
August 2021 
 

LAND SUBSIDENCE IN COASTAL TEXAS: LOCATIONS, RATES, TRIGGERS, AND 

CONSEQUENCES 

 

 

 

 

 

A Thesis 

by 

MICHAEL HALEY 

 

 

 

BS, Texas A&M University – Corpus Christi, 2019 

 

 

 

 

 

Submitted in Partial Fulfillment of the Requirements for the Degree of 

 

 

 

 

MASTER OF SCIENCE 

 

in 

ENVIRONMENTAL SCIENCE 

 

 

 

Texas A&M University-Corpus Christi 

Corpus Christi, Texas 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

© Michael Boyd Haley Jr. 

 

All Rights Reserved 

August 2021 



August 2021  

LAND SUBSIDENCE IN COSTAL TEXAS: LOCATIONS, RATES, TRIGGERS, AND 

CONSEQUENCES 

 

 

 

 

 

A Thesis 

by 

MICHAEL HALEY 

 

 

 

 

 

This thesis meets the standards for scope and quality of 

Texas A&M University-Corpus Christi and is hereby approved. 
 

 

 

 

 

 

 

 
Ahmed Mohamed, PhD 

Chair 

 
Dorina Murgulet, PhD 

Committee Member 

 
Michael Starek, PhD 

Committee Member 



iv  

ABSTRACT 

 

 

Land subsidence and sea level rise are well-known ongoing problems that are negatively 

impacting the entire Texas coast. While ground-based monitoring techniques using Global 

Positioning System (GPS) provide accurate subsidence rates, they are labor intensive, expensive, 

time consuming, and spatially limited (e.g., point measurements). In this study, Interferometric 

Synthetic Aperture Radar (InSAR) techniques were used to map locations and quantify rates of 

land subsidence in the Texas Costal Bend region during the period from October 2016 to July 

2019. InSAR-derived land subsidence rates were validated against GPS-derived rates. Factors 

controlling the observed land subsidence rates and locations were also investigated. Consequences 

of increased land subsidence rates in Texas Costal Bend region were examined. Results indicate: 

(1) land subsidence rates in the Coastal Bend exhibit both spatial and temporal variabilities, (2) 

some areas experienced a localized subsidence as high as -21 mm/yr and other areas show a land 

uplift with rate of > 10 mm/yr, (3) InSAR-derived land subsidence rates were consistent with GPS-

derived deformation rates, (4) Seven regions (e.g., Victoria, George West, Refugio, Falfurrias, 

Karnes City, McAllen, and Nueces Bay/Corpus Christi) were observed to experience significant 

land subsidence rates along Texas Costal Bend region during the investigated period, (5) land 

subsidence in Coastal Texas is attributed mainly to oil and ground water extraction as well as 

vertical movements along growth faults, and (6) land subsidence increased both flood frequency 

and severity in Coastal Texas. Our results provide valuable information regarding not only land 

deformation rates in the Texas Coastal Bend region, but also the effectiveness of interferometric 

techniques in other coastal rural areas around the world that lack significant GPS coverage. 

Mapping land subsidence rates and locations in coastal Texas 
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significantly improve the current understanding of factors controlling the variability in land 

deformation in coastal areas by providing a high-resolution spatial and temporal dataset that is 

currently not available on this detailed scale. 
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CHAPTER I 

 

Introduction 
 

1. Background 

 

Currently, more than 30% of the world’s population lives in coastal areas, and 50% are 

expected to do so by 2030 (Small and Nicholls 2003). However, the majority of coastal areas are 

witnessing land subsidence (Abidin et al. 2013; Eggleston and Pope 2013; Blackwell et al. 2020). 

Land subsidence increases vulnerability of coastal communities to natural forces such as flooding, 

hurricanes, tsunamis, and sea-level rise (Wu et al. 2002; Dolan and Walker 2006; Felsenstein and 

Lichter 2014). Hurricanes and flooding are associated with loss of life, livestock, crops, and natural 

habitat; property damage; and contamination of surface and groundwater resources (Grineski et al. 

2019; Venkataramanan et al. 2019). Sea-level rise is usually associated with inundation of 

wetlands and deltas, enhanced coastal erosion, increased vulnerability of costal environments 

to storms, and seawater intrusion/pollution in coastal aquifers and surface water supplies (Don et 

al. 2006; Fitzgerald et al. 2008). 

Land subsidence and sea level rise are ongoing phenomena that negatively impact the entire 

Texas coast (Bawden et al. 2012). In Texas, land subsidence is generally attributed mainly to 

sediment compaction, faulting, salt tectonics, and fluid (groundwater and hydrocarbon) 

withdrawal (Zilkoski et al. 2003; Khan et al. 2014; Qu et al. 2015a). 

Although ground-based monitoring techniques such as the global positioning system (GPS) 

stations provide accurate land subsidence rates, they are labor intensive, expensive, time 

consuming, and spatially limited (in other words, they are point measurements) (Paine 1993; 

Zilkoski et al. 2003). The use of radar interferometry offers an alternative solution to this problem 

by providing land deformation rates on a spatially global scale. 
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Synthetic Aperture Radar (SAR) is a technique that uses temporal radar images to infer 

topographic relief as well as subtle topographic changes. The main principle of SAR is that the 

longer an antenna is the higher the resolution of the observed surface features will be. Due to 

limitations in antenna sizes on spaceborne satellites, SAR was created to give the effect of a 

larger antenna with a fixed antenna length. This is done by the satellite sending pulsed signals at 

regular intervals of the same surface features and receives them give the effect of increasing the 

length of the antenna and thus the name Synthetic Aperture Radar (Shan and Ye 1998). 

Interferometric Synthetic Aperture Radar (InSAR) takes advantages of the high- 

resolution SAR images by using mathematical manipulation to calculate millimeter scale 

deformation. First, a pair of overlapping SAR images must be acquired. This is done by a 

satellite mounted radar observing the same land feature at almost an identical vantage point at 

different times. The next step is to co-register the two images so that phase information can be 

generated from each pixel and paired with the corresponding pixel in the second image. The next 

step is creating interferograms which is done by subtracting the phase values from each 

corresponding pixel. Next, the effects of geometry and topography must be removed. Because 

the satellite takes each image acquisition from a slightly different vantage point, the viewing 

angle is slightly different on each image. This look angle difference causes a predictable 

interference patten that must be removed as it is not a product of the land deformation and is 

noise for InSAR studies. Topography is removed from the interferogram via a digital elevation 

model (DEM). Topography causes a predictable interference pattern based on the look angle and 

wavelength of the sensor. Lastly, a weather model correction is applied to remove any 

atmospheric noise that could be within the images. Atmospheric noise appears in the form of 

atmospheric delay anomalies that complicate the interpretation of the interferograms greatly. 
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These anomalies originate in the troposphere or ionosphere and are usually caused by 

inhomogeneities in water content, temperature or electron density (Dzurisin and Lu 2006) 

Resulting interferograms represent changes only in distance between ground surface and 

the radar instrument. Distance changes are used to generate maps of land surface deformation over 

areas of interest (Hooper et al. 2007; Ferretti et al. 2011; Galloway and Burbey 2011; Miller et al. 

2017; Gebremichael et al. 2018). Radar interferometric techniques have been successfully used to 

map and measure topographic variation rates as small as 0.1 mm/yr (Massonnet and Feigl 1998), 

deformation and fault slip from earthquakes (Aslan et al. 2019), mine subsidence (Blachowski et 

al. 2019), aquifer compaction from pumping (Galloway et al. 1998; Othman et al. 2018), landslides 

(Hu et al. 2019), and land subsidence in urban areas (Khan et al. 2014; Qu et al. 2015b). InSAR 

studies have previously been effectively used in coastal areas around the world and even in the 

gulf coast, most notably in Houston.Qu et al. (2015) found that between in the 1990s and 2000s 

northwest Houston was experiencing subsidence rates as high as 53 mm/yr. Additionally, a strong 

spatial and temporal correlation was found between fluid withdrawal and subsidence in 

corresponding areas. They also reported that 8 hydrocarbon extraction fields within the Houston 

area were seeing localized subsidence. Additionally, a heterogeneous land deformation was 

reported at different points along multiple faults within the Houston study area. 

