grid (1◦ × 1◦; total grid points: 14,310) and basin
(62 global watersheds; Figure 1) scales. For each basin and grid cell, the model performance
was assessed for GLM, GBM, and DNN models, and a “leader model” was selected. In this
article, the leader model is defined as the model that combines the best (highest statistical
performance during the testing phase) of the three models. Model inputs that significantly
control TWSGRACE variability in each basin and grid were also identified.

2. Filling Temporal Gaps in TWSGRACE Record: An Overview

Several studies have been conducted to reconstruct the TWSGRACE using different
datasets and approaches at both grid and basin scales (Table 1). Datasets that have been
used to reconstruct the TWSGRACE include measured and modeled hydroclimatic and/or
gravimetric datasets. The hydroclimate variables were used to reconstruct TWSGRACE
by correlating the spatiotemporal variability in these variables with the spatiotemporal
variability in TWSGRACE. Examples of the climatic variables include, but are not lim-
ited to, temperature, rainfall, sea surface temperature, and climate indices [25,28–37].
Hydrological variables include soil moisture, runoff, water level, and evapotranspira-
tion [25,33,34,36,38–42].

Gravimetric datasets from various low Earth orbiting (LEO) satellite missions were
used to reconstruct, and fill gaps within, the TWSGRACE. For instance, the Geodetic satellite
laser ranging (SLR) data that provide temporal variations of the Earth’s gravity field
at the lowest degrees of the spherical harmonic spectrum were used to fill the gap in
TWSGRACE [37,43–46]. Low-resolution gravity models derived from the European Space
Agency (ESA)’s Swarm satellite were used to recover the temporal variations in Earth’s
gravity field [47] and reconstruct the TWSGRACE [48–50]. These products, however, have
very coarse resolution (~1500 km) compared to TWSGRACE data [42], which limits their
application in reconstruction TWSGRACE data.

Several techniques used TWSGRACE data along with different hydroclimatic and hy-
drologic variables to fill TWSGRACE data gaps. These include interpolation, signal decom-



Remote Sens. 2022, 14, 1565 3 of 33

position, use of land surface models (LSMs) outputs, water balance, data assimilation, and
statistical and data mining techniques (Table 1).

Interpolation of the neighboring months has been widely used to fill TWSGRACE data
gaps [7,8,27]. Linear interpolation techniques, however, are less accurate in mapping non-
linear systems such as TWSGRACE [51], especially where two or more successive monthly
values are missing (e.g., 11-month gap between the GRACE and GRACE-FO missions). In
addition, other interpolation techniques (e.g., spline) are less accurate at mapping extreme
values such as those associated with droughts and floods, and they usually suffer from
smoothing effects [52].

The Singular Spectrum Analysis (SSA) techniques have been used to fill the missing
TWSGRACE data [50,53–55] given that SSA is able to extract significant information from
short and noisy time series by decomposing it into a trend, annual/seasonal signal, and
noise without any prior physical and dynamical knowledge that affects time series [56].
However, SSA is reported to have distorted reconstruction results [50].

LSM-derived TWS outputs have also been used as proxies for TWSGRACE data. This
approach, however, depends on the degree to which these models can simulate natural
episodic events (e.g., droughts or floods), which in turn are dependent on the physics and
structure of these LSMs, and on the resolution, coverage, and accuracy of the meteorological
forcing datasets [57]. A recent study over Africa [3] indicated that some of the LSMs
result in overestimation of winter TWS values and underestimates of summer values
when compared to TWSGRACE. Globally, LSMs underestimate TWSGRACE trends [58] and
are unable to capture seasonal TWSGRACE amplitudes [59]. Although such models can
potentially simulate TWSGRACE variabilities caused by natural phenomena, they are also
less successful at simulating variabilities caused by anthropogenic influences because these
forcings are typically not captured in the LSMs inputs [60–63].

Table 1. Review of previous TWSGRACE reconstruction data and techniques.

Reference Scale/Region Approach † Inputs *

Becker et al. [38] Grid (Amazon) Correlation GRACE, Water level

Pan et al. [36] Basin (global) Data assimilation GRACE, LSM, P, ET

De Linage et al. [35] Basin (Amazon) MLR Pacific and Atlantic SST

Long et al. [33] Basin (Southwest China) ANN SMS, P, T

Forootan et al. [29] Basin/Grid (West Africa) ICA, ARX SST, P

Sośnica et al. [46] Grid (global) LR SLR, GRACE

Zhang et al. [64] Basin (Yangtze) ANN SMS

Nie et al. [65] Basin (Amazon) LR GRACE, GLDAS

Talpe et al. [43] Grid (Greenland and
Antarctica) PCA SLR, GRACE

Humphrey et al. [30] Grid (global) MLR P, T

Yang et al. [41] Basin (NW China) ANN, GLM, RF, SVM GRACE, GLDAS

Chen et al. [28] Basin (Northeast China) GRNN P, T

Ahmed et al. [25] Basin (Africa) NARX P, ET, NDVI, T

Hasan et al. [39] Basin (Africa) ARX GLDAS, ENSO

Yin et al. [34] Basin (China) MLR P, ET, runoff

Meyer et al. [49] Grid (Arctic and Antarctic) LR SLR, Swarm,GRACE

Humphrey and Gudmundsson [66] Grid (global) MLR GRACE, P

Ferreira et al. [67] Grid (West Africa) NARX P, ET, T, SMS, climate indices

Sun et al. [68] Grid (India) CNN GRACE, GLDAS
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Table 1. Cont.

Reference Scale/Region Approach † Inputs *

Li et al. [53] Basin (China) SSA, ARIMA GRACE, GLDAS

Jing et al. [69] Basin (Nile) RF, XGB GRACE, GLDAS

Kenea et al. [31] Basin (Ethiopia) ESM SST, P

Jing et al. [40] Basin (China) RF, LR GRACE, GLDAS

Zhu et al. [70] Grid (global) SSA GRACE

Li et al. [32] Grid/Basin (global) MLR, ANN, ARX P, T, SST, climate indices

Forootan et al. [48] Grid/Basin (global) ICA GRACE, Swarm

Sun et al. [71] Grid/Basin (global) DNN, MLR, SARIMAX GRACE, GLDAS, P, T

Sohoulande et al. [72] Grid (United States) MVS P, T, potential ET

Jing et al. [73] Basin (regional) RF, XGB CRU,GLDAS

Sun et al. [42] Grid/Basin (United States) AutoML GLDAS, climate indices, P, T

Li et al. [37] Grid (global) ANN, ARX, MLR P, SST, T, climate indices

Jeon et al. [74] Grid/Basin (global) CNN T, ET, P

Yu et al. [75] Grid (Canada) CNN GRACE,EALCO-TWS

Tang et al. [76] Basin (Lancang-Mekong) RF GLDAS,CRU

Yang et al. [77] Grid (Australia) LSR GRACE, modeled TWS

Wang et al. [55] Basin (Global) SSA GRACE, Swarm

Löcher and Kusche [45] Grid (global) EOF SLR

Yi and Sneeuw [52] Grid/Basin (global) SSA Swarm, GRACE

Gyawali et al. [20] Basin (Texas coast) ANN, MLR P, T, NLDAS-TWS

Mo et al. [78] Grid/Basin (Global) BCNN P, T, ERA5L-TWSA, CWSC

† ANN: artificial neural network; DNN: deep neural network; CNN: convolutional neural network; BCNN:
Bayesian convolutional neural networks; GLM: generalized linear model; SVM: support vector machines; RF:
random forest; MLR: multilinear regression; XGB: extreme gradient boosting; AutoML: automated machine
learning; ARX: autoregressive exogenous; NARX: nonlinear autoregressive with exogenous; SARIMA: seasonal
auto-regressive integrated moving average with exogenous variables; GRNN: general regression neural network;
SSA: singular spectrum analysis; ICA: Independent component analysis; ESM: empirical statistical model; LR:
linear regression; MVS: multivariate statistics; LSR: least square regression; EOF: empirical orthogonal function;
* P: precipitation; T: temperature; SST: sea surface temperature; ET: evapotranspiration; SMS: soil moisture; NDVI:
normalized difference vegetation index; NLDAS: North American land data assimilation system; ENSO: El Niño
and the Southern Oscillation; EALCO: Ecological Assimilation of Land and Climate Observation; CRU: Climatic
Research Unit; ERA5L-TWSA: ERA5-land Derived TWSA; and CWSC: cumulative water storage change.

