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Abstract: Automation aims to improve the task performance and the safety of human operators.
The success of automation can be facilitated with well-designed human–automation interaction (HAI),
which includes the consideration of a trade-off between the benefits of reliable automation and the
cost of Failed automation. This study evaluated four different types of HAIs in order to validate
the automation trade-off, and HAI types were configured by the levels and the statuses of office
automation. The levels of automation were determined by information amount (i.e., Low and High),
and the statues were decided by automation function (i.e., Routine and Failed). Task performance
including task completion time and accuracy and subjective workload of participants were measured
in the evaluation of the HAIs. Relatively better task performance (short task completion time and
high accuracy) were presented in the High level in Routine automation, while no significant effects
of automation level were reported in Failed automation. The subjective workload by the National
Aeronautics and Space Administration (NASA) Task Load Index (TLX) showed higher workload in
High and Failed automation than Low and Failed automation. The type of sub-functions and the
task classification can be estimated as major causes of automation trade-off, and dissimilar results
between empirical and subjective measures need to be considered in the design of effective HAI.

Keywords: human-automation interaction; user experience; workload; task performance; level and
status of automation; evaluation

1. Introduction

Automation enables a broad range of systems to reduce errors, improve work performance,
expand human capabilities, and decrease effort and stress during operations [1]. It provides support for
perceptual-cognitive and decision-making tasks, thus reducing the physiological effort and workload
for the human operators as well [1,2]. However, the benefits of automation may be realized and
achieved only when the automation works as designed without any errors or malfunctions [3,4]. If the
automation fails, or the outcomes do not meet with operators’ expectations, operators may perceive
the automation as unreliable and inconsistent. Furthermore, excessive dependence on the availability
and reliability of automation might interfere with skill acquisition without automation, which would
make human operators misuse or disuse automation.

This unreliability and inconsistency by Failed automation depends significantly on the levels
of automation (LOA) and information processing stages. Previous research has defined the LOA by

Appl. Sci. 2020, 10, 1288; doi:10.3390/app10041288 www.mdpi.com/journal/applsci

http://www.mdpi.com/journal/applsci
http://www.mdpi.com
https://orcid.org/0000-0003-4189-0970
https://orcid.org/0000-0002-0122-532X
https://orcid.org/0000-0002-5264-6941
http://www.mdpi.com/2076-3417/10/4/1288?type=check_update&version=1
http://dx.doi.org/10.3390/app10041288
http://www.mdpi.com/journal/applsci


Appl. Sci. 2020, 10, 1288 2 of 14

the amount of automation autonomy and human physical and cognitive activity [5,6]. Sheridan and
Verplank [7] suggested 10 LOA as the basis of the classic human–machine task allocation principle:
at a higher level, automation can execute decision-making tasks without the aid of human operators,
at a lower level, it can execute an option within the operators’ controls, and at a further lower
level, it may be simply performed by the human operators. Kaber and Endsley [6] proposed that
automation could be classified according to the information-processing stages: perceiving the status
of the system variables or scanning displays (i.e., monitoring), formulation of task-processing plans
(i.e., generating), deciding on an optimal plan (i.e., selecting), and the control actions at an interface
(i.e., implementing). Elaborating on this classification, Parasuraman et. al. [4] presented a four-stage
model of automation to support the design of human–automation interactions (HAI) in complex
systems: information acquisition, information analysis, decision and action selection, and action
implementation. This classification aids the formulation of specific function allocation schemes for
automation. The combination of the LOA with information processing stages led to the development
of a concept known as the degree of automation (DOA) [3]. Each function in a model or an information
processing stage, either by the human or machine (or some combination thereof), is responsible for the
effects of automation on the task performance.

Under routine conditions or at higher LOA or DOA, human operators simply supervise the
automation in an automation-driven mode, while in the case of automation failure, they are expected
to override the situation control, which is referred to as a human-driven mode [8]. Generally, in an
automation-driven mode, the automation enhances the overall system performance, while in a
human-driven mode, it simply supports the system operation, or delivers signals or warnings to
human operators to maximize the performance [9]. Broadly, automation yields a trade-off, in which
better performance is exerted when all automation routinely works but increased dependence is
induced, and worse performance may be produced when it fails [10]. This trade-off is analogous to the
“lumber jack effect” in which “the higher trees in the forest are, the farther they fall” [3,11].