Bawden et al. (2012) found that the northwestern portions of Harris County were 

experiencing rapid subsidence. The subsidence is linked with large amounts of groundwater 

extraction. It is estimated that between 1900 and 1979 as much as 3 m of subsidence had occurred 

in areas of Houston. This study conducted an InSAR study in conjunction with the use of GPS for 

validation . These studies showed that the historical areas of subsidence had now slowed down, 

but the new feature of subsidence the “northwest subsidence feature” was the new 
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primary area of concern in the area. This study also showed that areas of previous subsidence due 

to groundwater extraction, could be regions of uplift with modern water conservation methods and 

the replenishment of aquifers. 

Miller and Shirzaei(2019) reported that between 2007 and 2011 northwest Houston was 

experiencing land subsidence rates of 24 – 30 mm/yr. However, between 2015 and 2017 

subsidence rates as high as 24 mm/yr were observed again in northwest Harris County. This 

study also incorporated the use of SAR acquisitions to map flooding in Houston in the aftermath 

of hurricane Harvey and found that there was a significant correlation between areas that were 

inundated and land subsidence rates. 

InSAR studies in coastal areas have also been used successfully in other parts of the United 

States. For example, Blackwell et al. (2020) found that that four major cities along the California 

coast: San Francisco Bay area, Monteerrey Bay, Los Angeles and San Diego were all experiencing 

subsidence. It notably found that in Los Angeles the observed subsidence rates were congruent 

with an increase in fluid extractions during the period and thus compaction of the underlying strata. 

In San Francisco and Monterrey Bay the primary controlling factors appear to be the large amount 

of faulting in the area, notably the San Andreas fault system. 

In Miami, and Norfolk, ,Fiaschi and Wdowinski (2020) found that subsidence in Miami, 

Florida coupled with an increase in sea level has caused more frequent flooding events most 

notably on south beach where the localized subsidence is observed. While in Norfolk, Virginia, 

higher average subsidence rates are seen throughout the entire study area and are spatially 

correlated with an increase in groundwater extraction activities. 

We believe that the aforementioned studies show that InSAR is an effective technique to 

monitor land subsidence in a coastal environment. These prior studies point out faulting and fluid 
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extraction as primary controlling factors for land subsidence, and spatially correlating these two 

factors with observed land deformation rates from InSAR will help greatly in the understanding 

for the possible causes of land deformation within the Coastal Bend. 

 
 

2. Objectives and Significance 

 

In this study, radar interferometric techniques were used to map locations, quantify rates, 

investigates controlling factors, and examine the consequences of land subsidence in the Costal 

Bend region in Texas (Figure 1). This research will provide valuable information regarding not 

only land deformation rates in the Texas Coastal Bend region, but also the effectiveness of 

interferometric techniques in other coastal rural areas around the world that lack significant GPS 

coverage. Mapping land subsidence rates and locations in South Texas significantly improve the 

current understanding of factors controlling the variability in land deformation in coastal areas 

by providing a high-resolution spatial and temporal dataset that is currently not available on this 

scale. Additionally, most of the current models that are used to assess the impacts of sea level 

rise on coastal resiliency utilize constant, in space and time, land deformation rates. The results 

of this study could be used to improve the performance of many sea level rise impact models. 

 
 

3. Study Area 

 

The Coastal Bend region of Texas (Figure 1) represents our study area. Much of the study 

area is comprised of rural countryside and small towns, so conventional methods of tracking land 

deformation such as GPS (green dots; Figure 1) do not provide a spatially adequate dataset over 

the entire region because the GPS stations are concentrated in the larger towns within the region. 

Land cover in the study area is primarily agriculture and rangelands. The agriculture and urban 
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areas have been steadily growing in the area, while the forest, rangeland and wetland portions are 

all steadily shrinking (Stukey, Jared 2004). 

Geologically, the Coastal Bend region is situated on a passive depositional margin with 

geologic formations consisting primarily of alternating sand, silt, and clay layers (Figure 2). The 

sedimentary sections are estimated to be 4,500 – 5,500 m thick near the coastline. These 

sedimantary sections are heavily faulted. The faulting tends to be regional, and varies in 

complexity from system to system (Baker 1995). Growth faults, parrallel to the coastline, are 

common within the Texas coast and are attributed to the loading on the unconsolidated sediments 

in this region (Ryder and Ardis 2002; Bruun et al. 2016). The faults are part of part of the Cenozoic 

Wilcox and Frio fault trends which are comprised of large displacement, dominantly down to the 

basin growth faults (Jackson et al. 2020). Fault density within the area is shown in figure 2b, 

showing the concentration of growth faults spatially within the area. 
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Figure 1: Map showing study area (red polygon), Sentinel-1 footprints (gray polygons), Gulf 

Coast Aquifer (blue polygon), and locations of GPS Stations (green circles). 
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Figure 2: (a) Geologic map showing surface lithology within Texas Coastal Bend region. Also 

shown is the spatial distribution of growth faults (orange lines). (b) Growth faults density (in 

km/km2) within the study area. (c) Spatial distribution of sand percentage within the GCA. 

Circles 1 to 7 are areas that were identified to witness a significant land subsidence during the 

investigated period. 

The hydrogeology of the study area is dominated by the Gulf Coast Aquifer (GCA) system, 

which runs parallel to the Gulf of Mexico coastline from the Louisiana border in the northeast to 

the border with Mexico in the southwest. This GCA system contains several aquifers including: 

Jasper aquifer, Evangeline aquifer, and the Chicot aquifer. These aquifers are composed of 

discontinuous sand, silt, and clays. These aquifer units thicken toward the Gulf of Mexico 

(Chowdhury et al. 2001). Groundwater is typically unconfined or semi-confined in this system. 

The specific yields from GCA are quite low when compared to other sedimentary unconfined 

aquifer systems due to the interbedded silt/clay lenses that confine the aquifers in smaller areas 

(Chowdhury et al. 2004). 
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Figure 3: (a) Map showing historical groundwater extraction (in m3/yr) averaged by county 

during the period from 2000 to 2015. (b) Difference between groundwater extraction (in m3/yr) 

between the study period (2016-2019) and the historical period (2000-2015). Circles 1 to 7 are 

areas that were identified to witness a significant land subsidence during the investigated period. 

 
 

The large volume of water pumped from the aquifers has caused subsidence, particularly in the 

Houston area (Bawden et al. 2012; Qu et al. 2015c); however, recent application of water 

conservation strategies has driven substantial water level rebounds. Groundwater extraction within 

the GCA is estimated at 518 × 109 m3 per year. Most of the pumping in the area occurs in the form 

of irrigation (Chowdhury et al. 2004). Figure 3 shows spatial distribution of groundwater 

extraction rates in the Coastal Bend region. 
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Oil and Gas extraction practices are significant within the study area. Oil and gas 

extraction, along with the fluid injection that accompany it, have been shown to cause localized 

land deformation within oil and gas fields (Kim and Lu 2018). Figure 4 shows average annual oil 

extraction rates extracted from the Texas Railroad Commission (https://www.rrc.state.tx.us/) 

between January 1993 and January 2020 for each county. 
 

 

 
 

 

 

Figure 4: (a) Map showing historical oil/gas extraction (in BBL/yr) averaged by county during 

the period from 2000 to 2015. (b) Difference between groundwater extraction (in m3/yr) between 

the study period (2016-2019) and the historical period (2000-2015). Circles 1 to 7 are areas that 

were identified to witness a significant land subsidence during the investigated period.

https://www.rrc.state.tx.us/
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CHAPTER II 
 

Data and Methods 

1. Data 
 

This was broken into three separate workflows. First, quantifying land subsidence rates and 

mapping land subsidence locations using radar images. Second, collecting relevant auxiliary 

datasets (e.g., fluid extraction rates, geologic structures) to investigate factors controlling the 

observed land deformation. Lastly, the generated land deformation rates were correlated with 

flooded areas extracted from radar images right after major flood events to examine if land 

subsidence made areas more susceptible to flooding. Two flood events were selected for this 

purpose, Hurricane Harvey (August 2017) and Hurricane Hanna (July 2020). 