Basin-scale water balance calculations that combine rainfall, evapotranspiration, and
runoff have also been used to reconstruct TWSGRACE [79]. For example, Pan et al. [36]
used this approach to reconstruct the TWSGRACE over 32 global river basins using ground-
based and remote sensing observations and LSM simulations from 1984 to 2006. Biases
in rainfall and/or evapotranspiration estimates, in addition to the lack of runoff data
availability, hinder the effectiveness of this approach. In addition, this technique does not
take advantage of the full scope of information provided by the current TWSGRACE record
(e.g., anthropogenic and natural variabilities).

In recent years, data assimilation techniques have been increasingly used to recon-
struct the TWSGRACE, with higher spatial and temporal resolution. Assimilation techniques
integrate TWSGRACE with LSMs to enhance the model performance. For example, Eicker
et al. [80] used an ensemble-based Kalman filter approach to assimilate TWSGRACE into
the Water Global Analysis and Prognosis (WaterGAP) LSM to predict TWS on both basin
and grid scales over the United States. Assimilation of TWSGRACE data into several LSMs
was performed to improve the models’ output, particularly the output of the TWS com-
ponent [81–87]. The assimilation technique is useful to horizontally downscale coarse
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resolution and vertically disaggregate TWSGRACE data. However, because there is a mis-
match in spatial and temporal resolution between TWSGRACE and LSMs, and the error
properties of the TWSGRACE data are complex, the assimilation process requires complex
algorithms that can be computationally extensive [88].

The statistical and data mining techniques correlate variabilities in TWSGRACE with
changes in different hydroclimatic and hydrologic variables such as precipitation, tem-
perature, vegetation indices (e.g., normalized difference vegetation index [NDVI]), evapo-
transpiration, soil moisture, and Global Land Data Assimilation System (GLDAS)-derived
TWS (TWSGLDAS). These approaches offer an advantage over other methods because they
facilitate the reconstruction of TWSGRACE at basin or grid scales. The former approach
averages relevant variables over a specific basin [31,35,38,89], whereas the latter generates
these variables for each pixel (e.g., 1◦ × 1◦) [30,48,66,70]. Examples of these techniques
used include artificial neural network (ANN) [20,32,33,41,42,64], convolutional neural
network (CNN) [68,74,75,78], deep neural network (DNN) [71], generalized linear model
(GLM) [41], random forest (RF) [40,76,90], support vector machines (SVM) [41,90], multilin-
ear regression (MLR) [20,25,34,68], extreme gradient boosting (XGB) [69,73,90], automated
machine learning (AutoML) [42], autoregressive exogenous (ARX) and nonlinear autore-
gressive with exogenous (NARX) [32,37,39], linear statistical models [29,30,35,66,72,77],
seasonal auto-regressive integrated moving average (ARIMA) with exogenous variables
(SARIMA) [71], and general regression neural network (GRNN) [28].

Note each of these techniques has its own shortcomings. For example, they (1) were
reported to be effective only for large-scale (area >200,000 km2) basins [91], (2) require
knowledge of basin characteristics (e.g., percent forest cover, irrigated areas) that might not
be available for all basins [91], (3) are restricted to specific areas such as those experiencing
strong ocean–land–atmosphere interactions [29,92], (4) perform better when linear relation-
ships were reported between model inputs and TWSGRACE [20], and, (5) are less effective
in reconstructing TWSGRACE trends in hydrogeologic systems affected by anthropogenic
activities [71]. Moreover, all of these approaches either (1) compare the performance of
multiple models without pinpointing to the leader model for each basin or grid cell on a
global scale, (2) select the leader model without providing a comprehensive comparison of
different models’ performance at each grid or basin on a global scale, or (3) pinpoint the
leader model without discussing the model inputs that significantly control TWSGRACE
variability at each grid or basin. In addition, none of these models were used to fill the gap
between GRACE and GRACE-FO missions globally on both basin and grid scales. This
study offers innovative solutions to overcome the majority of these limitations. Globally,
for both grid and basin scales, a leader model was defined as the model that combines the
best (highest statistical performance during the testing phase) of the three models (GLM,
GBM, and DNN). The relative importance of the leader model inputs was also provided.

3. Innovative Approach to Fill Gaps in TWSGRACE Record

In this study, three different machine learning algorithms GLM, GBM, and DNN are
used to fill the TWSGRACE gaps globally, on both basin and grid (total grid points: 14,310)
scales. Different types of algorithms were selected to better improve the fitting results of
the TWSGRACE data. Sixty-two major global river basins covering a wide range of climatic,
hydrologic, and geologic settings were included in this study (Figure 1). Table A1 (Ap-
pendix A) lists the name, area, and climate setting of each of these basins. A comprehensive
set of hydrological and climatic variables including rainfall, temperature, evapotranspi-
ration, TWSGLDAS, NDVI, ENSO climate index, and annual cycles derived from GRACE
(AnnualGRACE) and GLDAS (AnnualGLDAS) were used as model inputs. These input
variables were selected to best represent spatiotemporal variations in TWSGRACE data
globally [25,66,71]. The TWSGRACE data represent the model output (target).



Remote Sens. 2022, 14, 1565 6 of 33Remote Sens. 2022, 14, x FOR PEER REVIEW 6 of 34 
 

 

 

Figure 1. Spatial distribution of the 62 global watersheds (names are shown in the bottom) examined 

in this study. Also shown are the simplified Köppen–Geiger global climate zones [93]. 

The model inputs (e.g., rainfall, temperature, evapotranspiration, TWSGLDAS, NDVI, 

ENSO, AnnualGRACE, and AnnualGLDAS) and target (e.g., TWSGRACE) data were divided ran-

domly into training (65%), validation (15%), and testing (20%) sets. Out of the available 

time series (April 2002–April 2020; 184 months), 147 months were randomly selected to 

train and validate the model, and 37 months were randomly selected to test the model 

performance. Random selection of the training and testing sets enables the designated 

algorithms to better understand, not memorize, the temporal variability in TWSGRACE, 

hence leading to better predictions of TWSGRACE gaps. The data gaps in the GRACE record 

(20 months), between GRACE and GRACE-FO (11 months), and in the GRACE-FO mis-

sion (2 months) were used as a forecasting (e.g., gap filling) set (total: 33 months). 

The three models were compared based on their performances for the training, vali-

dation, and testing phases using various statistical parameters as presented in Section 3.3. 

To avoid overfitting for each model, the early stopping criteria were implemented using 

the mean square error (MSE) as a stopping metric, with stopping rounds of 5 and stopping 

tolerance of 0.0001. The selected leader model was the one that had the highest statistical 

performance during the testing phase of the three models (GLM, GBM, and DNN). In the 

following sections, a comprehensive description of each model and the details of the 

model input data and performance measures are presented.  

3.1. Machine Learning Models 

The GLM, GBM, and DNN machine learning models were used to quantify the rela-

tionship between model inputs, on the one hand, and the TWSGRACE data, on the other 

hand. Each of these models represent a member of a machine learning family that has 

been extensively used to model a complex time series such as TWSGRACE. Different model 

types were used to ensure the improvement of model fit with the actual TWSGRACE data. 

3.1.1. Generalized Linear Model (GLM) 

The GLM is a flexible and extended form of the ordinary linear regression model and 

is represented by the following equation: 
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in this study. Also shown are the simplified Köppen–Geiger global climate zones [93].