The trade-off indicates that automation is compensated between the benefits of reliable automation
and the expected costs of automation failures [12]. Not only does automated task performance but
also workload and loss of situation awareness follow a similar trade-off. With a higher DOA, Routine
automation progressively reduce the operator’s workload, the automation enables the operator to
engage in other concurrent tasks, but this frequently results in the loss of situation awareness (LSA).
The possible LSA renders all sorts of operators’ errors and a mistrust in automation or a lack of
proper understanding [13,14], that is, errors where operators failed to respond to a critical situation
if the automation failed to alert them properly or where operators followed incorrect advice of
automation without detecting this failure. Interestingly, modified meta-analysis confirmed that the
task performance is maintained at a similar level with increasing DOA and follows a “flat” function up
to a certain critical point, which mean that a human operator in Failed automation is not as vulnerable
from automation failure if the automation functions at the lower level (e.g., offering options) and earlier
information processing stages (e.g., information acquisition or information analysis) [3]. However, this
assertion is based on the results from only 18 studies, and statistical power is not enough. Moreover,
heterogeneous types of automation in the studies seem not to provide consistent performance results,
and the meta-variables form performance measures and subjective measures in workload and situation
awareness may not yield clear statistical conclusions.

Office automation is one of the easily accessible automated systems and widely used in various
areas. Transitions to modern office automation require learning, processing of new data inputs, and
substantial adaptation by the office workers. Such transformational adoption of human–system
interactions in office automation are often driven by meaningful user-oriented benefits. The improved
work performance by office automation is usually understood by the perspective of automation
technology; however, there is little consideration of the mental and physical costs to users. Closure of
this gap is necessary to better understand the implications of office automation on human–system
interactions and to the day-to-day office work performance. As a result, understanding how
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office automation affects user (worker) experience and workload can be considered a major part
of human–system integration efforts in everyday working environments [15,16]. Workload is a broad,
multifaceted term that encompasses the human “cost” of performing a task [17]. Despite the concern
with high workload in a modern office environment and its links to performance degradation, to date
few efforts have been made to design office technologies with office workers and team workload in
mind [18].

This study attempted to evaluate the relationship between user work performance and subjective
workload by different perceived trust levels in office automation. There have been few empirical
efforts attempting to ratify this HAI concept in general automation use. Furthermore, the trade-off

can be contrastingly perceived in subjective measures (i.e., subjective workload, trust). Although a
number of studies have examined the user workloads and performance in different DOAs, the results
were mixed [19–21], and relatively few addressed the issues of joint human-automation performance
in imperfect automation conditions. Therefore, in this study, we designed automated proofreading
tasks as an exemplary model of office automations that users can easily adapt to, and evaluated the
task performance measures (i.e., task completion time and accuracy) at different levels and statuses
of automation. To understand how automation in human–system interactions impact demands and
efforts, we also measured subjective workload by the National Aeronautics and Space Administration
(NASA) Task Load Index (TLX), which includes multiple subscales to subjectively evaluate user
demand [22]. Subjective workload along with perceived trust levels described the current status of
operative demand and identified the potential impact of HAI.

The remainder of this article is organized as follows: in Section 2, the automation design,
experimental setup, and data analysis procedures which will be used in the experiment are described.
The experimental results are presented and analyzed in Section 3. In Section 4, the effects of automation
on task performance and workload are discussed. Finally, a short conclusion is drawn in Section 5 and
the limitations and future studies are suggested in Section 6.

2. Materials and Methods

2.1. Participants

Staff and students in a university in the South Texas were recruited to participate. The Institutional
Review Board approved this study with the following inclusion criteria for interested participants:
(1) are native English speakers who have a similar level of reading comprehension capability of the
English sentences and (2) are familiar with a word-processing program and auto-correction function.