We used Synthetic Aperture Radar (SAR) data to map quantify land subsidence locations 

and rates within our study area. SAR data is provided by the Sentinel-1 mission (C-Band with a 

5.56 cm wavelength) operated by the European Space Agency (ESA) under the Copernicus 

program. Sentinel -1 was launched in April 2014 to provide SAR imaging for all global landmasses 

and coastal zones with high spatial and temporal resolution (ESA 2012). A total of 68 Single Look 

Complex (SLC) Sentinel 1 scenes spanning the period from October 2016 to July 2019 were used 

in this study. Sentinel-1 scenes were acquired in the Interferometric Wide (IW) imaging mode 

(scene width: 250 km) with spatial and temporal resolutions of 20 m and 12 days, respectively. 

These scenes were collected along track 107 frames 83 and 88 in the ascending direction (Table 

1). Sentinel-1 data was downloaded from the Alaskan Satellite Facility. It is worth mentioning that 

it is preferable to combine both descending and ascending datasets to extract three-dimensional 

(3D) displacement rates. However, the descending direction does not provide adequate coverage 

of our study area. For flood mapping, we used the ascending track 
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107 frame 88 (Table 2) for the Harvey flood event. For Hanna we used descending track 41 

frame 503 as it provided better temporal coverage of the storm event. 

 
 

Table 1: Descriptions of the Sentinel-1 stacks used in this study. 
 

 
Sar 

Instrument 

Orbit 

Type 

Track Frame No. of 

Images 

Perpendicular 

Baseline 

Temporal 

Baseline 

Mean Max Mean Max 

Sentinel-1 Ascending 107 83 35 48 140 32 60 

Sentinel-1 Ascending 107 88 33 45 147 24 60 

 

 

 

 
 

Event Sar 

Instrument 

Orbit Type Track Frame Pre-event 

images 

Post 

Event 

Images 

Harvey Sentinel-1 Ascending 107 88 8 1 

Hanna Sentinel-1 Descending 41 503 2 1 

Table 2. Descriptions of Sentinel-1 scenes used for flood mapping in this study. 

 

 

To perform GPS-InSAR validation we downloaded GPS data from the Nevada Geodetic 

Laboratory through the GPS Networks Map (Blewitt et al. 2018). Data was extracted at 13 

locations (Figure 1) throughout the study area during the same period as the SAR study (October 

2016 – July 2019). 

Growth Fault data was digitized from articles focusing on the Wilcox and Frio growth fault 

trends published by the Bureau of Economic Geology at the University of Texas at Austin (Ewing 

et al. 1987). Additionally, localized growth faulting in the Corpus Christi and Nueces Bay area 

was digitized from an article focusing on the Lowstand Subbasin (Hammes et al. 2004) 
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(Figure 2). Oil and gas extraction rates were retrieved from the “Oil and Gas Production Data 

Query” which is maintained and updated by the Texas Railroad Commission (RRC; available here: 

https://www.rrc.state.tx.us/). We retrieved production data, by county between January 2000 – 

January 2020 (Figure 2). Groundwater extraction data was collected from the Texas Water 

Development (TWDB) Groundwater Database Reports website (available here: 

https://www.twdb.texas.gov). We retrieved groundwater extraction data by county between 2000 

– 2020 (Figure 3). 

 

A continuous distribution of sand percent of the GCA was constructed from point 

measurements taken at geophysical log locations. Only logs with 70% coverage across the entire 

thickness were used in the calculations (Young et al. 2010).The sand percentage for each geologic 

unit was calculated by summing the total sand amount across the thickness of the geologic unit 

and dividing by the amount of the thickness for which the lithology was characterized. These 

calculations were normalized to the lithology that was known for example if the unit was 100m 

thick, but lithology was only known for 85m and the sand thickness was 75m then the sand 

percentage would be 88% (100*75/85) and not 75% (100*75/100) (Young et al. 2012). 

 
 

2. Methods 

 
a. Mapping Land Subsidence Rates and Locations: 

 

Persistent Scatterer (PS) technique was used in this study to quantify land subsidence rates. 

The PS uses a series of radar images to detect coherent PS points in the region of interest. A 

persistent scatter is a pixel that remains stable throughout the entire time period of the SAR 

acquisition. A primary image is chosen from the group of images based on favorable geometry, 

high coherence, and minimal atmospheric interference. Generally, urban areas are best suited for 

this because many fixed reflectors (e.g., buildings and utility poles) are available there. After the 

http://www.rrc.state.tx.us/)
http://www.rrc.state.tx.us/)
https://www.twdb.texas.gov/
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primary and secondary images have been coregistered, interferograms are created. The main goal 

of PS is to decipher the coherent radar signals from incoherent noise by using the PS points as a 

reference (Hooper and Zebker 2007; Hooper et al. 2007; Hooper 2008). The criterion to select 

stable pixels for PSI analysis is amplitude dispersion, which is the variations in amplitude within 

the different images. Pixels with low variance have a high coherence value and are selected as 

persistent scatterer candidates(Esmaeili and Motagh 2016). 

 
 

This study has been completed using the open-source software packages provided by ESA, 

the SentiNel Application Platform (SNAP) (Foumelis et al. 2018) and by the Stanford Method for 

Persistent Scatterers StaMPS (Hooper et al. 2007). Figure 5a shows a flow diagram of this process 

and Appendix 1 lists detailed steps for both SNAP and StaMPS processing(Höser 2018). 

The PS Processing is conducted in two separate workflows, single master Differential 

Interferometric Synthetic Aperture Radar (DInSAR) processing using SNAP, and PS analysis 

using StaMPS. The master scene was selected using the “stack overview” routine in SNAP. This 

routine selects an optimal master scene for the stack based on the image which maximizes the 

coherence in the interferometric stack. The master image is then split into a subswath using the “S-

1 tops split” function to make it compatible as a “snap2stamps’ input. In this study this step was 

repeated for 5 separate subswaths. We used IW1, IW2, and IW3 in Frame 88 and only IW1 and 

IW2 in frame 83 to completely cover our study area (Table 1). 

The next step creates the single master interferograms using the snap2stamps workflow to 

automatically create the single master interferograms. This package provides a set of python scripts 

that call routines from SNAP and perform automatic interferogram stacking that is compatible with 

StaMPS PS analysis (Blasco and Foumelis 2018). Snap2stamps is implemented by running the 

four following scripts (Figure 5a): (1) Slave preparation: This script takes the 
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available Sentinel data within the project folder and separates it into individual folders by 

acquisition date. (2) Slave splitting: This step splits the slave images into the correct AOI and 

applies orbital corrections through SNAP. 

 

Figure 5: (a) SNAP and StaMPS workflows used to generate 

land deformation rates. (1) SarScape Analytics workflow used for 

flood mapping. 
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(3) Co-registration and interferogram generation: This step performs a co-registration of the SAR 

data and produces a set of interferograms with topographic phase removed. The outputs from this 

step are two stacks of master-slave SLC files and the master-slave interferogram. This step also 

prepares separate files that are required for the execution of StaMPS analysis. (4) StaMPS 

export: The final step that converts the interferograms into binary files that are compatible as 

StaMPS inputs. After the interferograms are in binary form the “mt_prep_snap” command is run 

to ingest the SNAP products into the StaMPS environment. We then ran the StaMPS process chain 

from steps 1-7 as described in the StaMPS User Manual (Hooper et al. 2010) to generate land 

subsidence rates (Figure 6). For the removal of the Atmospheric Phase Screen (APS), we have 

employed the Toolbox for Reducing Atmospheric InSAR Noise (TRAIN) and applied the Generic 

Atmospheric Correction Online Service for InSAR (GACOS) method for corrections (Yu et al. 

