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ABSTRACT

In the rapidly evolving fields of geospatial engineering and precision agriculture, the accuracy and

reliability of georeferencing techniques and Uncrewed Aircraft System (UAS) methodologies are

crucial for effective decision-making and crop management. This research aims to enhance UAS

Structure-from-Motion (SfM) photogrammetry data quality for crop canopy height estimation in

high-throughput phenotyping. The study investigates and compares the accuracy and reliability of

three distinct methods used for georeferencing of the UAS imagery, which subsequently enables

more accurate SfM 3D reconstruction: Global Navigation Satellite System (GNSS) without any

correction aiding (GNSS-only), GNSS+Real-Time Kinematic (RTK), receiving RTK corrections

from a local base station, GNSS+Real-Time Network (RTN), receiving RTK corrections from

the Texas Department of Transportation (TxDOT) GNSS reference station network. The study

further assesses the correlation between manually measured plant heights and those estimated from

UAS-SfM point cloud data, exploring three different Digital Terrain Model (DTM) generation

techniques.

The research was conducted at the Texas A&M AgriLife Research and Extension Center in Cor-

pus Christi, Texas, USA, on corn crops grown during the 2022 agricultural season. The three

DTM generation methods under consideration included 1) using a DTM acquired from a flight

conducted before plant emergence, 2) creating a DTM by interpolating ground height points, and

3) implementing automatic classification algorithms.

Findings initially revealed that the GNSS+RTK method consistently outperformed the other geo-

referencing techniques, delivering more accurate results across various dates. Despite these overall

trends, there were some instances where the GNSS+RTK method did not consistently outperform

the other techniques. The use of one ground control point (GCP) improved georeferencing accuracy

compared to scenarios with no GCPs used, while GNSS-only without correction aiding reported

the least accurate results as expected. Regarding plant height estimation, the highest accuracy

was generally achieved with greater canopy cover percentages, with the optimal percentage vary-

iv



ing depending on the data collection date and DTM creation method. The highest coefficient of

determination (R2) of 0.92 between manual measurements and UAS-SfM derived plant heights

was found when the DTM was either interpolated from ground height points or obtained from a

pre-emergence flight.
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CHAPTER 1: INTRODUCTION

1.1 Motivation

The motivation for this research lies at the intersection of two significant technological advances:

the expanding application of geospatial technologies and the intensifying need for accurate data

collection in agricultural setting. While georeferencing and Uncrewed Aircraft System (UAS)

Structure-from-Motion (SfM) photogrammetry techniques have independently shown significant

progress in improving data collection accuracy, there remains a lack of rigorous comparative

analysis of these methods, especially within the context of plant height estimation. This study is

motivated by this gap in the literature, recognizing the opportunity to provide fresh insights and

propose novel recommendations for improving the accuracy and efficiency in UAS crop canopy

height estimation.

Plant height is a critical factor in determining crop yield and biomass estimation, which in turn

informs decision-making around resource allocation, crop health management, and growth regulator

applications. This direct linkage between plant height estimation and the broader agricultural use

of this trait underscores the importance of this research.

Although georeferencing techniques and UAS SfM photogrammetry have shown promise in

providing reliable data for a multitude of agriculture applications, there are questions about their

accuracy and effect on plant height measurements that remain unanswered. For example, how do

the precision and reliability of georeferencing techniques vary when considering different Global

Navigation Satellite System (GNSS) configurations? What is the influence of various Digital

Terrain Model (DTM) generation methods on plant height estimation accuracy? Unveiling these

complexities is fundamental to strengthening the applicability of these techniques and extending

their advantages to a wider array of agricultural practices.

The rapid development of the geospatial field presents unique opportunities for advancing

georeferencing techniques and UAS SfM photogrammetry. By actively seeking to contribute

to this evolving discourse, this research also intends to inspire further innovation in precision

agriculture and beyond.
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1.2 Background

The widespread integration of geospatial technologies has been a driving force in modern

precision agriculture technologies. At the heart of these advancements is the use of georeferencing

techniques, UAS, and SfM photogrammetry for the measurement and estimation of plant height.

Understanding the significance of these methods and their implications on plant height estimation

is crucial to the progression of precision agriculture and its role in increasing crop yield, enhancing

resource management, and promoting sustainability.