The model inputs (e.g., rainfall, temperature, evapotranspiration, TWSGLDAS, NDVI,
ENSO, AnnualGRACE, and AnnualGLDAS) and target (e.g., TWSGRACE) data were divided
randomly into training (65%), validation (15%), and testing (20%) sets. Out of the available
time series (April 2002–April 2020; 184 months), 147 months were randomly selected to
train and validate the model, and 37 months were randomly selected to test the model
performance. Random selection of the training and testing sets enables the designated
algorithms to better understand, not memorize, the temporal variability in TWSGRACE,
hence leading to better predictions of TWSGRACE gaps. The data gaps in the GRACE record
(20 months), between GRACE and GRACE-FO (11 months), and in the GRACE-FO mission
(2 months) were used as a forecasting (e.g., gap filling) set (total: 33 months).

The three models were compared based on their performances for the training, vali-
dation, and testing phases using various statistical parameters as presented in Section 3.3.
To avoid overfitting for each model, the early stopping criteria were implemented using
the mean square error (MSE) as a stopping metric, with stopping rounds of 5 and stopping
tolerance of 0.0001. The selected leader model was the one that had the highest statistical
performance during the testing phase of the three models (GLM, GBM, and DNN). In the
following sections, a comprehensive description of each model and the details of the model
input data and performance measures are presented.

3.1. Machine Learning Models

The GLM, GBM, and DNN machine learning models were used to quantify the
relationship between model inputs, on the one hand, and the TWSGRACE data, on the other
hand. Each of these models represent a member of a machine learning family that has been
extensively used to model a complex time series such as TWSGRACE. Different model types
were used to ensure the improvement of model fit with the actual TWSGRACE data.

3.1.1. Generalized Linear Model (GLM)

The GLM is a flexible and extended form of the ordinary linear regression model and
is represented by the following equation:

yi = β0 + βixi + ei, (1)
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where β0 and βi represent the intercept and the weight terms, respectively, and ei is the
Gaussian random variable, which is the error/noise in the model. The linear regression
model assumes that yi and error are normally distributed, and xi has constant variance. In
the GLM, the errors and yi do not need to be normally distributed assuming a distribution
from an exponential family, which allows variable variance and a nonlinear relationship
between target and input variables [94]. The GLM uses absolute values of t-statistics to
estimate the importance of a variable [95]. More details about GLMs can be found in Coxe
et al. [96].

3.1.2. Gradient Boosting Machine (GBM)

The GBM model is one of the most powerful supervised machine learning approaches,
and it has already shown promising performance in both regression and classification
problems [97]. The GBM is a tree-based improved stepwise additive boosting algorithm that
sequentially fits new tree-based models [98] and reduces bias and variance by combining an
ensemble of weak learners as a weighted sum. The model optimizes key hyperparameters
(e.g., number of trees, depth of trees, and learning rate) and offers an optimal technique
to handle unbalanced datasets [99]. The simplified equations for GBM are expressed
as follows:

Fm(x) = Fm−1(x) + γmhm(x), (2)

γm = argminγ ∑n
i=1 L(yi, Fm−1(xi) + γhm(xi)), (3)

where Fm(x) is the output, L(yi, F(xi)) is the loss function, γm is the residual, hm(xi) is the
base/weak learner, and xi and yi are the input and target variables, respectively. We set a
varying learning rate from 0.01 to 0.1 with a 0.005 increment, sample rate from 0.1 to 1 with
a 0.05 increment, maximum tree depth from 1 to 20, and number of maximum trees to 50.
The model tries all possible combinations of these hyperparameters and reports the best
training results. In the GBM, the variable importance is derived based on the knowledge of
the variance on the input variables [100]. A more detailed description of the GBM model is
presented in Friedman [98] and Friedman [97].

3.1.3. Deep Neural Network (DNN)

The DNN structure is complex compared to traditional ANNs, which allows the DNN
to automatically extract deeper and more complicated relationships between model inputs
and outputs [101]. The DNN is composed of interconnected organized layered neurons.
The first layer of neurons is called the input node. It receives information from input data
and combines and passes the data to the next layer through transformation. The last layer
in the network is called the output layer and produces the output of the model. The layers
between input and output are called hidden layer(s). The input–output relationship for
each layer is given by this equation [102]:

yj
i = ∅

(
Mj−1

k=1wj−1
ik yj−1

i + wj−1
i0

)
, i = 1, 2, . . . Jk, (4)

where j represents the layer index, yj−1
i is the jth layer input with dimension M j−1, Jk

represents the number of hidden neurons used, wik are elements of the weight matrix, wi0

represents bias term in model, ∅ is the activation function, and yj
i is the model output. We

set the number of hidden layers to 2 and 3 layers each with 200 neurons, activation function
to rectifier, varying learning rate from 0 to 0.1 with a 0.001 increment, and input dropout
ratio from 0.1 to 0.2 with a 0.05 increment. In DNN, the variable importance is derived
from the weights of neurons between the input layers and hidden layers [103]. A more
detailed description of the DNN model is presented by Bengio [104].

3.2. Input and Target Data

The model input data include eight variables (Figure 2) that combine remote sens-
ing, hydrological, and climatic datasets (i.e., rainfall, temperature, evapotranspiration,
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TWSGLDAS, NDVI, ENSO, AnnualGRACE, and AnnualGLDAS). The model target data are rep-
resented by the TWSGRACE. Input variables were reported to have controls on TWSGRACE.
For example, an increase in rainfall due to changes in ENSO will increase soil moisture
(e.g., TWSGLDAS), NDVI, and consequently TWS, whereas an increase in temperature will
increase evaporation and decrease TWS [105–107]. A lag of 3 months was used for input
time series to account for the reported lags between TWSGRACE and the model inputs. The
TWSGRACE exhibits couple months lag given the time it takes for any hydrological system
to respond to any spatiotemporal changes in rainfall and temperature [13,42,71,108].
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Figure 2. Flowchart showing model types, input data, and model structure used in this study.

The input and target variables were obtained from different sources with different grid
size that range from 0.01◦ (1 km) to 1◦ (~110 km). For the grid-scale predictions, the model
inputs and target variable were resampled at 1◦ × 1◦ using the nearest neighbor resampling
technique to make all variables comparable and also to make the TWSGRACE reconstruction
results comparable to the published ones. We generated a time series for each input (total: 8)
and target (total: 1) variable at each grid cell (total: 14,310). For basin scale prediction, the
raw input and target variables were averaged over each of the 62 investigated basins to
generate a time series for each variable at the basin scale.

The input data were normalized between 0 to 1 using the following equation:

xi =
xi − xmin

xmax − xmin
(5)

where xi is normalized value for xi and xmin and xmax are minimum and maximum values
for the time series.

The annual cycle for TWSGRACE and TWSGLDAS were calculated by simultaneously
fitting trend and seasonal (e.g., annual and semiannual) terms to each time series according
to the following equation:
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S = a + b·t + c· sin ωt + d· cos ωt + e· sin 2ωt + f · cos 2ωt (6)

where S is TWSGRACE or TWSGLDAS time series, a is the offset, b is the long-term trend,
c and d are annual terms, e and f are semi-annual terms, t is the time vector, and ω = 2π/T
with T defined as the annual period.

3.2.1. GRACE-Derived TWS (TWSGRACE)

The latest version of GRACE mass concentration (mascon) products (RL06M) provided
by the Jet Propulsion Laboratory (JPL) was used in this study. The JPL-RL06M data are
available at https://grace.jpl.nasa.gov (accessed on 10 December 2021) on a 0.5◦ × 0.5◦

grid scale; however, the native resolution is 3◦ × 3◦ equal-area caps [109]. The TWSGRACE
product (expressed in equivalent water thickness) for the April 2002 to April 2020 period
was used in this study as the target data. Standard postprocessing procedures were applied
to TWSGRACE data, including replacement of the C20 coefficient, addition of geocenter
motion, and removal of solid Earth effects, such as glacial isostatic adjustments. The
scaling factor was applied to reduce the leakage error [110]. The JPL-RL06M solutions were
selected because they are superior to spherical harmonic solutions in both accuracy and
reconstruction results as reported by several studies [71,111]. In addition, leakage error in
the JPL-RL06M solutions can be readily assessed and minimized using scale factors [110].