2017, 2018a, b). APS corrections implements a weather model to predict realistic and real time 

atmospheric conditions and help overcome some limitations of SAR imaging such as cloud 

coverage and interference in the APS (Jung et al. 2014). If weather corrections are not applied, it 

is possible to be left with false deformation results as APS has effects on the observed topography 

in the image. 

The adopted PS method generates multiple three-pass interferograms; however, it 

restricts the phase unwrapping and analysis to pixels containing individual scatterers that dominate 

individual pixels and remain stable over the time period of interest. Because the signal from these 

scatterers is much larger than the random noise from a large number of small scatterers, the 

phase variance in these pixels reflects the underlying deformation (Crosetto et al. 2016). 
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b. InSAR-GPS Validation 

 

Linear vertical velocities were estimated at the 13 GPS locations using daily position data spanning 

the period from October 2016 to July 2019. These GPS-derived velocities were then compared to 

InSAR-derived velocities. We assumed the InSAR Line of Sight (LOS) velocities were mostly 

vertical and used the average velocity of points within a 500 m radius of the GPS stations (Figure 

6c). Uncertainty in GPS- and InSAR-derived velocities were calculated as follows: (1) horizontal 

error bars (x-axis; InSAR) is represented by the standard deviation of all measurements located 

within a circle of a 500 m radius that is centered at the location of the GPS station; (2) vertical error 

bars (y-axis; GPS) is represented by the standard deviation of daily GPS measurements at that 

station. 

 

 
c. Mapping Flooded Areas 

 

Senitinel-1 images were used for change detection flood mapping based on multi- temporal 

SAR images. This method relies on using multiple pre-event reference images that do not exhibit 

flooding in contrast to a post event image that has inundated areas. The coherence changes between 

the different images can then be classified as flooded or not flooded areas based on ratio between 

the flooded and reference images (Inglacla and Mercier 2007; Zhang et al. 2020) (Figure 5b).We 

implemented this method using the SARscape Analytics package within ENVI software. The 

“SAR Flood Mapping” routine was used, and adjustments were made using the SAR Flood 

Mapping Classification-Refinement (Bahr and Europe 2020). To map inundated areas after 

Hurricane Harvey we used 4 pre-event images as a control background for the unflooded study 

area. We then picked a post-event image that was as close as possible to the 



18  

major event. Using the SAR Flood mapping tool, we then picked inundated areas by selecting a 

ratio between pre and post event coherence to determine which areas have been flooded by the 

storm event. 
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CHAPTER III 

 

Results 

 
1. Land Subsidence Rates and Locations 

 

Examination of Figure 6a reveals that land deformation in the study area is spatially 

heterogenous with localized areas of subsidence as high as -21 mm/yr. Additionally, some 

localized areas show a land uplift with rate of > 10 mm/yr. Figure 6b shows a histogram for land 

deformation rates over the Texas Coastal Bend region. Inspection of this histogram indicates that 

the average deformation rate is estimated at -1.27 ±3.2 mm/ar. 

The InSAR-derived ground deformation rates were compared to those extracted from 13 

GPS stations located within the study area. Figure 6c shows a scatterplot of InSAR-derived 

versus GPS-derived ground deformation rates along with a 1:1 line. Examination of Figure 6c 

shows that the GPS-derived ground deformation rates were consistent with deformation rates 

obtained from InSAR analysis. The mean difference between GPS and InSAR-derived velocities 

at all 13 stations is estimated at 2.23 mm/yr ±2.7 mm/yr. 

Seven regions were observed to experience significant land subsidence rates along Texas 

Costal bend region during the investigated period. These regions are, Victoria, George West, 

Refugio, Falfurrias, Karnes City, McAllen, and Nueces Bay/CorpusChristi (polygons 1-7; Figure 

6a). We Believe land subsidence in these regions is attributed mainly to fluid extraction as well 

as vertical movements along growth faults. 

Fluid extraction is an important controlling factor in land subsidence due to compaction 

of sediments in response to the withdrawal of fluid. When fluid is extracted from underlying 

strata it reduces the pore pressure within the layer, and in turn increases the effective stress on 
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the grains themselves. The increased effective stress on the grains can cause the layer to compact 

and thus the subsidence of overlying land surface. Clay rich sediments are much more prone to 

compaction since they often have much higher porosity values, and thus the decrease in pore 

pressure leaves more void space. 

Lithology is also a known controlling factor in land subsidence as mentioned earlier, 

clay rich sediments are subject to compaction under increased effective stress. We mapped the 

sand percentage of the study area (Figure 2c) and found some spatial variation within the study 

area. Sand percentage for the majority of the polygons with the exception of polygons 2 and 4 is 

within 50% - 70%. Because it is homogeneous in these polygons, we do not consider the 

lithology to be a controlling factor of subsidence in these regions. While Polygon 2 sees a higher 

average sand percent (60% - 80%) we do not believe this to have an effect on increased 

subsidence as an increase in sand percentage we do not believe this to be a controlling factor due 

to subsidence being characterized with higher clay percentages. Polygon 4 sees a much lower 

sand percentage that the other polygons (30% - 50%) and we do believe this to possibly have an 

effect on the increased subsidence in this region. 

Growth faults in coastal areas are known to cause subsidence (Campbell et al. 2015) due 

to their nature of being normal faults with the hanging wall being on the coastal side of the fault 

plane. Our study area is littered with growth faults (figure 2a) as it is located on a passive coastal 

margin. We mapped fault density (Figure 2b) to show a relationship between the amount of 

faulting in a given area and subsidence rates. Additionally, there is strong evidence that the 

extractions of fluids from subsurface sediments can accelerate or reinitiate movement along these 

faults ((Verbeek and Clanton 1981). 



21  

For the purpose of this study, we classified oil/gas extraction rates to low in Barrels 

(BBL) (100 ×103 BBL), medium (100 ×103 – 2 ×106 BBL), and high (> 2 ×106 BBL). 

 
Figure 6: (a) land subsidence rates (in mm/yr) generated over the Texas Coastal Bend during the 

period from 2016 to 2019. (b) Correlation of InSAR-derived land deformation rates (in mm/yr) 

with GPS-derived land deformation rates. (c) Histogram of land subsidence rates. 
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Groundwater extraction rates were classified into low (< 2×106 m3), medium (2×106 m3– 

7.5×106 m3), and high (7.5×106 m3). Finally, growth fault density was classified into low (0-10 

km/km2), medium (10-15 km/km2), and high (>15 km/km2). Below, we explain factors 

controlling the observed land subsidence rates in each of these regions. 

 

 
2. Factors Controlling Observed Land Subsidence Rates 

 

The highest subsidence rates were observed in the city of Victoria with rates of -5.3 ±2 mm/yr 

(polygon 1; Figure 6a). Localized subsidence rates as high as -11.6 ± 3.0 mm/yr were also 

observed south of Victoria. Increased subsidence rates could be attributed to enhanced oil/gas 

and groundwater extraction activities during the study period, high historic extraction rates, as 

well as vertical movements along growth faults. This assumption is supported by the observed 

increase in oil/gas extraction rates (431× 103BBL/yr; Figure 4b) during the investigated period 

compared to the long-term average annual extraction rates (groundwater: 18 × 106 m3/yr; oil/gas: 

664 × 103 BBL/yr; Figure 3a, 4a). In addition, this area has a high fault density: > 0.15 km/km2; 

(Figure 2b) that could also accelerate the subsidence rates. 

Live Oak County near the town of George West is also witnessing land subsidence with 

rates of -7.6 ± 1.7 mm/yr (polygon 2, Figure 6a). We believe the subsidence in this area could be 

attributed to a combination of both growth faulting and enhanced oil/gas extraction during the 

study period. Live Oak County reported a very large increase of oil/gas extraction (7.65 × 106 

BBL/yr; Figure 4b) compared to its historical rate (2.98 × 106 BBL/yr; Figure 4a) while there 

was a slight decrease in groundwater extraction (-78.2 × 103 m3/yr; figure 3b) compared to the 
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historical average of (5.2 ×106 m3/yr; figure 3a). Additionally, there is a high density of growth 

faults being observed in the area surrounding George West (> 0.15 km/km2, Figure 2b). 