Georeferencing, a method used to associate geographical coordinates with digital raster image

or vector database, is essential for plenty of applications, such as mapping, surveying, and remote

sensing. Variations in georeferencing techniques can significantly affect the accuracy of data,

thereby impacting its overall reliability and efficacy. Some commonly used georeferencing methods

include GNSS-only, GNSS in conjunction with Real-Time Kinematic (RTK), GNSS in conjunction

with Post-Processed Kinematic (PPK), GNSS in conjunction with Precise Point Positioning (PPP),

and GNSS coupled with Real-Time Network (RTN) provided by service agencies such as the

Texas Department of Transportation (TxDOT) in Texas. Despite their widespread usage, an

extensive comparative analysis of these techniques, which considers factors such as precision, cost-

effectiveness, and efficiency, is still lacking. Hence, it is crucial to dig into the complexities of

these methods and their implications on georeferencing.

Direct and indirect georeferencing methods offer different approaches to UAS-SfM mapping

and data processing. Direct georeferencing involves using onboard GNSS data coupled with Inertial

Measurement Unit (IMU) data to determine the precise spatial location and orientation of the sensor

at the time of image capture. On the other hand, indirect georeferencing relies on Ground Control

Points (GCPs), identifiable markers on the ground that have been surveyed using precise GNSS

methods. These GCPs are then identified in aerial images and are used to anchor the imagery

to real-world geographic coordinates. The primary advantage of this approach is its high level

of accuracy, as the GNSS surveying of the GCPs is usually done with a high level of precision.

However, it is a more time-consuming process than direct georeferencing because it requires an
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additional surveying step and the manual identification of the GCPs in the imagery. Understanding

the differences between these methods and the scenarios where each is most suitable allows for

more effective and accurate georeferencing in various applications.

The technique of UAS-SfM surveys, in which a drone captures overlapping two-dimensional

photos of a designated area, is involved in the creation of three-dimensional models. This approach

exemplifies its remarkable potential for plant height estimation in precision agriculture. An impor-

tant consideration in these surveys is the Ground Sampling Distance (GSD), which is the distance

represented by one pixel’s worth of data on the ground. The GSD is a crucial determinant of the

spatial resolution of the resulting images and can affect the accuracy and detail of the final models.

Images procured from the UAS-SfM surveys, with careful consideration of GSD, are processed

using SfM algorithms to generate a 3D point cloud. This point cloud aids in the development

of a Digital Surface Model (DSM) by marking the highest point in each grid cell, hence incor-

porating all surface objects like buildings and vegetation. Representing the bare ground surface,

the creation of the DTM typically demands additional processing, often utilizing ground filtering

algorithms to omit non-ground points and isolate the terrain data. Several techniques for DTM

generation have been proposed, including deriving a DTM from a pre-emergence flight, interpo-

lating ground height points, or implementing automatic classification algorithms found in software

such as PIX4Dmapper. By subtracting the DTM from the DSM, a Canopy Height Model (CHM) is

produced, serving as a detailed and accurate digital representation of the height of plant canopies

above the ground surface. While these processes have independently shown promise in improving

crop canopy height estimation, a comparative evaluation could potentially yield invaluable insights

for improving the accuracy and reliability of the estimates. Precision agriculture’s future growth

depends on the consistent refinement of these techniques and the development of best practices

tailored to the specific needs of the sector. It is within this context that this study situates itself,

seeking to provide an in-depth comparative analysis of georeferencing methods and UAS SfM

photogrammetry approaches, all to enhance the performance of plant height estimation.

3



1.3 Objectives

The overall goals of this project are:

1. To investigate and compare the accuracy and reliability of georeferencing errors derived from

three distinct georeferencing methods, namely, GNSS+RTK, GNSS+RTN provided by TxDOT, and

GNSS-only with and without the use of GCPs, for georeferencing of UAS-SfM 3D point cloud

data.

2. To assess the correlation between manually measured plant heights and height estimations

derived from UAS imagery data by comparing three different DTM generation techniques. The

methods under examination include 1) utilizing a DTM obtained from a flight conducted before

plant emergence, 2) creating a DTM based on interpolating ground height points, and 3) employing

automatic classification algorithms available in PIX4Dmapper software.
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CHAPTER 2: REVIEW OF THE LITERATURE

2.1 Precision Agriculture

Precision agriculture has carved out an essential role in contemporary farming. This role

is demonstrated by its contribution to enhancing the sustainability, food safety, and security of

cropping systems. This modern facet of agriculture leverages digital technologies, including smart

machines, sensors similar to those found in geospatial engineering, and cloud computing to improve

farming processes Carolan (2017). This point is exemplified by a 2018 research project funded

by Università Politecnica delle Marche titled ”PFRLab: Setting of a precision farming robotic

laboratory for cropping system sustainability and food safety and security.” This project underlines

the potential of precision agriculture to revolutionize crop management Barbedo (2016). As part of

the project, the interdepartmental Research and Services Center ”Smart Farming” was established

to strengthen multidisciplinary collaborations in agriculture Regan (2019).

