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Land Subsidence Estimation With Tide Gauge and
Satellite Radar Altimetry Measurements

Along the Texas Gulf Coast, USA
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Abstract— A double-difference (DD) method was used to esti-
mate vertical land motion (VLM) at 26 tide gauge (TG) sites with
record lengths of at least ten years across the Texas Gulf Coast,
USA, between 1993 and 2020. In the method, the first difference
was conducted by coupling nearby correlated TG stations to
remove sea-level variability for both TG and satellite radar
altimetry (SRA) data. Upon completion of the first difference,
a second difference was performed by subtracting between TG
and SRA data. The results obtained from the DD method were
compared against that of: 1) a single-difference (SD) method
through subtraction between measurements from TG and SRA
and 2) a global navigation satellite system (GNSS) precise
point positioning (PPP) method. The results showed that the
DD method improved the performance of VLM estimation with
an uncertainty below 1.0 mm/yr at most TG stations. Meanwhile,
the estimated VLM trends acquired from the DD method corre-
lated better to that of the ground-truth GNSS PPP solutions than
the SD method. The DD method possesses great potential to dis-
cover VLM knowledge, particularly along coastal regions where
other techniques such as GNSS and interferometric synthetic
aperture radar (InSAR) are of impaired estimation capability.

Index Terms— Coastal subsidence, double-difference (DD),
radar altimetry, tide gauge (TG).

I. INTRODUCTION

ACOASTLINE defines the boundary between land and
sea water. Around 10% of the world population lives

in coastal zones with elevation below 10 m [1]. Nowadays,
some coastal communities are becoming more vulnerable than
ever due to continuous relative water–land movement such as
land subsidence. Land subsidence spells the loss of freeboard,
which is the elevation of the land above mean sea level [2].
It can lead to increased flood risks and cause significant
impacts on ecosystem resilience, near-shore infrastructures,
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daily lives of coastal residents, etc. For coastal areas that
suffer from land subsidence, it is of growing significance to
accurately model and estimate the patterns of subsidence and
provide such knowledge to pertinent stakeholders in a timely
fashion to assist the decision-making process.

The global navigation satellite system (GNSS) and inter-
ferometric synthetic aperture radar (InSAR) are two leading
direct methods for monitoring land subsidence in academia.
Continuously operating GNSS network (cGNSS) can provide
accurate subsidence observations at selected stations. However,
the number of stations that were installed near a coastline
with relatively long observation history (e.g., 15 years or
longer) tends to be limited [3]. Due to the highly variable
nature of land subsidence [4], it is challenging to recover
a subsidence map with a sparse cGNSS coverage along the
coast. On the other hand, multitemporal InSAR is capable
of effectively mapping large-scale land deformation. However,
it likely requires high professionalism and high-performance
computing resources in image processing. In addition, applica-
tions that require seamless InSAR analysis over a long period
of time may need imagery across various synthetic aperture
radar (SAR) platforms [5], which can further exacerbate the
processing complexity.

As opposed to the above-referenced methods, coastal sub-
sidence can also be indirectly estimated with sea-level mea-
surements. Tide gauges (TGs) are attached to the land and
measure sea-level changes relative to land-fixed benchmarks,
referred to as relative sea-level rise (RSLR). To be spe-
cific, RLSR aggregates the effects of subsidence from coastal
land and absolute sea-level rise (ASLR) from the ocean.
ALSR reflects sea surface height changes relative to a well-
defined geocentric reference frame, mainly resulting from
the globally continuous glacier mass loss and ocean ther-
mal expansion [6]. Satellite radar altimetry (SRA) technique
makes it possible to track the changes in sea surface height
since 1990s, which can be used to estimate the spatial and
temporal variabilities of ASLR for nearly 30 years. Conceptu-
ally, time series difference between ASLR and RSLR measure-
ments reflects the outcomes of vertical land motion (VLM).

Prior studies have investigated the feasibility of estimating
VLM via the single difference (SD) between SRA and TG
observations [7]. However, large noise contained in the time
series of the SD results posed a challenge in confidently
estimating the VLM estimation trend [8]. To decrease the
residuals of sea-level variations, a network adjustment strategy
was developed based on double-differenced measurements
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Fig. 1. Distribution of TGs (marked with numerical identities) and cGNSS
stations for validation (marked with four-letter identities) along the Texas Gulf
Coast, USA.

over predefined coastal regions [9]–[11]. Specifically, the first
difference is between TG and SRA observations independently
for each station, and a second difference was conducted
between paired TG stations upon completion of the first
difference. However, only TG stations with at least 40 years
of observations were used to have consistent estimated trends
with negligible influence from interdecadal sea-level fluctu-
ations. It should be noted that there is approximately only
one-third of global TG stations with observation records of
over 40 years [12]. The VLM estimated using new TG stations
that were installed within the recent decade may be subject
to adverse influence of low-frequency (i.e., interdecadal) sea-
level variations.