The town of Refugio witnesses land subsidence with average rates of -6.8±1.6 mm/yr 

(polygon 3, Figure 6a). Refugio County has a medium to high degree of fault density (0.1- 0.25) 

(Figure 2b) that overlaps the area of increased subsidence which we believe to be the main 

controlling factor for the observed subsidence in this area because the extraction rates for both 

oil/gas (-1.25 × 106 BBL/yr; Figure 4b) and groundwater (-251 × 103 m3/yr Figure 3b) have 

decreased compared to their respective historic annual averages (oil/gas: 3.84 × 106 BBL/yr: 

Figure 4a; groundwater:2.84 × 106 m3/yr: Figure 3a). 

The city of Falfurrias in Jim Wells County (polygon 4, Figure 6a) experienced a land 

subsidence at rate of -8.0±2.6 mm/yr. We believe this area is primarily controlled by growth 

faulting and lithology as the extraction rates in the area of both oil/gas and groundwater have 

remained very similar to the historical averages (oil/gas: 138 × 103 BBL/yr: Figure 4a; 

groundwater: 6.05 × 106 m3/yr; Figure 3a). Although this area is witnessing a low to medium 

amount of fault density (0-0.15; Figure 2b), two prominent growth faults sandwich the subsided 

region, potentially explaining the observed subsidence. Additionally, Polygon 4 shows a much 

lower sand percentage compared to the other regions focused on in this study. We believe that 

the lower sand percentage and resulting higher clays percentage could be contributing to the 

increase in observed subsidence. 

Karnes City witnessed an averaged land subsidence rate of -6.7±3.9 mm/yr (polygon 5, 

Figure 6a). Fluid extraction is the primary controlling factor in the subsidence, as Karnes County 

reported a large increase in both oil/gas (78.04 × 106 BBL/yr; Figure 4b) and groundwater (9.29 

× 106 m3/yr; Figure 3b) extraction rates during the study period as compared to the historical 
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rates (oil/gas:18.23 × 106 BBL/yr; Figure 4a; 6.85 × 106 m3/yr; Figure 3a) respectively. Fault 

density in the area is 0 km/km2 (Figure 2b) so growth faults were not believed to be a controlling 

factor in this area. 

In Hidalgo County land subsidence (-3.0±1.8 mm/yr) is centered around the McAllen 

metro area that includes the cities of Edinburgh and Mission. Localized areas within this region 

experienced land subsidence rates as high as -11±2.1 mm/yr (polygon 6, Figure 6a). Land 

subsidence in this area is believed to be due to both growth faulting and groundwater extraction. 

Hidalgo County reported an increase in groundwater extraction of 5.27 × 106 m3/yr during the 

study period in conjunction with the high historical average annual rate (14.62 × 106 m3/yr; 

Figure 3a). Hidalgo County has a low fault density value (< 0.1 km/km2). Hidalgo has witnessed 

a very minor decrease in oil and gas extraction during the study period (-6.30 × 103 BBL/yr), and 

also historically has a low amount of oil extraction (59.39 × 103 BBL/yr). 

Nueces Bay area, especially in the port corridor, experiencing a land subsidence with 

rates of -3.4±1.6 mm/yr (polygon 7, Figure 6a). This is believed to be due to the presence of 

growth faulting in the area (fault density: >0.15 km/km2; Figure 2b) that affect in both Corpus 

Christi and Nueces Bays. We do not think fluid extraction is a factor contributing to subsidence 

here as Nueces and San Patrictio Counties have witnessed a decrease in oil/gas extraction rates (- 

62.5 × 103 BBL/yr in San Patricio County; -262.5 × 103 BBL/yr in Nueces County; Figure 4b). 

 

San Patricio County has even experienced a large decrease in groundwater extraction (-4.5 × 106 

m3/yr Figure 3b) as compared to historical rates of (13.3 × 106 m3/yr; figure 3a). 
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3. Consequences of Land Subsidence in Coastal Texas 

 

The InSAR-derived deformation rates have been spatially correlated with the spatial 

distribution of areas affected by recent flood events in the Coastal Bend (Figure 7). We decided 

to examine areas that were shortly inundated after Hurricane Harvey in August 2017 and 

Hurricane Hanna in July 2020. These two storms heavily impacted the South Texas coast with 

heavy rainfall (Emanuel 2017; Brown et al. 2020). Figure 7a shows the rainfall amounts at 

stations for each storm event. Hurricane Harvey showed rainfall totals ranging between 93mm in 

Orange Grove to as high as 330 mm in Refugio. Hurricane Hanna saw rates between 165 mm in 

Weslaco to as high as 311 mm north of McAllen. The main goal is to investigate if there was a 

connection between the observed subsidence rates and flooding aftermath of storm events within 

our study area. 

We focused on two main area, the Hidalgo county (polygon 6, Figure 7) and the Nueces 

Bay (polygon 7, Figure 7). These two areas were selected for two reasons: (1) they are most 

affected by flooding events (Figure 7), and (2) they contain the two largest population centers 

within the Coastal Bend, McAllen (polygon 6) and Corpus Christi (polygon 7). 

Our results indicated that Hurricane Hanna flooded a total area of 2,225 km2, while 

hurricane Harvey flooded area was estimated at 1,020 km2. We believe that we observe much 

more flooding in the after math of Hanna due to the temporal baseline between the storm event 

and the post event image differences, with the Harvey flooding being largely underestimated. 

It appears that most of the areas that remained inundated in the post event images consisted 

of cultivated cropland (Figure 7b). We believe this to be because coherence-based flood mapping 

is more effective in rural areas. This is explained by even with water having a low backscatter 

response, the structures within urban areas will provide bright pixels that dominate the area, 
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while in rural areas such as farmland there will be a significant drop in coherence due to the 

presence of water. Additionally, urban areas have better drainage solutions, so they will not 

remain inundated for as long after a storm event. 

We compared the average subsidence rates of the non-flooded areas to the average 

subsidence rates of the flooded areas in each polygon. We observed that subsidence rates within 

flooded areas are significantly higher than that of the non-flooded areas. For example, the 

average subsidence rate of the non-flooded area in polygon 6 is -2.20 ± 2.30 mm/yr, while the 

average subsidence rate of the areas flooded in the aftermath of Hanna within polygon 6 are - 

2.71 ± 2.15 mm/yr. The same applies to polygon 7. In polygon 7, the average subsidence rate of 

the non-flooded areas is estimated at -2.76 ± 1.83 mm/yr which is only 68% of the average 

subsidence rate (-4.04±1.89 mm/yr) of the areas flooded in the aftermath of Harvey within 

polygon 7. 

We examined the statistical significance of the difference in subsidence rates been 

flooded and non-flooded area. The Welch’s two-sample t-test (Welch 1938)) was used to test if 

there is indeed a significant difference between the in the mean subsidence rates in flooded and 

non-flooded areas in polygons 6 and 7. For polygon 6 our results show that the inundated areas 

in the aftermath of hurricane Hanna show a significantly higher rate of subsidence than the non- 

flooded areas (t = 6.72, p = 3.14e-11). Similarly, for polygon 7 the areas flooded during hurricane 

Harvey witnessed a significantly higher rate of subsidence compared to the non-flooded areas (t 

= 7.19, p = 5.29e-16). The increased subsidence in these areas is believed to a contributing factor 

to the areas becoming inundated during heavy rainfall events. 
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Figure 7: (a) Map showing areas inundated after hurricane Harvey (blue polygons), and 

Hurricane Hanna (red polygons). Rain amounts in millimeters are also listed for Hanna (green 

circles) and Harvey (red circles) as reported by NOAA (b) Map showing land cover types within 

the study area. 