2.2. Automated Tasks

Automation in this study was provided for performing proofreading, which is one of the most
common types of automation experienced in word-processing. The participants were required to
identify and correct typographical errors in a sentence. Generally, the automated proofreading function
is already embedded in several word processors. Five proofreading tasks, similar to the AutoCorrect
feature in Microsoft Word, including one non-automated and four automated proofreading tasks,
were developed with a custom-built software program using Visual Studio 2016 (see Figure 1). In
the non-automated task, the participants were asked to manually identify a typographical error in
a sentence. The automated proofreading tasks were developed at two levels (i.e., Low and High) of
automation and two statuses (i.e., Routine and Failed automation). At the Low automation, only an
underlined word was provided to the participants, and, at the High automation, an underlined word
was provided along with a substitute (e.g., “subliminal” and “accountancy” in Figure 1). The Routine
automation status indicates that the underlined word is grammatically incorrect (e.g., “absorbs” and
“subliminal”). On the other hand, Failed automation status indicates that the underlined word is
grammatically correct (e.g., “accumulated” and “accountant”). Note that the substituting words in
Session 4 (e.g., “accountancy”) are grammatically incorrect and represent High and Failed automation.
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Figure 1. Four sessions of automated proofreading tasks by the combination of Low vs. High and
Routine vs. Failed automation. While High automation underlines a gramatically incorrect word
along with a possible substitute (multiple information), Low automation provide only a underlined
word (single information). While a correct word is underlined and an incorrect substitute is presented
in Failed automation, (malfunction of automation), an incorrect word is underlined and a correct
substitute is provided in Routine automation.

The sentences used in the experiment were randomly selected from a sentence pool created
by a two-step process. First, the sentences were extracted from well-known standardized tests (i.e.,
Scholastic Aptitude Test, Graduate Record Examination). Second, these sentences were categorized by
two levels of readability (i.e., easy vs. difficult) using an online readability test tool [23]. As a result of
the readability tests, a total of 120 sentences were collected: one half with readability scores between 9
and 14 (i.e., easy), and the remaining with readability scores higher than 14 (i.e., difficult).

2.3. Experiment Design and Procedure

A controlled laboratory experiment was conducted to investigate the effects of automation on
human task performance. A 2 × 2 full-factorial design between-subject with two levels (i.e., Low and
High) and two statuses (i.e., Routine and Failed) of automation were used in the experiment.
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Each participant performed three sets of tasks: training, reference (i.e., non-automated
proofreading), and main (i.e., automated proofreading). In the training task set, the participants were
presumed to be familiar with the control of automated proofreading tasks. In the reference task set,
the participants performed a non-automated proofreading task that provided a performance basis
with 20 sentences that were used as a reference to assess the task completion time and the number of
errors made in the task. After the reference task, the participants were allowed a two-minute break
before starting the main task set. In the main task set, four task sessions (see Figure 1) were assigned to
each participant by randomized orders of the sessions. Each session was composed of 20 automated
proofreading tasks. After each session, the NASA TLX questionnaire with a single “trust in automation”
question was provided to the participants for evaluating the subjective workload and trust level.

2.4. Dependent Variables

In this study, both task performance and subjective measures were collected. As task performance
measures, task completion time measured as the delay between the displaying of the task on the screen
and the clicking of the “Next” button, and task accuracy were assessed. The task completion time for
each sentence was measured and the average values were computed per session. The task accuracy
was calculated by the number of correct sentences per total sentences in a session. All task performance
measures were compared with the measures of reference tasks and converted to the standardized
performance ratios based on the non-automated condition to minimize individual difference, using the
following equation:

Standardized Per f ormance Ratio =
Per f ormance measure in automated tasks

Per f ormance measure in non− automated tasks
(1)

Furthermore, the trust levels and subjective workload measure by NASA TLX questionnaire were
evaluated as subjective operator performance parameters to understand the participants’ perception
of Routine/Failed automation at different automation levels. The NASA TLX questionnaire is a
multidimensional subjective workload-rating method, which is composed of six subscales that reflect
behavioral and subjective workload responses driven by the perception of task demands. In NASA
TLX, the subjective workload is defined as the “cost incurred by human operators to achieve a specific
level of performance [22].” This perceived subjective workload is evaluated as the integration of
subjective responses and behaviors. These behaviors and subjective responses are guided by the
perceptions of task demand, which can be quantified in terms of magnitude and importance. Table 1
showed the description of the questions for NASA TLX sub-scales and perceived trust.

Table 1. Survey questions of National Aeronautics and Space Administration (NASA) Task Load Index
(TLX) subscales and perceived trust on automation.

Subscale Description

Mental Demand How much mental and perceptual activity was required? Was the task easy or demanding,
simple or complex?

Frustration How irritated, stressed, and annoyed versus content, relaxed, and complacent did you feel
during the task?

Temporal Demand How much time pressure did you feel due to the pace at which the tasks or task elements
occurred? Was the pace slow or rapid?

Perceived Performance How successful were you in performing the task? How satisfied were you with
your performance?

Effort How hard did you have to work (mentally and physically) to accomplish your level
of performance?