To mitigate this impact for reliable VLM knowledge dis-
covery, this study uses a double-difference (DD) method to
document reliable VLM processes. Different from prior studies
that developed the DD method with network adjustment for
VLM estimation [9], [10], this investigation aims at lever-
aging SRA data along with measurements from a cluster of
correlated TG stations, including those with relatively short
observation period. Specifically, this study examines VLM
at 26 TG stations with record length of at least ten years
between 1993 and 2020 along the Texas Gulf Coast, one of
the subsiding hotspots in the United States.

II. DATA

Six-minute or hourly water-level data above the mean lower
low water (MLLW) datum were downloaded for 26 TG sta-
tions along the entire Texas Gulf Coast, USA (Fig. 1), from the
Center for Operational Oceanographic Products and Services
(CO-OPS) at National Oceanic and Atmospheric Adminis-
tration (NOAA). Each TG station had a record length of at
least ten years ranging between 1993 and 2020. TG data of
each station were averaged to daily water-level measurements.
It is worth noting that two TGs (named as 8772440 and
8772447 by NOAA) near Freeport, TX, were synthesized
as a single station considering their short distance (around
0.8 km) and each recording nearly one half of the period
from 1993 to 2020. To normalize water-level measurements
across all TG stations, the mean value of the entire time

series was calculated and subtracted from daily water-level
observations for each station.

The ASLR data, estimated with the level-4 SRA product,
between January 1993 and March 2020 over the Gulf of
Mexico (GOM) region, were produced by the Copernicus
Marine Environment Monitoring Service (CMEMS) [13].
Daily sea-level anomalies regarding a 20-year (i.e., from 1993
to 2012) mean were provided for each 0.25◦ × 0.25◦ grid
cell in the level-4 product, which was interpolated based on
the level-3 product. Dynamic atmospheric correction (DAC)
was included in the level-3 product to account for water
level responding to atmospheric wind and pressure forcing.
DAC was compensated before differencing sea-level measure-
ments between TG and SRA and was acquired from the
Archiving, Validation, and Interpretation of Satellite Oceano-
graphic (AVISO) [14]. Four DAC values per day since 1992
were averaged to daily mean within each 0.25◦ × 0.25◦ grid
cell.

To validate the performance of the VLM estimation methods
to be used in this study, positioning results from 14 cGNSS sta-
tions along the Texas coastline were leveraged (Fig. 1). Specif-
ically, geodetic-grade positioning results from ten of these
cGNSS stations (i.e., TXPT, TXPH, TXSP, TXP5, WEPD,
TXGA, TXPV, TXPO, TXLN, and TXRP) were directly
accessed and used for validation [15]. In addition, raw obser-
vations from five more stations (i.e., ROPS, RKPT, BHPR,
BIRD, and PTMS) installed and independently operated by
Conrad Blucher Institute for Surveying and Science (CBI)
at Texas A&M University-Corpus Christi (TAMU-CC) were
accessed and postprocessed via precise point positioning (PPP)
technique.

It should be noted that the TXRP station, located within the
city limits of Rockport, TX, was damaged in August 2017 due
to Hurricane Harvey, resulting in continuous data outages
afterward. On the other hand, the RKPT station, 0.5 km away
from TXRP, started to collect data after April 2017. RKPT and
TXRP shared a few months of observation overlap in 2017,
and their GNSS positioning results were, therefore, merged
for comparison against VLM estimated with the corresponding
SRA grid cell and TG station (named as 8774770 by NOAA)
at Rockport, TX. The availability of all GNSS data used in this
study was truncated until the end of 2020. Fig. 2 illustrates data
availability and overlaps between TGs and cGNSS stations that
are in closest proximity.

III. METHOD

The rates of RSLR change Ṙ and ASLR change Ȧ
satisfy [9]

U̇ = Ȧ − Ṙ (1)

where U̇ is the VLM rate, and · superscript denotes the
temporal trend. In this study, the VLM time series was
estimated with a DD method as shown in (2), where the first
difference served to mitigate sea-level variability in ASLR and
RSLR, respectively, and the second difference was to calculate
the offset between ASLR and RSLR

U(t) = [
A(t)− V A(t)

]− [
R(t)− D(t) − V R(t)

]
. (2)
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Fig. 2. Observation availability and overlaps between TGs (green) and
cGNSS stations (orange or magenta) that are in closest proximity.