While we see a significant connection between flooded and subsided areas within polygon 

6 and polygon 7, some regions within the Coastal Bend witnessed a land subsidence but not 

flooded (e.g., polygons 1, 3, and 4). This could be attributed to the fact that the Coastal Bend is 

very diverse in the spatial domain and additional factors could exert controls on areas that are 

being flooded in the aftermath of heavy rainfall. Other regions (polygons 2 and 5) were away from 

the storm path. We also see flooding in areas that are not witnessing severe subsidence in our study 

area , and while we believe that subsidence is a key component in causing 
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susceptibility to floods, we also recognize that it is possible for these areas to experience flooding 

due to other major factors that affect flood susceptibility such as the actual elevation of the flood 

plains, topography, vegetation, the path of the storm, spatial variability in rainfall intensity, and 

hydrologic conditions preceding the storm event. 

Subsided areas along the Texas Coastal Bend are believed to witness not only frequent, but 

also severe flood events. Land subsidence rates and sediment compressibility are linearly related 

(Teatini et al. 2011). Sediment compressibility directly affects flooding severity. For example, 

highly compressible deltaic sediments were reported to erode, break up, and become submerged 

more rapidly compared to other types of sediments (Bourman et al. 2000). Such compressible 

layers experience consolidation with changes in the vertical load (Harris et al. 2020). Consolidation 

rapidly reduces elevation and thereby increases the susceptibility to severe inundation following a 

flooding or storm event. 
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CHAPTER IV 
 

Discussion and Conclusion 

1. Discussion 
 

This research integrates different remote sensing data and techniques to develop 

enhanced land subsidence datasets in the Coastal Bend area of Texas. This study developed an 

improved understanding of spatial correlations between natural (e.g., growth faults) and 

anthropogenic (e.g., fluid extraction) processes that could be controlling coastal subsidence. Our 

study shows significant correlations between growth faulting and fluid extraction with land 

subsidence in coastal areas. This is congruent with previous InSAR studies that have been 

conducted in the Houston area as well as in other parts of the United States where these two 

factors also show correlations with observed subsidence rates. Our results will enhance the 

prediction of Coastal Bend communities’ responses to natural forces rise and will eventually 

facilitate extreme-event mitigation and remediation. This, in turn, will improve the resiliency of 

Texas coastal communities. Decision makers could use these results to explore sustainable 

mitigation scenarios while preserving the unique nature of valuable coastal resources. 

This study has some limitations, primarily in the temporal coverage of the radar scenes 

used to map land subsidence rates and locations as well as flood mapping. Our study period is 

quite short, however other satellite platforms (e.g., ENVISAT, PALSAR) make it possible to 

extend this range to cover the entire 21st century. We believe that the short study period could be 

an issue in the sense that subsidence is a long-term problem, and we have only captured a 

snapshot of this with a 4-year study period. This means that the rates presented in this study; 

while accurate, may not be representative of the historical land subsidence rates. 

Another limitation of this study is the lack of bidirectional coverage from sentinel scenes 

within out area. There are only ascending scenes available within our study area which provide 
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adequate coverage. Due to this limitation, we are not able to calculate true vertical deformation 

from our LOS velocities, we can only assume that the movement of the PS is purely vertical. 

LOS velocities are the product of movement in three spatial axes (North. East, Vertical) , 

although primarily in the vertical direction. If two acquisition directions are available. it possible 

to use trigonometry in conjunction with incidence angle of each pixel to subtract the north and 

east movement vectors and be left with the true vertical displacement that does not include the 

slight movements in the other two directions. 

We faced some challenges in the flood mapping exercise, mainly the lack of ground truthing 

data and temporal separation between the storm image and next available radar image in the 

Harvey storm event. There were no images available in the immediate hours or day after the 

storm events. In the case of Harvey, the first available image for flooding is 7 days post landfall 

of the storm on September 3, 2017. Because of this, it is likely that the areas that are shown as 

inundated do not show the full extent of flooding that actually occurred within the study area. 

We believe that due to the temporal difference in acquisition dates that our map is heavily 

underestimating the amount of flooding in Hurricane Harvey, especially in the areas near the 

coast where flood waters would dissipate quickly. 

Additionally, high resolution optical images from NOAA only exist in the Rockport area for 

hurricane Harvey, while no imagery is available in for Hanna. The optical images for Harvey 

were acquired on August 29, 2017, 4 days prior to the Post-event image that we have available. 

We believe that again, this temporal difference makes the use of this optical image as a 

validation method impossible. We also attempted using optical satellite images from Landsat and 

Sentinel 2 to verify the flood results; however, the images close in temporal baseline to the flood 

events were extremely cloudy and could not be used as validation. 
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Lastly, when comparing GPS measurements to InSAR measurements there are two 

limitations that could be leading to discrepancies in the comparisons. First, GPS rates are 

calculated from measurements that are taken daily, while InSAR measurements in this study 

have a temporal baseline of roughly 1 month (Table 1). Secondly, the SAR acquisitions as 

mentioned earlier are not in true vertical domain but assumed to be vertical due to the lack of 

bidirectional radar coverage within the study area. 

2. Conclusion 

 

The objectives of this study were to map land subsidence rates and locations in the Texas 

Coastal Bend between 2016 – 2019, investigate the factors controlling the observed subsidence 

rates, and explain the consequences of these subsidence. We identified rapid local land 

subsidence in the Coastal Bend regions such as Victoria, George West, McAllen, Karnes City, 

and Corpus Christi. We suggest that these rapid subsidence rates are the result of both natural 

and anthropogenic factors, namely the heavy growth faulting dissect the coastal plains of Texas 

along with high fluid (oil and groundwater) extraction rates seen in some counties. Additionally, 

we were able to map areas flooded in the aftermath of two recent tropical cyclones and compare 

the subsidence rates in flooded areas to those of the areas not affected by flooding in the two 

largest population centers in the study area. We found that there was a significant increase in the 

average subsidence rates within the flooded areas compared to those that were not flooded. 

With the projected rise in sea levels coupled with both natural and anthropogenic induced 

subsidence, the Coastal Bend communities are facing an increased risk of flooding. The study 

area has already witnessed a significant number of tropical cyclones, however land subsidence in 

this region is working as an amplifying effect of what is already one of the most destructive 

forces on earth, the flood. Our results signal the need to generate a complementary longer land 
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deformation time series using InSAR platforms such as Envisat and Palsar to better understand 

the spatial and temporal variabilities in land subsidence locations and rates as well as factors 

controlling the observed subsidence rates. Additionally, these InSAR platforms could also be 

used to better map inundated areas, which could help in the mitigation of the effects of future 

flood events. This study serves as a warning that subsidence is an ongoing issue in south Texas 

and if not monitored closely could have huge detrimental effects for the region in the future. 
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Appendix 1 

SNAP-StaMPS Detailed Tutorial 

Installation and Configuration 

1. Linux System 

Install a Linux distribution of your choice. I use Ubuntu, so this instruction refers to Ubuntu 

18.04 LTS (with vanilla GNOME). Commands below should work on any Debian-based 

distribution, though. If you are using another distribution, some commands have to be 

adjusted accordingly. 