Perceived Trust * How trustworthy and helpful was the automation (indicating the word to be corrected or
suggesting substitutes)?

* 3 scales: expected, less than expected, or more than expected.
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2.5. Data Analysis

We measured task performance by standardized task completion time (ST) ratios and standardized
task accuracy (SA) ratios. If the ST ratio is greater than 1, the automation is considered as having
lengthened the task completion time; and if it is less than or equal to 1, the automation is considered as
having accommodated the task completion time. Similarly, if a SA ratio is greater than 1, the automation
improves the task completion accuracy; and if it is lower than or equal to 1, the automation causes
more errors and deteriorates the task accuracy.

A repeated two-way analysis of variance (ANOVA) was performed to test for differences between
the values of the measures, i.e., task completion time and accuracy, under different automated
conditions. Prior to the analyses, all dependent variables were examined to check if the assumptions
of ANOVA were met. This was achieved by checking normality using Curran’s criteria of skewness
(<2) and kurtosis (<7) [24], and homogeneity of variance across groups [25]. The alpha criterion of
0.05 was used to assess statistical significance. Furthermore, the Friedman test was performed as a
post-hoc test using the Bonferroni method for testing both main and interaction effects. All analyses
were performed using IBM SPSS Statistics version 24.

For a subjective workload measure, NASA TLX was administered post-trial, which required
the participants to rate each question item. Five NASA TLX subscales including mental demand,
temporal demand, effort, frustration, and perceived performance were rated on a 20-point scale (0-low,
20-high) [22]. Physical demand, one of subscales, was excluded considering task features. The “raw
TLX” approach was applied without the pairwise comparison between the subscales in the NASA
TLX data analysis, which is validated by many researchers [26]. The raw TLX approach is simpler to
apply; the ratings are averaged or added to create an estimate of the overall workload, and an overall
estimate of the subjective workload by each automation case was computed by averaging the scores
describing each of the five subscales. In addition, a question to indicate a variation from perceived
trust on automation, reported as “expected,” “less than expected,” or “more than expected,” was asked
to participants.

3. Results

Forty-nine college students and staffs (26 females and 23 males) in the 18–42 age range (mean
(M) = 29.1 years, standard deviation (SD) = 4.3 years) took part in this study. Four participants did
not complete the given task sets. Considering participants’ average completion time, the tasks that
required more than 60 s per sentence to complete and the sessions that took less than three minutes
were excluded from further data analysis. In total, 166 ST ratios and 170 SA ratios were collected.

3.1. Task Performance Measures at Different Automation Levels and Statuses

Figure 2a describes the ST ratios at different automation levels and statuses. We observed that
the ST ratios are significantly increased by the status (F (1,82) = 4.012, p < 0.05) and level × status
(F (3,163) = 3.101, p < 0.05), but not by level (F (1,82) = 3.687, p = 0.0583). As expected, High and
Routine automation showed significantly lower ST ratios than Low and Routine automation, whereas
pairwise comparison of both Failed automations did not show a statistically significant difference
(F (3,163) = 2.472, p = 0.0636).

Figure 2b describes the SA ratios at different automation levels and statuses. The SA ratios were
significantly affected by level (F (1, 84) = 4.733, p < 0.05), status (F (1, 84) = 5.092, p < 0.05), and
level*status (F (3, 167) = 2.756, p < 0.05). Similar to the ST ratio patterns, High and Routine automation
shows significantly high SA ratios on automation statuses, and Low and Routine automation shows
the second-highest accuracy, whereas pairwise comparison of Failed automation did not show the
significant difference (F (3,167) = 3.121, p = 0.717). The differences in SA ratios were not significant in
the Failed automation (F (1, 84) = 3.372, p = 0.0699).
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Longitudinal performance changes were examined for ST and SA ratios, as shown in Figures 3
and 4, respectively. These figures demonstrate how the users adapted to Routine and Failed automations
over a prolonged period. As a result, except for SA ratios in High and Routine automation, no significant
performance changes were observed. An ANOVA on SA ratios in High and Routine automation
yielded a significant difference among sessions, F (3, 42) = 4.29, p < 0.05. A post-hoc test showed
that SA ratios in the session 1 and in the session 4 differed significantly at p < 0.05. In addition,
we could confirm that there was no longitudinal difference in statistically similar performances in
Failed automation.
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3.2. Subjective Workload Measures in Different Automation Levels and Statuses