In (2), t depicts time, A(t) and R(t) are ASLR and RSLR time
series data, respectively, D(t) represents the daily DAC values
to compensate the correction included in the ASLR product,
and V A(t) and V R(t) denote the temporal variability of ASLR
and RSLR at the TG station under investigation, respectively.
V A(t) and V R(t) are calculated in (3)⎧⎪⎪⎨
⎪⎪⎩

V A(t) = 1

m

m∑
i=1

Ãi(t), V R(t) = 1

m

m∑
i=1

R̃i(t) (m > 0)

V A(t) = 0, V R(t) = 0 (m = 0)

(3)

where m represents the number of selected TGs, Q = {Q1,
Q2, . . . , Qm}, from a set of eight candidate stations, C , that
have stored observation records for over 25 years as evidenced
in Fig. 2. However, compared with nearby TG stations, the one
(named as 8771013 by NOAA) at San Leon, TX, exhibited
obvious nonlinear land motion processes other than interan-
nual to decadal fluctuations [16] and was, therefore, excluded
from the set C . In this study, m ≤ 7 was concluded. R̃i(t) is
the detrended RSLR time series for each selected TG station,
Qi ∈ Q ⊆ C , as defined in (4). Ãi(t) is the detrended ASLR
time series of the SRA grid cell, Ai(t), that is in closest
proximity to Qi , where i ∈ {1, 2, . . . , m}{

Ãi (t) = Ai(t)− fi (t)

R̃i (t) = Ri (t)− gi(t).
(4)

In (4), fi (t) and gi(t) are linear fit functions for ASLR and
RSLR, respectively. Algorithm 1 summarizes how to select the
set Q ⊆ C to calculate V A(t) and V R(t) in (3).

Algorithm 1 Selection of TG Candidates
T G_c← the TG station under investigation
C ← the set of all candidate TG stations
p← the number of elements in the set C
Q← {} //The set of selected TG stations
m ← 0 //Number of selected candidate TG stations
max ←−1 //Maximum correlation coefficient
S← {} //Candidate TG station in C with max
for k ← 1 to p do

if T G_c �= Ck then
rk ← corr(T G_c, Ck) // correlation coefficient
if rk ≥ 0.9 then

Q← Q ∪ {Ck}
m← m + 1

end
if rk > max then

max ← rk

S← {Ck}
end

end
end
if m == 0 then

if max > 0.8 then
Q ← S
m ← 1

end
end
Result: Q, m

Note the correlation coefficient, rk , was calculated using
daily RSLR time series, after DAC correction, between the
current TG station, T G_c, and a candidate station, Ck ∈ C .
The current TG station was not considered as a valid candidate,
i.e., T G_c �∈ Q ⊆ C , for calculating V A(t) and V R(t). The
optimal thresholds in Algorithm 1 were deliberately selected
for successful execution of the DD model for most TG stations
in the study while balancing the needs of not degrading the
VLM trend estimate using observations from some TG stations
with record length merely over ten years [9], [10], [12]. These
empirical thresholds may be subject to change depending on a
combination of factors such as data length and duration, study
location, water-level fluctuations and so forth. For comparison
purpose against the DD method, the SD solution for VLM
estimation between ASLR and RSLR, as shown in (5), was
also used

U(t) = A(t)− [
R(t) − D(t)

]
. (5)

The raw data obtained from the cGNSS stations inde-
pendently operated by CBI within TAMU-CC were post-
processed through Jet Propulsion Laboratory (JPL)’s GipsyX
software to achieve mm-level positioning ground truth with
24-h GNSS data [17]. Various types of correction mod-
els were incorporated in PPP processing, including the
second-order ionospheric correction through IONosphere
EXchange (IONEX) map and the international reference
ionospheric (IRI) model, tropospheric correction through the
global pressure and temperature (GPT2) model, ocean-tide
loading with the global ocean tide (GOT-4.8) model, etc. The
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Fig. 3. Daily water-level variations and VLM estimated with the SD and
DD methods.

vertical components of the GNSS positioning results were used
for validation against that obtained from the DD method.

Hector, a software package capable of analyzing linear
regression with temporal correlated noise, was then used to
model the VLM trend in time series estimated with the sea-
level DD and GNSS methods, respectively. Hector is robust
to offsets, outliers, and seasonal signals contained in time
series [18], and different noise models and their combinations
were examined.

IV. RESULTS

Fig. 3 presents daily water-level variations in ten-year time
series for the TG station, named as 8771450 by NOAA,
located in Galveston, TX. It is apparent that DAC helped
greatly mitigate high-frequency variations, and the time series
SRA data agreed well with the TG measurements regarding
seasonal changes. While the time series VLM values achieved
by the SD and DD methods were comparable, the uncertainty
estimated by DD clearly outperformed that of the SD (Fig. 3).
To display all curves clearly, an arbitrary vertical offset was
applied to both the DD and SD curves, shifting from the
sea-level time series. Note that this did not change the nature of
the focus in the study for VLM rate and uncertainty estimation.