3.2.2. GLDAS-Derived TWS (TWSGLDAS)

Two significant terrestrial storage components are missing in the GLDAS simulations,
the groundwater and surface water bodies. Despite the limitation of using the GLDAS
model alone to reconstruct TWSGRACE, in this study TWSGLDAS is integrated with other
input variables to maximize the accuracy of the reconstructed TWSGRACE data. The GLDAS
model uses sophisticated algorithms combined with ground-based observations to produce
enhanced fields of land surface states and fluxes [112]. The TWSGLDAS data from the
GLDAS NOAH model [113] was used in this study because it shows a better correlation
with TWSGRACE on the global scale compared to other models (i.e., CLM, Mosaic, and
VIC) [33,71,114]. In the NOAH version, the TWSGLDAS is the sum of soil moisture, plant
canopy water storage, and accumulated snow. The monthly TWSGLDAS data are available
at a spatial resolution of 0.25◦ × 0.25◦ (https://disc.gsfc.nasa.gov/datasets) (accessed on
10 December 2021).

3.2.3. Rainfall

Rainfall data were extracted from the Integrated Multi-satellite Retrievals for Global
Precipitation Measurement (IMERG) product of the Global Precipitation Measurement
(GPM) mission, which provides a half-hourly and monthly precipitation product on a
0.1◦ × 0.1◦ grid scale over the globe [115]. IMERG merges and interpolates satellite
precipitation data with rain gauge estimates to produce high-resolution rainfall prod-
ucts [116]. Compared to other remote sensing-derived rainfall products, GPM provides
better accuracy, improved sampling, and is able to capture the intermittency of precip-
itation in majority of climatic and hydrologic zones [117]. IMERG data are available
from https://disc.gsfc.nasa.gov/datasets/GPM_3IMERGM_06/ (accessed on 10 December
2021).

3.2.4. Temperature

Air temperature data were retrieved from the European Centre for Medium-Range
Weather Forecasts (ECMWF) Re-Analysis (ERA5-Land) project. The fifth-generation ECMWF
reanalysis for global climate, ERA5, replaces the ERA-Interim reanalysis. ERA5-Land was
produced by replaying the land component of the ECMWF ERA5 climate reanalysis. Data
are available at a temporal resolution of 1 h and a spatial resolution of 0.1◦ × 0.1◦ [118]
from https://cds.climate.copernicus.eu/cdsapp#!/dataset/reanalysis-era5-land-monthly-
means?tab=form (accessed on 10 December 2021).

https://grace.jpl.nasa.gov
https://disc.gsfc.nasa.gov/datasets
https://disc.gsfc.nasa.gov/datasets/GPM_3IMERGM_06/
https://cds.climate.copernicus.eu/cdsapp#!/dataset/reanalysis-era5-land-monthly-means?tab=form
https://cds.climate.copernicus.eu/cdsapp#!/dataset/reanalysis-era5-land-monthly-means?tab=form
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3.2.5. Evapotranspiration

The Moderate Resolution Imaging Spectroradiometer (MODIS) derived MOD16 (Col-
lection 6 Version 2) global evapotranspiration products, used in this study, are the first
regular 1 km2 land surface evapotranspiration datasets that are provided at 8-day, monthly,
and annual temporal resolutions [119]. MOD16 evapotranspiration is derived based on the
Penman–Monteith equation using daily meteorological reanalysis data and 8-day remotely
sensed vegetation property dynamics from MODIS inputs. The MODIS evapotranspiration
data are available at http://www.ntsg.umt.edu/project/mod16#data-product (accessed
on 5 December 2021).

3.2.6. Normalized Difference Vegetation Index (NDVI)

The NDVI data used in this study are generated from averaged level-3 MODIS Terra
(MOD13C2) and MODIS Aqua (MYD13C2) products (available at https://lpdaac.usgs.gov/
dataset_discovery/modis/modis_products_table) (accessed on 5 December 2021). Both
MOD13C2 and MYD13C2 are global monthly datasets with spatial sampling resolution of
0.05◦ [120].

3.2.7. Climate Indices

The Monthly multivariate ENSO Index (MEI), available at https://www.esrl.noaa.
gov/psd/enso/mei/index.html (accessed on 15 December 2021), is calculated based on six
main variables (sea-level pressure, zonal and meridional components of the surface wind,
sea surface temperature, surface air temperature, and total cloudiness fraction of the sky)
over the tropical Pacific.

3.3. Performance Measures

Model performance, for both grid and basin simulations, was evaluated during train-
ing and testing phases using the normalized root-mean-square error (NRMSE), Pearson’s
correlation coefficient (CC), and Nash–Sutcliff efficiency coefficient (NSE). We reported the
average value ± one standard deviation for each of these measures.

The NRMSE (Equation (7)) is the root-mean-square error normalized by standard
deviation of the observation data with value ranges from 0 to ∞:

NRMSE =
1
σ

√
∑n

i=1(yi − xi)

n
(7)

The CC (Equation (8)) measures the strength of linear associations between predicted
and actual data with value ranges between −1 and 1. A CC value of zero (0) means there
is no correlation, and positive (negative) values mean positively (negatively) correlated,
with 1 (−1) indicating perfect positive (negative) correlations between predicted and
observed values:

CC =
∑n

i=1(yi − ŷ)(xi − x̂)√
∑n

i=1(yi − ŷ)2
√
(xi − x̂)2

(8)

The normalized statistical coefficient NSE (Equation (9)) measures the relative magni-
tude of residual variance to the variance of actual/measured data [121]. The NSE values
range from −∞ to 1 with optimal performance at 1:

NSE = 1 − ∑n
i=1(yi − xi)

2

(xi − x̂)2 (9)

where x and y represent actual and predicted time series; x̂ and ŷ represent average of x and
y; n is the number of data used in testing; and σ is the standard deviation of the time series.

In this study, the model performance is classified into four main categories [103,122]:
(a) very good performance if NSE > 0.7, CC > 0.8, and NRMSE < 0.5; (b) good performance
if NSE > 0.6, CC > 0.7, and NRMSE < 0.6; (c) satisfactory performance if NSE > 0.5, CC > 0.6,
and NRMSE < 0.7; and (d) poor performance if NSE < 0.5, CC < 0.6, and NRMSE > 0.7.

http://www.ntsg.umt.edu/project/mod16#data-product
https://lpdaac.usgs.gov/dataset_discovery/modis/modis_products_table
https://lpdaac.usgs.gov/dataset_discovery/modis/modis_products_table
https://www.esrl.noaa.gov/psd/enso/mei/index.html
https://www.esrl.noaa.gov/psd/enso/mei/index.html
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4. Results
4.1. Model Performance: Grid Scale

Figure 3 shows the spatial distribution of the performance metrics (i.e., NSE, CC,
NRMSE) of three models (i.e., GLM, GBM, and DNN) during the testing phase. The
average testing performance matrices for grid and basin scales are shown in Table 2.
The training performance is shown in Figure A1 (Appendix A). Figure 3 also shows the
frequency distribution of each performance metric. Examination of Figure 3 indicates that
all models show similar overall patterns of testing performance. Overall, the GLM testing
performance has average NSE, CC, and NRMSE values of 0.55 ± 0.26, 0.74 ± 0.19, and
0.63 ± 0.19, respectively (Figure 3a–c, and Table 2). Among the investigated grids (total:
14,310), the GLM shows a very good performance for 29%, good performance for 19%,
satisfactory performance for 17%, and poor performance for 35% of the grid cells (Figure 4a).
The GBM average performance values for the NSE, CC, and NRMSE are estimated to be
0.59 ± 0.23, 0.77 ± 0.15, and 0.61 ± 0.17, respectively (Figure 3d–f, and Table 2). The GBM
model performance is very good, good, satisfactory, and poor for 31%, 22%, 18%, and 29%
of total grid cells, respectively (Figure 4a). Overall, the average performance of DNNs were
lower than those of the GLMs and GBMs with average NSE, CC, and NRMSE values of
0.49 ± 0.28, 0.73 ± 0.19, and 0.68 ± 0.19, respectively (Figure 3g–i, and Table 2). The DNN
model performance is very good for 21%, good for 18%, satisfactory for 27%, and poor for
44% of the total investigated grids (Figure 4a).
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GLMs, GBM models, DNN models, and leader models.