Table 2 summarizes the descriptive statistics for overall subjective workloads by automation
statuses and levels. Generally, a comparison of the effects of automation levels and statues on the
workload showed that as the automation level is increased, the overall subjective workload decreased
in Routine automation (F (1, 89) = 4.57, p < 0.05) and increased in Failed automation (F (1, 89) = 5.61,
p < 0.05). These patterns correspond to those in the lumberjack hypothesis of automation [3]. The
participants perceived that the subjective workloads are sensitive to the automation levels and Failed
automation imposed more workload than Routine automation. Specifically, Table 3 indicates that
“High and Failed” automation shows the highest subjective workload in the four different automation
settings, in which “High and Routine” automation can be considered as the most operable condition.

Table 2. Overall subjective workload by automation level and status.

NASA TLX Scale
Automation Level and Status

Low and Routine High and Routine Low and Failed High and Failed

Overall Subjective Workload 36.1 (6.72) 31.3 (5.58) 66.0 (10.71) 75.3 (8.01)

Table 3. NASA TLX subscales by perceived trust levels.

Perceived Trust Total N = 45
Subjective Workload Subscale (Mean)

Mental
Demand Effort Perceived

Performance
Temporal
Demand Frustration

Lower than expected 7 13.8 A 9.6 A 13.4 A 13.8 A 14.0 A

As expected 11 8.6 B 8.2 B 8.4 B 9.4 B 10.2 B

Higher than expected 27 8.0 B 7.8 B 8.2 B 8.8 B 7.6 C

Difference in capital letters indicate significant difference (p < 0.05) in group means.
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The evaluation of the subscales showed patterns different from the overall workload (see Figure 5).
The effects of automation statuses were notable, while the effects of automation levels were mixed.
Only perceived performance (F (3, 187) = 5.26, p < 0.001) and frustration (F (3, 187) = 11.879, p < 0.001)
demonstrated significant effects of automation levels, while for the mental demand (F (3, 189) = 2.88,
p = 0.698) and time demand (F (3, 189) = 2.78, p = 0.708) subscales, the automation level did not impact
the measurements in Failed automation. Similarly, for the effort subscale, the participants did not
recognize the effect of automation level in both Routine and Failed automations (F (3, 189) = 2.82,
p = 0.703; F (3, 189) = 2.88, p = 0.698).
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Figure 5. NASA TLX subscale scores by levels of automation.

The correlation between subscales and overall scores shows that the subscales are highly
interrelated, while perceived performance is inversely correlated to other subscales and overall
workload. The overall workload was highly correlated with mental demand and temporal demand
(r = 0.78 and r = 0.63, respectively). In addition, temporal demand and mental demand were highly
correlated (r = 0.65).

Participants reported a perceived trust in automation level as expected or higher than expected
for 84% with the remaining 16% reported as lower than expected (see Table 3). Perceived trust is
well correlated with participants’ subjective workload scales (r = 0.79), and they also reported poorer
perceived performance with unexpectedly medium (as expected) perceived trust on automation
(p < 0.01). Frustration differed statistically across the three difficulty expectation levels, with frustration
lowest when the perceived trust level was higher than expected (p < 0.001).

4. Discussion

4.1. Effects of Automation on Task Performance

The results showed that the automation levels marginally affected both performance measures
while automation statuses moderately affected both task completion time and accuracy of proofreading
tasks. Comparing task performance in Routine status, SA ratios (task accuracy) were more increased
than ST ratios (task completion time) by a high level of automation (see Figures 2 and 3). Although
this comparison needs to consider the ceiling and flooring effects, the sub-functions of the automation
task may lead to different performance outcomes. The task used in this study comprises cognitive
functions such as detecting a typographical error, correcting the error, and checking the spelling, and
physical functions such as typing or writing the corrected word. At Low automation, the detecting
function was automated, while at High automation, both detecting and correcting functions were
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automated. We observed that as the automation level increased, more cognitive functions than the
physical functions are automated. Cognitive functions are vulnerable to the mistakes that are relevant
to task accuracy, while physical functions easily commit errors that worsen the task completion time
such as lapses, and slips [27,28]. Thus, we could infer that SA ratios are more enhanced than ST rations
by the Routine automation.