2. Install SNAP Toolbox MAKE SURE IT IS VERSION 6.0 

1. in terminal: cd Downloads 

2. in terminal: chmod +x esa-snap_sentinel_unix_6_0.sh 

3. in terminal: ./esa-snap_sentinel_unix_6_0.sh 

4. When it Asks to configure python make sure to check no. 

3. Install Python 

1. Go to https://www.anaconda.com/download/ and download Anaconda2 for linux. 

2. in terminal: bash ~/Downloads/Anaconda2-5.1.0-Linux-x86_64.sh 

3. agree the license terms 

4. choose an installation folder 

5. anaconda installation to PATH environment 

4. Configure snappy SNAP – Python interface 

1. in terminal: sudo apt-get update 

2. in terminal: sudo apt-get install python-jpy 

3. in terminal: cd <snap-install-dir>/bin 

4. in terminal:./snappy-conf /home/<user>/anaconda2/bin/python 

5. if it works, go to /home/<user>/.snap/snap-python/ and copy the snappy folder to the 

site-package folder of your python installation 

/home/<user>/anaconda2/lib/python2.7/site-packages/ 

6. To test if all is right, call spyder: in terminal: spyder 

7. Run this script in spyder: 

from snappy import ProductIO 

p = ProductIO.readProduct('/home/<user>/.snap/snap- 

python/snappy/testdata/MER_FRS_L1B_SUBSET.dim') 

list(p.getBandNames()) 

8. • your output should look like this: 

[‘radiance_1’, ‘radiance_2’, ‘radiance_3’, ‘radiance_4’, ‘radiance_5’, ‘radiance_6’, 

‘radiance_7’, ‘radiance_8’, ‘radiance_9’, ‘radiance_10’, ‘radiance_11’, ‘radiance_12’, 

‘radiance_13’, ‘radiance_14’, ‘radiance_15’, ‘l1_flags’, ‘detector_index’] 

5. Triangle 

1. In Terminal: sudo apt-get update 

2. In Terminal sudo apt-get install triangle-bin 

6. Pygeoj 

http://www.anaconda.com/download/
http://www.anaconda.com/download/
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1. In Terminal: pip install pygeoj 

7. Sentinelsat 

1. In terminal: sudo apt-get install python-pip 

2. In terminal: pip install sentinelsat 

8. Matlab 

1. This is the only not free available software in the whole workflow. Due to different 

licensing options and the good documentation how to install Matlab, this is skipped in 

this tutorial. 

9. Snaphu 

1. In terminal: sudo apt-get update 

2. In terminal: sudo apt-get install snaphu 

10. Csh 

1. In terminal: sudo apt-get install csh 

11. StaMPS 

1. Got to https://homepages.see.leeds.ac.uk/~earahoo/stamps/, here you can find the 

handbook and the download link. 

2. Download the .tar.gz from the StaMPS homepage 

3. In Terminal: mv /home/<user>/Downloads/StaMPS_v3.3b1.tar.gz /home/<user>/ 

4. In Terminal: tar -xvf StaMPS_v3.3b1.tar.gz 

5. In Terminal: cd StaMPS_v3.3b1/src 

6. In Terminal: make 

7. In Terminal: make install 

8. In Terminal: cd /home/<user> 

9. In Terminal: rm StaMPS_v3.3b1.tar.gz 

12. Snap2stamps 

1. Download snap2stamps; preferably clone the git repository: 

2. In terminal: git clone https://github.com/mdelgadoblasco/snap2stamps.git 

13. Configuration 

1. After the installation is complete, the StaMPS_CONFIG.bash file must be prepared to 

configure StaMPS on your machine. Be sure Matlab, snaphu, triangle and csh are 

installed. 

2. You should get an output similar to this, but remember the paths for your system. 

matlab: /usr/local/bin/matlab 

snaphu: /usr/bin/snaphu /usr/share/man/man1/snaphu.1.gz 

triangle: /usr/bin/triangle 

csh: /bin/csh /usr/share/man/man1/csh.1.gz 

3. The task of StaMPS_CONFIG.bash is to extend your PATH variable, so that your 

machine finds all these applications and some more directories which are used in 

StaMPS. Open StaMPS_CONFIG.bash with scite or some other text editor. You will 

notice that the configuration is prepared to point to much more applications and 

directories. Hence the preprocessing will be performed in SNAP, DORIS for instance, 

will never be used in our setting. We are able to comment a lot of the script. If you 

followed the installation guide in this summary, you can use the script below, 
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adapting the user in each path to your user name. In case your installation of snaphu 

or one of the other applications is not located in /usr/local/bin/ or /usr/bin/ you can set 

the path to the folder containing the application bin, using one of the prepared rows 

which are commented in my version. Do not miss the last line, where the unneeded 

variables are excluded from the final export to PATH. Notice, that the path 

information /usr/local/bin/ and /usr/bin/ are already part of PATH, hence we do not 

have to point to special folders containing snaphu or triangle, because they are 

installed in the default paths mentioned. 

4. In your StaMPS_CONFIG.bash file edit the following lines: Make sure to add the # 

symbol to the corresponding lines to comment them out. 

export STAMPS="/home/<user>/StaMPS_v3.3b1" 

#export SAR="/home/<user>/ROI_PAC_3_0" 

#export GETORB_BIN="/home/<user>/getorb/bin" 

#export SAR_ODR_DIR="/home/<user>/SAR_FILES/ODR" 

#export SAR_PRC_DIR="/home/<user>/SAR_FILES/PRC" 

#export VOR_DIR="/home/<user>/SAR_FILES/VOR" 

#export INS_DIR="/home/<user>/SAR_FILES/INS" 

#export DORIS_BIN="/home/<user>/doris_v4.02/bin" 

#export TRIANGLE_BIN="/home/<user>/triangle/bin" 

#export SNAPHU_BIN="/home/<user>/snaphu-v1.4.2/bin" 

#export ROI_PAC="$SAR/ROI_PAC" 

# ROI_PAC VERSION 3 

#export INT_BIN="$ROI_PAC/INT_BIN" 

#export INT_SCR="$ROI_PAC/INT_SCR" 

# ROI_PAC VERSION 2.3 and before 

#set MACH=`uname -s` 

#if ($MACH == "HP-UX") then 

# export ARCHC=HP 

#else if ($MACH == "IRIX") then 

# export ARCHC=SGI 

#else if ($MACH == "SunOS") then 

# export ARCHC=SUN 

#else if ($MACH == "Linux") then 

# export ARCHC=LIN 

#else if ($MACH == "Darwin") then 

# export ARCHC=MAC 

#export INT_LIB="$ROI_PAC/LIB/$ARCHC" 

#export INT_BIN="$ROI_PAC/BIN/$ARCHC" 

#export FFTW_LIB="$SAR/FFTW/$ARCHC""_fftw_lib" 

# shouldn't need to change below here 

#export MY_BIN="$INT_BIN" 

export MATLABPATH=$STAMPS/matlab:`echo $MATLABPATH` 

#export DORIS_SCR="$STAMPS/DORIS_SCR" 
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# Needed for ROI_PAC (a bit different to standard 

export LC_NUMERIC="en_US.UTF-8" 

export LC_TIME="en_US.UTF-8" 

#export MY_SAR="$SAR" 

#export OUR_SCR="$MY_SAR/OUR_SCR" 

#export MY_SCR="$STAMPS/ROI_PAC_SCR" 

export SAR_TAPE="/dev/rmt/0mn" 

#export:PATH=${PATH}:$STAMPS/bin:$MY_SCR:$INT_BIN:$INT_SCR:$OUR_ 

SCR:$DORIS_SCR:$GETORB_BIN:$DORIS_BIN:$TRIANGLE_BIN:$SNAPHU_ 

BIN 

export PATH=${PATH}:$STAMPS/bin:$MATLABPATH 

5. In terminal: source /home/<user>/StaMPS-4.1-beta/StaMPS_CONFIG.bash 

6. In terminal: printenv PATH 

Output should be something like: 

/home/<user>/anaconda2/bin:/usr/local/sbin:/usr/local/bin:/usr/sbin:/usr/bin:/sbin:/bin 

:/usr/games:/usr/local/games:/snap/bin:/home/<user>/StaMPS_v3.3b1/bin:/home/<us 

er>/StaMPS_v3.3b1/matlab: 

7. Add: source /home/<user>/StaMPS-4.1-beta/StaMPS_CONFIG.bash to your 

~.bashrc file. 

 
Snap2stamps workflow 

The following steps are needed and provided by snap2stamps: 

1. Sort the slave images in separated folders corresponding to their acquisition 

time. 

2. Slave splitting (and slice assembling if needed) and annotated orbits 

replacement with Precise/Restituted Orbits. 