Table 2. The average testing performance matrices for grid and basin scales.

Grid Scale

GLM GBM DNN Leader Model

NSE 0.55 ± 0.26 0.59 ± 0.23 0.49 ± 0.28 0.65 ± 0.20

CC 0.74 ± 0.19 0.77 ± 0.15 0.73 ± 0.19 0.81 ± 0.13

NRMSE 0.63 ± 0.19 0.61 ± 0.17 0.68 ± 0.19 0.56 ± 0.16

Basin Scale

GLM GBM DNN Leader Model

NSE 0.74 ± 0.15 0.73 ± 0.17 0.75 ± 0.17 0.78 ± 0.14

CC 0.87 ± 0.09 0.85 ± 0.11 0.88 ± 0.09 0.89 ± 0.07

NRMSE 0.48 ± 0.15 0.49 ± 0.16 0.46 ± 0.16 0.43 ± 0.14

Model performance was found to vary spatially. As indicated by the higher NSE
testing values, all models have relatively better performance in relatively wet/humid
regions such as the Amazon, South Asia, Central Africa, Southeastern United States, and
Eastern Europe (Figures 1 and 3a,d,g). The CC and NRMSE for all models also show a
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similar spatial pattern, with better performance in humid regions (Figures 1 and 3b,c,e,f,h,i).
On the other hand, the performance of all models is relatively poor in arid, semi-arid, and
highly irrigated regions (Figures 1 and A3). Lower NSE and CC and higher NRMSE values
are found to be concentrated over the Sahara Desert, Arabian Peninsula, Northwest China,
and the southern part of South America (Figure 3).

The input variables were found to have different impacts on model performance in
different grids. We conducted a sensitivity analysis by evaluating the contribution of each
input variable to the model performance. The spatial distribution of variables that are the
most important is shown in Figure 5. The TWSGLDAS was found to be the most important
variable in 45%, 64%, and 39% of all grid points simulated by the GLMs, GBM, and DNN
models, respectively. The second and third-most important variables were AnnualGRACE
(24%) and NDVI (13%), respectively, for the GLM; NDVI (12%) and temperature (9%),
respectively, for the GBM; and temperature (16%) and rainfall (11%), respectively, for
the DNN.
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Because model performance varies by grid location (Figure 3), a leader model (e.g.,
the best of the three models) was selected for each grid based on the best NSE value for
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testing results (Figure 6a). The GBM model was the leader for 47% of the examined grid
cells, whereas the GLM and DNN were the leaders for 36% and 17%, respectively. The
leader model performance average NSE, CC, and NRMSE are 0.65 ± 0.20, 0.81 ± 0.13, and
0.56 ± 0.16, respectively (Figure 6b–d, and Table 2).
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(b) testing NSE, (c) testing CC, (d), testing NRMSE, and (e) variable importance. The color-coded
frequency distribution shows the very good (red), good (orange), satisfactory (yellow), and poor
(blue) performance categories.

The performance of the leader model is very good for 39%, good for 22%, satisfactory
for 17%, and poor for 22% of the total investigated grids (Figure 4a). The leader model
performance is significantly higher than that of any of the three individual models, par-
ticularly in the very good and poor classes (Figure 4a). In addition, the top three most
important input variables for the leader model in each grid were found to be TWSGLDAS
(54%), AnnualGRACE (12%), and NDVI (12%) (Figure 6e).
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4.2. Model Performance: Basin Scale

Figures 7 and A2 show the spatial distribution of the performance metrics over these
62 global watersheds during the testing and training phases, respectively. For the GLM, the
average testing performance is estimated to be 0.74 ± 0.15, 0.87 ± 0.09, and 0.48 ± 0.15 for
the NSE, CC, and NRMSE, respectively (Figure 7a–c, and Table 2). The GLM performance
is very good for 58% of the basins (Figure 4b), particularly the Amazon, Godawari, Orinoco,
Columbia, Irrawaddy, Tocantins, Salween, Irrawaddy, Krishna, and Mekong basins (e.g.,
Amazon: NSE = 0.95, CC = 0.98, NRMSE = 0.22) and good for 21%, satisfactory for 11%,
and poor for 10% of the investigated basins (e.g., Saudi Arabia [NSE = 0.37, CC = 0.78,
NRMSE = 0.62], Tarim, Yodo, Hwang Ho, Helmand, and Yemen; Figure 7a–c).
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Figure 7. Spatial and frequency (bar plot) distribution of the basin-scale testing performance for the
(a–c) GLM, (d–f) GBM, and (g–i) DNN models. The color-coded frequency distribution shows the
very good (red), good (orange), satisfactory (yellow), and poor (blue) performance categories.

The GBM model’s general performance is estimated to be NSE = 0.73 ± 0.17,
CC = 0.85 ± 0.11, NRMSE = 0.49 ± 0.16 (Figure 7d–f, and Table 2). The performance of
GBM is very good for 53% of the investigated basins (e.g., Orinoco [NSE = 0.96, CC = 0.98,
NRMSE = 0.19], Lake Chad, Columbia, Amazon, Godavari, Mekong, Don, and Ural), good
for 26%, and satisfactory for 10% of the investigated basins (Figure 4b). The performance
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of GBM, however, is poor for 11% of the basins, including Tarim (NSE = 0.25, CC = 0.5,
NRMSE = 0.86), Yodo, Hwang Ho, Indus, Narmada, and Yemen. The DNN’s model av-
erage performance was estimated to be 0.75 ± 0.17, 0.88 ± 0.09, and 0.46 ± 0.16 for NSE,
CC, and NRMSE, respectively (Figure 7g–i and Table 2). The DNN model performance
is very good for 65%, good for 14%, satisfactory for 13%, and poor for 8% of the investi-
gated basins (Figure 4b). In particular, the performance of DNN is very good for basins
such as Orinoco (NSE = 0.97, CC = 0.99, NRMSE = 0.17), Columbia, Amazon, Tocantins,
Ganges-Brahmaputra, Godavari, Si, Irrawaddy, and Mekong and poor for the St. Lawrence
(NSE = 0.19, CC = 0.63, NRMSE = 0.89), Yodo, Hwang Ho, Indus, and Yemen basins.

For all three models, TWSGLDAS is the most important variable for most basins
(Figure 8). Out of the 62 basins, TWSGLDAS was the most important variable for 58%,
66%, and 52% of the basins for the GLMs (Figure 8a), GBM models (Figure 8b), and DNN
models (Figure 8c), respectively. Of all the basins, the NDVI is the second-most important
variable for 21% for GLMs, 16% for GBM models, and 23% for DNN models, respectively.
Precipitation is the third-most important variable for the GLMs and DNN models with 10%
and 8% of the basins, respectively, while AnnualGRACE for the GBM (6% basins).
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Based on the testing performance measures, the DNN model outperforms the GBM
and GLM models in most of the examined basins (Figure 9a). Thus, it is selected as a leader
model for 31 (50%) of the investigated basins. On the other hand, the GBM and GLM
are the leader models in 14 (23%) and 17 (27%) basins, respectively. The leader model’s
performance is significantly higher than that of any of the individual models. The leader
model average performance NSE, CC, and NRMSE values are 0.78 ± 0.14, 0.89 ± 0.07,
and 0.43 ± 0.14, respectively (Figure 9b–d). Overall, the performance of the leader model
is very good, good, satisfactory, and poor for 71%, 16%, 8%, and 5% of the investigated
basins, respectively (Figure 4b). Overall, TWSGLDAS, NDVI, and precipitation are the most
important variables for 58%, 21%, and 10% of the basins simulated by the leader model,
respectively (Figure 9e).
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4.3. TWSGRACE Reconstruction Results 

Figure 9. Spatial (left) and frequency (right) distribution of the basin-scale leader model (a) types,
(b) testing NSE, (c) testing CC, (d), testing NRMSE, and (e) variable importance. The color-coded
frequency distribution shows the very good (red), good (orange), satisfactory (yellow), and poor
(blue) performance categories.