Contrastingly, the almost “flat” pattern of the performances at different automation levels was
observed in the Failed status. As shown in Figures 2 and 3, the average task performance in both
Low and High levels of Failed automation was not significantly different. These performance patterns
are closely associated with the lumberjack hypothesis suggested by Onnasch et al. [3]. According to
the hypothesis, the performance follows a “flat” function up to a certain critical point regardless of
the automation level in Failed automation. Therefore, the task performance in this range of Failed
automation would not be affected by malfunctioned automation or unexpected automation failures,
and the users could maintain their performance despite they acknowledge that the automation did not
work properly.

This flat performance in Failed automation can be upheld by the skill, rule, and knowledge
(SRK)-based classification. The SRK classification provides a useful framework to distinguish human
behaviors or tasks based on the type of information processing demands and the different states of the
constraints in working environments [27,29]. According to the SRK classification, human behaviors
can be categorized into cognitive (rule/knowledge-based) and physical (skill-based) tasks [27]. Since
automation is defined as the technology or the system to minimize human assistance, and it reduces
information processing demands or difficult physical activities [30], rule/knowledge-based complex
cognitive tasks are transformed into simple physical skill-based or rule-based tasks in Routine
automation. However, Failed automation requires cognitive demanding rule/knowledge-based tasks
(e.g., searching for an error). Given tasks in this study, the dexterity, knowledge, and mental resource
required to complete the tasks are not complex enough to be knowledge-based tasks, and the conscious
control of action with low cognitive demands (i.e., reading capability to choose the right words) and
routine practice to apply the simple rule (i.e., a basic knowledge of grammar) are enough. Thus,
participants can maintain their performance even in Failed automation, and this characteristic of the
subtask in Failed automation results in a “flat” task performance. If the tasks depend on a higher
level of automation, they will consist of more rule/knowledge-based behaviors and malfunctioned
automation causes a severe decrease in the task performance.

4.2. Effects of Automation on Overall and Subscale Workload Measurement

While we observed a clear distinction of subjective workload between Routine and Failed
automation, mixed patterns were shown by automaton levels (see Table 3). Participants perceived
heavier workload in High and Failed automation than in Low and Failed, but there was no significant
difference in Routine automation by different automation levels. These patterns could be interpreted
as meaning that participants perceived heavy demands or more efforts are required when High level
automation is failed, whereas they felt similar amounts of demands or efforts regardless of automation
levels. This mixed pattern was also shown in the subscales: while all subscales in Routine automation
indicated lower scores than those in Failed automation, no distinctive advantages in Low automation
were reported subscale ratings. The automation levels significantly affected frustration and mental
demand in both automation statues. Perceived performance and temporal demand in only Failed
automation. These results suggested that the effects of automation levels in the office automation of
this study were less notable than those of automation statuses.

More specifically, automation levels influenced the subscales in Failed automation. Except for
effort, other subscales in High and Failed automation were higher than those in Low and Failed
automation. Whereas the task performances (task completion time and task accuracy) were similar
outcomes, the subscales of subjective workload were distinctively different in Low and Failed and
High and Failed automations. This discrepant result may be caused by different traits of two measures.
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Task performance can be measured by an empirical approach, and subjective workload refers to the
portion of the individual’s limited capacity and invested effort to perform a given task [31]. However,
these two measures are not always well-matched. Humans tend to perceive and respond differently
to the overall experience of whole-task scenarios and instant reactions [32]. Although the measuring
method of the subjective workload is convenient, there are always issues as to whether any form
of self-report accurately reflects respondents’ “true” perceptual experiences [33,34]. To establish
the validity of ratings of perceived performance, several studies suggested bringing such subjective
ratings under experimental control by demonstrating their association with objective factors [33,35,36].
The gap between empirical measures and subjective self-report measures of the effects of automation is
considered a potential cause of inconsistent outcomes in different automation.

The effort and perceived performance were higher than other subscales, and their scores exceeded
the midpoint threshold on the NASA-TLX subscale. The midpoint threshold has been applied to access
an unsustainable demand in other domains [37,38]. However, these specific sustainability thresholds
have not been established within HAI. Based on the results in this study, future research should focus
on minimizing effort and perceived performance. These findings suggest that providing automation
for decision support may aid in smooth information processing and efficient planning procedures. If
the automation delivers supportive information with positive HAI, it may reduce subjective workload
for operators in unexpected automation failures.

A pattern emerged from the data between trust levels and subjective workload. Reported workload
differed significantly for the participants when there was a deviation from the expected trust level.
Specifically, when the trust level was lower than expected, all NASA-TLX subscales but frustration was
significantly higher than cases that were rated at or higher than the expected trust level. While goal
expectation has been studied in education and training and acknowledged as contributing to workload
demand and workload variability, the impact of trust on task demand has not been quantified [39].