At each TG station, daily VLM time series were first
calculated in DD via (2) and SD via (5). In trend estimation,
daily VLM time series of both the SD and DD methods
were averaged to monthly mean and were then loaded into
Hector. The VLM trend and uncertainty in time series were
determined by adopting the optimal noise model in Hector at
all 26 TG stations (Fig. 4). The dot in each line depicts the
VLM trend within the uncertainty range defined with lower
and upper standard deviation bounds. Trend significance of
the DD results at each TG station was examined using the
Mann–Kendall test (Fig. 4).

It is observed that at most TG stations, the DD method is
effective for decreasing the VLM trend uncertainty. However,
DD was not applied in two TG stations (i.e., 8770971 and
8777812) due to no correlation with the candidate TGs being
greater than 0.8 as introduced in Algorithm 1. Therefore,
at these two TGs, the results from the DD and SD methods
coincide. Furthermore, the VLM uncertainty estimates at TGs
87746604 and 8779770 remained relatively large. This is
because correlated stations are distant (i.e., at least 130 km),
amplifying temporal variability between these two TG stations
and their corresponding correlated stations [19].

Fig. 4. Left to the vertical dashed line: VLM trend and uncertainty
estimated for TGs along the Texas Gulf Coast using the DD and SD
methods. Right to the vertical dashed line: results of Mann–Kendall trend test
(p-value < 0.05) in the DD method. TGs marked with red triangles are
significantly subsided stations. A black cross mark indicates no significant
trend. The p-value associated with every TG station is shown to the rightmost
of the figure in scientific notation.

Fig. 5. Time series of daily positions for cGNSS stations near Rockport in
the up-direction.

To evaluate the performance of GNSS PPP technique using
GipsyX, the up-direction time series was compared against that
of NOAA’s Online Positioning User Service (OPUS) interface,
where high-accuracy coordinates were computed using a local-
ized NOAA continuously operating reference stations (CORS)
network [20]. As an example, an accuracy achieved using
GipsyX was comparable to that with OPUS at RKPT station
(Fig. 5). Consistent results were also documented between
TXRP and RKPT, which justified combining results of these
two cGNSS stations as explained in Section II. For each
cGNSS station, daily time series data were used in Hector
for trend estimation.

As indicated in Fig. 4, a total of 16 TG sites were found in
close proximity to nearby cGNSS stations regarding the VLM
trend comparison. In general, compared with the cGNSS esti-
mate, the DD method yielded a better agreement (R2 = 0.58)
than the SD method (R2 = 0.46), where R2 represents
coefficient of determination of the linear regression and the
1:1 dashed line illustrates the most ideal estimation–
observation relationship (Fig. 6). Some points are relatively
deviated from the 1:1 line, and this is likely because: 1) the
length of some TG records was much longer than that of
their corresponding nearby cGNSS stations, leading to biased
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Fig. 6. Scatterplot of VLM trend estimated between cGNSS versus SD and
DD methods.

Fig. 7. Trend uncertainty of the DD method at each TG station characterized
with the length of data records.

trend estimation; 2) linear VLM trend was hypothesized while
nonlinear sea-level difference data were observed for some
stations; and 3) subsidence patterns may vary spatially between
the TG and the corresponding nearby cGNSS stations.

Fig. 7 depicts the trend uncertainty of the DD method at
each TG station characterized with the length of data records.
The results of two TG stations (i.e., 8770971 and 8777812) are
not present because the DD method did not apply to them as
explained in Section IV. It is visible that nearly 30% and 80%
of TG stations yielded a trend uncertainty estimate of lower
than 0.5 and 1.0 mm/yr using the DD method, respectively.
However, there are two TG stations that exceeded 2.0 mm/yr
uncertainty due to the reason explained earlier.

V. CONCLUSION

In this study, a DD method was used to estimate VLM
trend across the Texas coastline at 26 TG stations with record
length of over ten years along with SRA datasets. VLM trend
results at 16 TG stations were compared against that obtained
from their corresponding near located cGNSS stations. It was
documented that the DD method yielded a better correlation
with GNSS than the SD method (i.e., R2 = 0.58 and 0.46,
respectively). Relative to the SD method, the uncertainty of the
trend estimation acquired from the DD method was generally
improved, achieving a level of below 1.0 mm/yr at most TGs.
The DD method possesses great potential to complement

cGNSS and InSAR techniques in providing VLM knowl-
edge, especially along coastlines where TG measurements are
available. To mitigate the impact of the spatial and temporal
variability on land subsidence, future efforts should focus on
long-term and high-resolution estimation by coupling multiple
sources of geospatial data. More exploration is also needed
in investigating natural and anthropogenic factors that lead to
land subsidence.
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