3. Coregistration and interferogram generation done per slave and subswath. Here 

auxiliary files as DEMs and subset using a bounding box is performed. Both 

amplitude coregistered master-slave stack and interferogram with elevation and 

orthorectified latitude and longitude coordinates are saved as output. 

4. StaMPS export is done providing for each pair coregistered stack and 

interferogram generated StaMPS compatible products. 

snap2stamps contains the following files: 

1. project.conf – file with parameters and paths needed for the processing 

2. slaves_prep.py – script for sorting slaves into the expected folder structure 

3. splitting_slaves_logging.py – script for slave splitting (and assembling if 

needed) and orbit correction 

4. coreg_ifg_topsar.py – script for master-slave coregistration and interferometric 

generation 

5. stamps_export.py – script for ouput data generation in StaMPS compatible 

format for PSI processing 

6. Note that snap2stamps requires Python 2.7. 

SNAP Steps: 

1. Before starting make sure to go to your SNAP directory -> bin -> gpt.vmoptions 



46  

2. Change the -xmx value to 60-75% of your systems ram. SNAP uses a large amount of 

ram so I recommend your system having at least 32gb. 

3. Select optimal master in SNAP using Radar / Interferometric / InSAR Stack Overview 

4. Perform subsetting of whole image using TOPSAR Split via Radar / Sentinel-1 TOPS / 

S-1 TOPS Split. Set the processing parameter 

1. subswath (IW 1-3), 

2. polarization (vertical sent, vertical returned – VV), and 

3. bursts (using the bursts-slider) in the respective tab. 

5. Get LAT/LON MIN/MAX (bounding box) for PSI area of interest. This can be done in 

snap by opening one of your split files. Right click on the image and select spatial subset 

from view -> geographic coordinates. 

6. Create a project folder where you will store your sentinel scenes for the snap2stamps 

steps. You will need to make two folders, “master” and “slaves”. 

7. Add both the original zip file of the scene to master as well as the split zip and split.dim 

8. Add all of the slave zips to your slaves folder. 

9. Now go to your snap2stamps directory and go to bin. Open project.conf and edit it 

accordingly. It should be similar to this: 

CONFIGURATION FILE 

# PROJECT DEFINITION 

PROJECTFOLDER=/media/sf_Shared/Project 

GRAPHSFOLDER=/home/mhaley/Work/snap2stamps/graphs 

# PROCESSING PARAMETERS 

#IW1=IW2 

MASTER=/media/sf_Shared/Project/master/S1A_IW_SLC 1SDV_20180407T003356_ 

20180407T003423_021354_024C0E_BAD9_split.dim 

# AOI BBOX DEFINITION 

LONMIN=-97.119 

LATMIN=26.9 

LONMAX=-97.732 

LATMAX=27.745 

# SNAP GPT 

GPTBIN_PATH=/home/mhaley/Pysnap1/bin/gpt 

# COMPUTING RESOURCES TO EMPLOY 

CPU=8 

CACHE=32G 
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Snap2stamps scripts 

Run the following python scripts to prepare your files for stamps. Make sure to change your 

directory to your snap2stamps/bin folder. 

1. Slave sorting. 

1. In terminal: python slaves_prep.py project.conf 

2. This step is only to set up directories, very fast. 

2. slave splitting and orbit correction 

1. in terminal: python splitting_slaves.py project.conf 

2. This step splits the slaves to the same area as the masters and applies orbital 

corrections. ~ 20 mins per scene. 

3. master-slave coregistration and interferometric generation 

1. in terminal: python coreg_ifg_topsar.py project.conf 

2. This is the interferogram generation step. Be careful how large your AOI is as this 

step is very RAM intensive and time consuming. 

4. ouput data generation in StaMPS compatible format 

1. in terminal: python stamps_export.py project.conf 

2. creates a INSAR_<Master Date> folder that stamps will use. ~1hr per scene. 

5. This is the final step before using StaMPS in the matlab interface. 

1. mt_prep_snap <your master date> /<Path to your project 

folder/INSAR_MASTERDATE/ 0.4(Amplitude dispersion, increasing this value 

will exclude noisy points.) 

2. note, you can also cut AOI into patches to lessen computer workload by adding 

two values after the amplitude dispersion so your input will now look similar to 

this if you wanted 4 rows and 4 columns of patches: 

3. mt_prep_snap <your master date> /<Path to your project 

folder/INSAR_MASTERDATE/ 0.4 4 4 

4. here is an example that I used: mt_prep_snap 20180218 

/media/sf_ShareC/Project1/INSAR_20180218/ 0.4 

StaMPS Workflow 

In terminal: matlab 

1. try getparm command in the matlab window. A list of parameters should be 

returned, if not, check section Configuration and your PATH variable. 

2. Now it is more or less technically ‘easy’ to analyse PS with StaMPS. 

3. You are able to run stamps by typing into the matlab command window: 

stamps(x, y) where x is the first step and y is the last step of stamps you would 

like to run. Alternatively you can run it step by step by using stamps(x,x). 

4. If you would like stamps to run from the last completed step you can enter 

stamps(0,x) 

5. To change a parameter type into the matlab window: setparm(‘parametername’, 

value) 

1. Loading Ps candidates 

1. Stamps(1,1) 

2. Once step 1 has been run details can be listed for each ifg by using ps_info 



48  

2. Step 2 Calculate temporal coherence by estimating phase noise 

1. stamps(2,2) 

2. Important parameters: max_topo_error, filter_grid_size, filter_weighting, 

clap_win,clap_low_pass_wavelength, clap_alpha, gamma_max_iterations 

3. PS selection 

1. stamps(3,3) 

2. important parameters: select_method, density_rand, percent_rand 

4. PS weeding\ 

1. stamps(4,4) 

2. important parameters: weed_standard_dev, weed_max_noise, weed_neighbours. 

5. Phase correction 

1. stamps(5,5) 

2. important parameters: merge_resamples_size, merge_standard_dev 

6. Phase unwrapping 

1. stamps(6,6) 

2. important parameters: unwrap_grid_size, unwrap_gold_alpha, 

unwrap_prefilter_flag, unwrap_time_win 

7. Estimate spatially-correlated look angle error 

1. stamps(7,7) 

2. important parameters: scla_deramp, drop_ifg_index 

8. Atmospheric filtering 

1. stamps(8,8) 

2. important parameters: scn_wavelength, scn_time_win 

3. If you would like to use TRAIN for weather corrections please refer to the 

TRAIN manual located at 

https://github.com/dbekaert/TRAIN/blob/master/manual/TRAIN_manual.pdf 

9. Plotting 

1. Ps_plot(‘v-do’) – to plot with velocity minus d which are SCLA errors, and o 

phase ramps. Can use other combinations such as ‘v-d’, ‘v-o’ etc. 

2. If you want to see a time series of the selected points you can plot as follows, 

ps_plot(‘v-do’, ‘ts’) 

10. Exporting the time series points to a csv file 

1. Make sure to plot with the TS flag first. Example: ps_plot(‘v-do’, ‘ts’) 

2. Enter the following blocks of text into the matlab console sequentially. 

1. load parms.mat; 

ps_plot('v-do', -1); 

load ps_plot_v-do.mat; 

lon2_str = cellstr(num2str(lon2)); 

lat2_str = cellstr(num2str(lat2)); 

lonlat2_str = strcat(lon2_str, lat2_str); 

2. lonlat_str = strcat(cellstr(num2str(lonlat(:,1))), cellstr(num2str(lonlat(:,2)))); 

ind = ismember(lonlat_str, lonlat2_str); 

3. disp = ph_disp(ind); 
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disp_ts = ph_mm(ind,:); 

export_res = [lon2 lat2 disp disp_ts]; 

4. metarow = [ref_centre_lonlat NaN transpose(day)-1]; 

k = 0; 

export_res = [export_res(1:k,:); metarow; export_res(k+1:end,:)]; 

export_res = table(export_res); 

writetable(export_res,'stamps_tsexport.csv') 