4.3. TWSGRACE Reconstruction Results

To evaluate the TWSGRACE reconstruction results, eight basins were selected as repre-
sentative examples of different climatic and hydrologic settings across the globe (Figure 10).
The TWSGRACE time series derived from the leader model is shown during training, testing,
and forecasting (e.g., gap filling) phases. The root-mean-square error for testing phase was
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plotted as an error bar for the reconstructed TWSGRACE time series. The leader model did
an excellent job of reconstructing the TWSGRACE data. Inspection of Figure 10 reveals a
better match of the reconstructed TWSGRACE with the actual TWSGRACE compared to that
between actual TWSGRACE and TWSGLDAS. The NSE values between the reconstructed
and the actual TWSGRACE records are higher (minimum: 0.93; maximum: 0.98) compared
to those between TWSGLDAS and actual TWSGRACE records (minimum: 0.45; maximum:
0.85). Figure A4 (Appendix A) shows higher NSE values between the reconstructed and the
actual TWSGRACE records compared to those between TWSGLDAS and actual TWSGRACE
records for all of the examined 62 basins. The leader model was able to learn and capture
the biases between the TWSGRACE and TWSGLDAS. In addition, the leader model accurately
captured seasonal variations in TWSGRACE in each of the investigated basins.
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Figure 10. Reconstructed TWSGRACE results for eight representative basins: (a) Niger, (b) Lake
Chad, (c) Amazon, (d) Orinoco, (e) Flinders, (f) Murray, (g) Irrawaddy, and (h) Krishna. The actual
TWSGRACE, reconstructed TWSGRACE, TWSGLDAS, and Humphrey and Gudmundsson (2019)-derived
TWS (TWSHumphrey) time series are indicated by black dots, pink line, blue line, and green lines,
respectively. The root-mean-square error for the testing set is plotted as error bar (pink shading)
for the reconstructed TWSGRACE. The vertical yellow rectangle shows the gap period between
the GRACE and GRACE-FO missions. The NSE between the actual TWSGRACE and reconstructed
TWSGRACE, the actual TWSGRACE and TWSGLDAS, and actual TWSGRACE and TWSHumphrey are
shown at the bottom of each subplot in pink, blue, and green text, respectively.
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Comparison of this study’s reconstructed TWSGRACE results and those produced by
Humphrey and Gudmundsson [66] ((TWSHumphry; Figure 10) indicate a better agreement
with the observed TWSGRACE of the former. The current study’s reported NSE values
between the reconstructed and actual TWSGRACE records are higher (minimum: 0.93;
maximum: 0.98) than those derived by TWSHumphry and actual TWSGRACE records (min-
imum: −1.24; maximum: 0.98). The same pattern is observed over the entire 62 basins
(Figure A4) revealing the improved performance by this study’s approach at reconstructing
the TWSGRACE trends that are missing from that generated by TWSHumphry.

Inspection of the reconstructed TWSGRACE data during the gap period (July 2017–May
2018) indicates that the grid-scale reconstructed TWSGRACE was also able to capture the
August–September high (Figure 11b,c) and the April–May low (Figure 11j,k) TWSGRACE
records in South Asia and Central Africa. The April–May high (Figure 11j,k) and October–
November low (Figure 11d,e) TWSGRACE records in the Amazon region are also well
represented. Furthermore, the reconstructed TWSGRACE reveals a clear response to many
climate extremes that occurred during the data gap period. For example, the 2018 Australian
drought [123] was captured at both the basin scale (Flinders and Murray basins; Figure 10e,f)
and the grid scale (Figure 11l) reconstructed TWSGRACE. Figure 11l shows reconstructed
TWSGRACE data over Australia during September 2017 (top left corner) and September
2018 (bottom left corner); the reconstructed TWSGRACE record was lower in 2018 compared
to 2017. In the United States, the hurricane season was extremely active in 2017, with four
category-three or higher hurricanes that made landfall [124]. The reconstructed TWSGRACE
captures the effects of Hurricanes Harvey and Irma (August–September 2017, in the Gulf
of Mexico coastal area; Figure 11l), as indicated by the higher TWSGRACE record observed
during September 2017 compared to that observed in September 2018.
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Figure 11. Global monthly (August 2017–May 2018; (a–k)) grid-scale reconstructed TWSGRACE data
for the gap period between GRACE and GRACE-FO missions. The circles depict the regions where
the reconstructed TWSGRACE captures the strong seasonal variations and extreme events [i.e., August–
September high (red), April–May low (purple), April–May high (black), and October–November low
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(pink)]. The reconstructed TWSGRACE data over Australia for September 2017 (panel (l); top left
corner) and September 2018 (panel (l); bottom left corner) are also shown. The United States’ extreme
active hurricane season 2017 is compared with 2018 in Figure 11l (right panel).

5. Discussion

The employed models (GLM, GBM, and DNN) perform well in the majority of the
investigated basins and grid cells. However, no single model performed exceptionally
everywhere. The three models show similar spatial patterns in their performance. Similarity
in the spatial variability of all models’ (e.g., GLM, GBM, and DNN) performance during
both training and testing phases might be related to the use of a larger set of model inputs.
The discrepancies in the performance measures between different models, as indicated by
relatively small ranges of NSE, CC, and NRMSE, are expected because these models have
different theories, algorithms, assumptions, and principals. The GLM is a standard linear
regression model; the DNN and GBM, however, model the nonlinear relationship between
the model’s target and inputs. The difference in performance between nonlinear models
might also be due to the size of the training and testing sets.

All models indicated a slightly lower performance during the testing phase than in
the training phase. The relatively small decline in testing performance may be due to
the relatively short number of the training samples [42]. In this study only 147 monthly
TWSGRACE values were used in the training phase. An additional reason for differences
in performance between the training and testing phases could be the diverse temporal
patterns in the model inputs and target variables in the testing phase compared to those in
the training phase since data points for these phases were selected randomly.

All models show a relatively better (i.e., high NSE, high CC, and low NRMSE) per-
formance in wet regions on both grid (e.g., Amazon region and surroundings, Indochina
Peninsula, Central Africa, and the East European Plain) and basin (e.g., Lake Chad, Orinoco,
Amazon, Tocantins, Godavari, Salween, Irrawaddy, Krishna, and Mekong) scales. This
higher performance can be attributed mainly to the fact that the spatiotemporal variability
in TWSGRACE in these regions is controlled mainly by natural interventions. These inter-
ventions are well captured in the model input variables (e.g., rainfall, temperature). In
addition, the TWSGRACE data show higher signal-to-noise ratios in humid areas.

The three models performed poorly in arid and semi-arid regions such as North Africa,
the Arabian Peninsula, and Northwest China at both grid and basin (e.g., basins Tarim,
Yodo, Hwang Ho, Indus, Narmada, Yemen, and Saudi Arabia) scales. Anthropogenic
activities such as groundwater extraction for irrigation purposes (Figure A3) are known to
occur in these regions [125,126]. In these regions the anthropogenic component is expected
to represent a larger percentage of the total TWSGRACE when compared to humid/wet
areas. None of the model input variables have accounted for the significant impacts
of anthropogenic activities (e.g., lowering of TWSGRACE due to groundwater extraction
and aquifer storage depletion; changes in land cover/land use). In addition, TWSGRACE
signals in arid and semi-arid regions are so small that errors tend to be on par with signal
size [13,127,128].