These contrasting results of subscales indicate that individual differences in operator performance
are considered another cause of varied task performance in automation [40]. Although it has been
adequately discussed in a wide range of psychology, sociology, human factors, and human–computer
interaction literature [41,42], the effect of individual difference in human task -performance in
automation has not been clearly identified. Even the same automation cannot uniformly affect task
performance in different operators. In particular, due to the variance in information-processing
ability and working-memory capacity, irregular patterns of task performance and variable degrees of
situational awareness are established [43,44].

5. Limitations and Future Direction

The following are the potential limitations of the current study: First, the levels of automation
in this study require further diversification. We designed the automation tasks with only two levels,
based on the readability of the sentences. However, two levels may not be enough and too simple
to describe a wide range of HAI variation. Therefore, the automation levels should specifically be
defined not from the system design perspective, but from the user operation perspective. One viable
user-oriented approach is Parasuraman’s four stages of automation [4]. Since information processing
can be acknowledged as continuous and sequential, rather than discrete processing, designing the
distinctive levels of automation will be challenging. However, verifying the automation effects on task
performance in more detailed and explicit levels or degrees of automation should be considered.

Second, the results of the study are limited to simple office automation and the task performance
was evaluated only in terms of time and accuracy. Despite the advantage and value in the application
of office automation, it does not have enough variability and flexibility in terms of the changes in
the level or degree to evaluate the effects of the automation. More specified automation levels or
degrees would provide detailed performance measures, so that the effects and adoption patterns
of new automated functions can be identified. In addition, the task completion time and accuracy
cannot be a complete set of task performance measures. Additionally, the performance indicators
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including relatively objective criterion measures, such as job knowledge tests and production rates,
the dimensionality of job performance, and validity estimates against task performance (e.g., ability,
personality, etc.) need to be considered [45].

Third, this study compared task performance with subjective workload measures in automation
task performance. However, the two groups of measures were evaluated by different data collection
approaches. While task performance measures gather data during the experiments, subjective workload
measures collect attitudes or perceptions using a post-hoc survey questionnaire. However, the different
data collection approaches may hinder a direct comparison between the two types of measures.
Therefore, to minimize the possible biases from the different types of data, this study used standardized
values for task performance and the Likert scale for subjective workload measures. These corrective
approaches make it possible to compare the measures indirectly.

To overcome the aforementioned limitations, several further studies are suggested: first, the
automation tasks should incorporate wider types of automation with specific definitions of the type,
degree, and level of automation. Second, the experiment requires sufficient time to cover the patterns
of adoption and learning. Such an experimental design will enable researchers to investigate task
performance changes between adoption, boredom, and fatigue as the automation is extended. It will
also allow researchers to investigate the changes in trust or frustration over time. Last, another task
performance measuring approach can be considered, for instance, physiological measures by various
sensors may supplement the objective and subjective evaluation of task performance. Since the concept
of task performance seems to be difficult to define, physiological measures, such as heart rate or skin
conductance, can provide additional information to aid the evaluation of the effects of automation on
task performance.

6. Conclusions

In this study, we evaluated both task performance and subjective workload by automation levels
and statuses to validate the automation trade-off in office automation. The automation trade-off

between benefits and cost of automation is critical to understanding the overall operator performance
and to develop complicated HAI design constraints. The automation tasks in this study were performed
by two levels of automation (i.e., Low and High) and two automation statuses (i.e., Routine and
Failed). Both task performance measures (task completion time and accuracy) showed clear benefits
of automation level in Routine automation, while no significant effects of automation level were
reported in Failed automation. The type of sub-functions possibly contributes to the “flat” performance
in Failed automation, and the task classification may support understanding of the effects of the
automation trade-off. Furthermore, task accuracy exhibited more advantages of automation than task
completion time in Routine automation. The subjective workload by NASA TLX showed that higher
workload was computed in High and Failed level automation that in Low and Failed automation,
while mixed outcomes were shown in the subscales. The results provided important implications for
future automation studies by: (1) considering the structure and the features of the sub-functions or
sub-tasks in automation, (2) suggesting strategies for smooth and successful adoption and prevention
of unexpected failure, and (3) providing valuable insights into the HAI system design considering
operators’ subjective workload and trust in automation.
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