The relatively lower model performance in non-arid regions could be attributed to
prolonged (e.g., decadal) climatic cyclicity that is not adequately represented in the model
training period such as those reported in Eastern Africa [25], deforestation activities such as
those reported in Central Africa [25], or absence of input variables that account for glaciers
(e.g., Tibetan Plateau region) and surface water bodies (St. Lawrence basin) in locations
where TWSGRACE was reported to be dominated by glacier [129] and surface water [130]
variabilities.

The leader model performance is significantly higher than that of any of the individual
models (grid scale: NSE = 0.65 ± 0.20, CC = 0.81 ± 0.13, and NRMSE = 0.56 ± 0.16; basin
scale NSE = 0.78 ± 0.14, CC = 0.89 ± 0.07, and NRMSE = 0.43 ± 0.14). The spatial distri-
bution of the leader model results indicates that the DNN model outperforms both GLM



Remote Sens. 2022, 14, 1565 21 of 33

and GBM on the basin scale, whereas the GBM outperforms on the grid scale. The DNN
model was selected as a leader model for 50% of the examined basins (NSE = 0.75 ± 0.17,
CC = 0.88 ± 0.09, and NRMSE = 0.46 ± 0.16). The GBM, on the other hand, was found to
be a leader model for 47% of the examined grids (NSE = 0.49 ± 0.28, CC + 0.73 ± 0.19, and
NRMSE = 0.68 ± 0.19).

The performance of the basin-scale leader model is higher than that of the grid scale
(in 58 basins). In addition, statistical measures of the basin scale reconstructions (e.g.,
average all of the model input and target variables) were higher (NSE = 0.78 ± 0.14,
CC = 0.89 ± 0.07, and NRMSE = 0.43 ± 0.14) compared to those estimated by averaging the
grid-scale outputs over each of the investigated basins (NSE = 0.67 ± 0.12, CC = 0.82 ± 0.07,
NRMSE = 0.55 ± 0.1). This could be because both input and target variables averaged over
basins with large spatial extent are smooth compared to the 1◦ grid scale [1].

Generally, the GBM tends to outperform the GLMs and DNN models in arid regions
such as North Africa, Arabian Peninsula, and Central Asia. This could be related to the
GBM’s enhanced ability to predict the complex and nonlinear relationship between target
and input variables. The GLM, however, works better in wet regions such as the Amazon,
Central Africa, Indochina Peninsula, and the East European Plain. A possible explanation
is the linear relationship between input variables and the TWSGRACE in those regions. The
DNN model was found to be the leader for all other areas.

The contribution of input variables varies greatly among the three models on both
grid and basin scales. Spatially, AnnualGRACE has a greater contribution in humid regions
such as the Amazon, Central Africa, and northern Asia. The temperature plays a significant
role in model performance in the eastern United States. On the other hand, TWSGLDAS has
a significant contribution everywhere. The dominant role of the TWSGLDAS as a controlling
factor could be because precipitation and temperature are already captured in the physics
of the GLDAS model.

In addition to identifying the leader model as well as input variables that significantly
control TWSGRACE variability at each basin and grid point, this study provides better
performance compared to some of the previous studies (Table 3). Out of the 28 published
studies that used machine learning and statistical techniques to reconstruct TWSGRACE
data, this study’s performance metrics were better than 61% and fair when compared to
21% of them. This is a conservative estimate since the performance of the grid-scale outputs
in this study was compared to the other studies’ basin-scale outputs. The latter is expected
to have higher performance as explained above.

As with other studies, there are multiple sources of uncertainties associated with the
TWSGRACE reconstruction herein. These include uncertainties in target (e.g., TWSGRACE)
and input variables (e.g., rainfall, temperature, evapotranspiration, TWSGLDAS, NDVI,
ENSO, AnnualGRACE, and AnnualGLDAS). Errors in TWSGRACE data include both measure-
ments and leakage errors [131]. Both of these errors were reduced through the precise
parameterization of the gravity field solutions and applications of coastlines filters and
scaling factors [110]. Uncertainties in model inputs could be propagated from the train-
ing phase to the testing phase during the modelling process. These uncertainties were
addressed by reporting of the average ± a standard deviation of the performance measures
(Sections 4.1 and 4.2) and errors in the reconstructed TWSGRACE values (Figure 10). Other
sources of uncertainties in the reconstructed TWSGRACE data include unmolded human ac-
tivities (e.g., irrigation, groundwater extraction, land use/land cover changes, etc.) that are
challenging to find on a global grid scale. In addition, hyperparameters tuning for the em-
ployed models (GLM, GBM, and DNN) is challenging and time-consuming task especially
when it comes to simulating a total of 14,310 global grid points. Unoptimized parameters,
in some regions, might also introduce errors in the reconstructed TWSGRACE estimates.
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Table 3. Model testing performance comparison between this study and previous studies.

Reference Region/Basin Their Performance * This Study

Becker et al. [38] Amazon Basin CC = 0.9 CC = 0.98

De Linage et al. [35] Amazon Basin R2 = 0.43 NSE = 0.95

Long et al. [33] Southwest China R2 = 0.57–0.91 NSE = 0.84–0.95

Sośnica et al. [46] Global Mean CC = 0.5 Mean CC = 0.81

Zhang et al. [64] Yangtze Basin NSE = 0.83 NSE = 0.84

Humphrey et al. [30] Global CC: Amazon = 0.96; Mississippi =
0.89; Volga = 0.90; Niger = 0.98

CC: Amazon = 0.98; Mississippi =
0.9, Volga = 0.93
Niger = 0.91

Yang et al. [41] Northwest China NSE = 0.2 NSE = 0.52

Chen et al. [28] Northeast China CC = 0.9 CC = 0.66

Ahmed et al. [25] Africa NSE = 0.54–0.94; CC = 0.79–0.97 NSE = 0.65–0.93; CC 0.82–0.97

Hasan et al. [39] Africa NSE = 0.72–0.94 NSE = 0.65–0.93

Humphrey and
Gudmundsson [66] Global Median NSE < 0.5; CC < 0.75 Median NSE = 0.69; CC = 0.85

Ferreira et al. [67] West Africa CC = 0.88 CC = 0.91

Sun et al. [68] India CC = 0.94; NSE = 0.87 CC = 0.84; NSE = 0.71

Li et al. [53] China CC = 0.34–0.98; NSE = −0.21–0.95 CC = 0.44–0.95; NSE = 0.76–0.98

Jing et al. [69] Nile River Basin CC = ~0.9 CC = 0.91

Kenea et al. [31] Ethiopia R2 = 0.33–0.73; CC = 0.27–0.77 NSE = 0.1–0.93; CC = 0.38–0.97

Li et al. [32] Global Grid CC = 0.63; Basin CC = 0.6 Grid CC = 0.8; Basin CC = 0.89

Forootan et al. [48] Global CC = 0.89 (p = 0.00105) CC = 0.8; p < 0.00001

Sun et al. [71] Global Basin NSE = 0.7; CC = 0.9;
58% of grids @ NSE > 0.4

Basin NSE = 0.78; CC = 0.89; 87%
of grids @ NSE > 0.4

Sun et al. [42] United States CC = 0.95; NSE = 0.85 CC = 0.82; NSE = 0.67

Jing et al. [73] Pearl River Basin R2 = 0.56–0.71 NSE = 0.81

Sohoulande et al. [72] United States 41.2% of area @ R2 > 0.5 82.1% of area @ NSE > 0.5

Jeon et al. [74] Global NSE = 0.14–0.9 NSE = 0.35–0.9

Yu et al. [75] Canada CC = 0.96 CC = 0.8

Tang et al. [76] Lancang-Mekong River basin Basin CC = 0.97; Grid CC = 0.9 Basin CC = 0.98; Grid CC = 0.89

Yang et al. [77] Australia NSE = 0.96, CC = 0.98 NSE = 0.66; CC = 0.81

Gyawali et al. [20] Texas Gulf Coast CC = 0.85, NSE = 0.73 CC = 0.83; NSE = 0.67

Mo et al. [78] Global 40 basins NSE = 0.44–0.96 62 basins NSE = 0.44–0.97

* CC: correlation coefficient, NSE: Nash–Sutcliffe efficiency coefficient, R2: coefficient of determination, p: p-value.

The developed approach is robust, effective, and advantageous. Unlike the previ-
ous studies [32,71] that used similar data-driven and machine learning techniques, our
approach defines the leader model for each basin and grid point. The leader model as well
as input variables that significantly control TWSGRACE variability, were globally quantified,
for both basin and grid scales, previously performed only for the conterminous United
States [42]. This study’s approach offers the capability to reconstruct the TWSGRACE data
over small basins and grids (1◦ × 1◦) with high accuracy. Therefore, it helps overcome a
limitation that hinders the application of gravimetric datasets (e.g., SLR and Swarm) to
small-scale regions given their coarse spatial resolution [42]. When compared to data as-
similation techniques [82,83,86] that utilize computationally extensive complex algorithms,
the approach herein is computationally efficient and can be utilized on regular computers.
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6. Conclusions

This study reviewed the different approaches available in the literature to reconstruct
and fill temporal gaps in the TWSGRACE record. The study also provided a new approach
to fill current gaps in the TWSGRACE record (20 months), between the GRACE and GRACE-
FO missions (11 months), and within the GRACE-FO record (2 months) from April 2002
through to April 2020. The proposed approach compared the performance of three machine
learning models (GLM, GBM, and DNN) in reconstructing the TWSGRACE data at both
grid (1◦ × 1◦; total: 14,310) and basin (62 global watersheds) scales. Eight variables were
used to reconstruct the TWSGRACE data. The model performance was assessed during the
training and testing phases using three statistical measures (e.g., NSE, CC, and NRMSE)
and a leader model, that showed the highest statistical performance during the testing
phase, was selected for each grid and basin. The relative importance of each of the input
variables was also investigated.

Results indicate that the leader model reconstructed the TWSGRACE with high accuracy
over both grid and local scales, particularly in wet regions and those with low anthro-
pogenic impacts. The reconstructed TWSGRACE data captured extreme climatic events
over the investigated basins and grid cells. However, no single model could be used in
reconstructing the TWSGRACE over all grids or basins and a combination of models is
recommended. Despite the effectiveness of the developed approach, the adopted models
exhibit a relatively poor performance in arid and semi-arid regions because they do not
incorporate anthropogenic activities as model inputs. This may also be the result of lower
signal-to-noise ratio of the TWSGRACE in arid versus humid regions.

According to the most recent National Academy of Sciences Decadal Survey for Earth
Science and Applications from Space [132], mass change “within and between the Earth’s
atmosphere, oceans, groundwater, and ice sheets” has been recognized as an essential part
of observing the Earth system and recognized as a “Designated Observable.” While the
Decadal Survey emphasized the importance of measuring mass continuity changes, it is
still possible that the GRACE-FO mission, which was designed to have a nominal life of
5 years (2018–2023), could fail prior to the launch of the next mass-change observing system,
for which a target launch date has not yet been set. Therefore, there is a fundamental need
to predict and/or infer mass change from other variables, even beyond the current gaps.

The developed approach can serve as a reference tool to fill TWSGRACE data gaps in
GRACE and GRACE-FO missions. The model performance can be improved particularly
in arid and semi-arid regions by incorporating the anthropogenic impact variables into
the model inputs. In addition, the presented new approach could be used to reconstruct
TWSGRACE for the pre-GRACE era. A long-term and uninterrupted TWSGRACE record
could also be used to enhance the groundwater monitoring and other hydrological and
climatic processes across the globe.
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Appendix A

Table A1. Characteristics of global 62 major river basins used in this study.

Basin ID Basin Name Continent Precipitation
(mm/yr)

Area
(km2) Climate Zone

0 Nile Africa 704 3,271,155 Dry

1 Niger Africa 704 2,277,159 Dry

2 Lake Chad Africa 396 2,660,764 Dry

3 Zaire Africa 1556 3,735,917 Tropical

4 Zambezi Africa 980 1,472,701 Temperate

5 Okavango Africa 561 971,144 Dry

6 Limpopo Africa 537 487,829 Dry

7 Mozambique NE Coast Africa 833 278,592 Tropical

8 Ruvuma Africa 1017 1,071,358 Tropical

9 Volta Africa 1016 425,491 Tropical

10 Churchill North America 499 981,996 Continental

11 Saskatchewan-Nelson North America 548 2,836,224 Continental

12 Fraser North America 706 620,355 Continental

13 St. Lawrence North America 1051 2,149,625 Continental

14 Columbia North America 613 1,367,203 Continental

15 Colorado North America 320 978,636 Dry

16 Mississippi North America 884 5,625,053 Temperate/Continental

17 Mackenzie North America 481 1,992,763 Continental

18 Magdalena South America 2342 263,197 Tropical

19 Orinoco South America 2374 944,775 Tropical

20 Amazon South America 2263 6,025,286 Tropical

21 Tocantins South America 1663 803,661 Tropical

22 Parnaiba South America 1047 337,411 Tropical

23 Sao Francisco South America 976 673,366 Tropical

24 Uruguay South America 1795 347,840 Temperate

25 Parana South America 1309 3,065,761 Tropical

26 Rio Colorado South America 332 434,140 Dry
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Table A1. Cont.

Basin ID Basin Name Continent Precipitation
(mm/yr)

Area
(km2) Climate Zone

27 Flinders Australia 286 971,231 Dry

28 Murray Australia 521 1,040,403 Dry/Temperate

29 Lena Asia 457 1,453,767 Continental

30 Yenisei Asia 451 4,177,460 Continental

31 Ob1 Asia 668 2,221,313 Continental

32 Lena Asia 575 898,935 Continental

33 Ob2 Asia 529 1,681,026 Continental

34 Ob3 Asia 560 921,174 Continental

35 Amur Asia 622 4,776,036 Continental

36 Ili Asia 370 846,829 Continental/Dry

37 Syr Darya Asia 387 596,945 Dry

38 Amu Darya Asia 324 1,050,574 Dry

39 Tarim (Yarkand) Asia 112 1,539,641 Dry

40 Yodo Asia 531 346,578 Continental

41 Hwang Ho Asia 490 1,251,658 Continental/Dry

42 Yangtze Asia 1094 2,584,657 Temperate

43 Indus Asia 535 1,202,195 dry

44 Narmada Asia 409 401,453 Dry

45 Ganges-Brahmaputra Asia 1293 2,001,344 Temperate

46 Si Asia 1502 486,550 Temperate

47 Godavari Asia 1165 347,993 Tropical

48 Salween Asia 1113 327,489 Temperate

49 Irrawaddy Asia 1802 447,888 Tropical/Temperate

50 Krishna Asia 932 280,322 Tropical/Dry

51 Mekong Asia 1581 871,453 Tropical

52 Don Europe 722 1,055,369 Continental

53 Ural Europe 489 540,152 Continental

54 Dnieper Europe 786 1,308,031 Continental

55 Volga Europe 777 4,535,995 Continental

56 Danube Europe 917 1,653,884 Temperate

57 Murghab/Hari Rud Asia 257 465,732 Dry

58 Helmand Europe 241 285,431 Dry

59 Tigris-Euphrates Asia 380 1,253,767 Dry

60 Saudi Arabia Asia 80 275,525 Dry

61 Yemen Asia 66 232,406 Dry
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