In recent years, the use of UAS in agriculture has gained significant momentum due to their ver-

satility and ability to provide high-resolution data in a cost-effective and efficient manner Sankaran

et al. (2015). The integration of UAS technology with advanced georeferencing techniques and

remote sensing approaches has opened up new avenues for improving the accuracy and precision

of plant height estimation in precision agriculture. Precision agriculture has emerged as a corner-

stone of contemporary farming, fostering sustainability and bolstering food safety and security in

cropping systems. The utilization of digital technologies combined with the adoption of conserva-

tion agriculture and precision farming techniques is propelling a shift from traditional agricultural

practices to more sustainable and efficient methods Fountas et al. (2015).

In precision agriculture, the use of UAS for remote sensing has gained significant attention. A

study conducted by Stanton et al. (2017) demonstrated the effectiveness of using a small, fixed-

wing UAS to monitor a field experiment designed to evaluate the impact of aphid infestations on

sorghum crops. The UAS, equipped with a consumer-grade near-infrared camera, was used to

create normalized difference vegetation index (NDVI) maps and three-dimensional point clouds

of the experimental plots. The researchers found that NDVI and plant height metrics averaged on
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a per-plot basis, were capable of identifying aphid-induced plant stress. Furthermore, the study

revealed that the NDVI calculated from UAS imagery, when compared with measurements from

sensors on a manned aircraft and a tractor, showed a dependence on the growth stage. Interestingly,

the researchers noted negative correlations between aphid density and NDVI, particularly toward

the end of the growing season in the most damaged crops.

2.1.1 Advancements in UAS technology for agricultural applications

One of the major advancements in UAS technology is the integration of multispectral and hy-

perspectral imaging sensors, which enable the simultaneous capture of information across multiple

spectral bands. These sensors facilitate the extraction of biophysical and biochemical parameters

of crops, such as Leaf Area Index (LAI), water content, and nutrient content, leading to more

accurate and timely monitoring of crop health and growth Tattaris et al. (2016). Additionally,

the development of lightweight and compact sensors has made it easier to mount them on UAS

platforms, further expanding their utility in agricultural applications Sankaran et al. (2015).

Another key advancement is the improvement in UAS flight planning and control systems.

Modern UAS platforms are equipped with autonomous flight capabilities, enabling them to cover

large areas and follow pre-defined flight paths with minimal human intervention. This not only

reduces the time and labor required for aerial surveys but also ensures that data is collected

consistently across different flights and periods.

The fusion of UAS-derived data with other geospatial datasets, such as satellite imagery and

LiDAR, has also gained traction in recent years. This integration allows for the development of

more comprehensive and accurate geospatial models that can be used to estimate plant height and

other crop parameters Xie & Yang (2020).

Machine learning and artificial intelligence (AI) techniques have further contributed to the

advancement of UAS technology for agricultural applications. By applying these techniques to

the processing and analysis of UAS-derived data, researchers have been able to develop more

accurate and efficient models for tree height estimation Torres-Sánchez et al. (2018). Deep learn-

ing algorithms, in particular, have demonstrated promising results in extracting complex features
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from multispectral and hyperspectral imagery, leading to improved estimation of crop parameters

Kefauver et al. (2017).

2.2 Remote Sensing for Precision Agriculture

UAS SfM photogrammetry has played a crucial role in precision agriculture which is an essential

agronomic and phenotypic trait X. Wang et al. (2019a). Accurate crop height measurements

facilitate the estimation of biomass Bendig et al. (2013a) ; B. Li et al. (2020), yield Feng et al.

(2020) ; Geipel et al. (2014), and plant nitrogen usage Eitel et al. (2014) ; Barrero Farfan et al.

(2013), as well as the quantification of lodged areas Berry & Spink (2012) ; S. C. Chapman et al.

(2014). Traditional methods of measuring crop height, such as using a ruler, are labor-intensive,

inefficient, and susceptible to human error Khan et al. (2018) ; Watanabe et al. (2017).

Alternative remote sensing approaches for crop height estimation include ultrasonic sensors

and Light Detection and Ranging (LiDAR). Ultrasonic sensors have been employed for crop height

measurement in agriculture applications for many years Andrade-Sanchez et al. (2013) ; Chang

et al. (2017) ; Barker et al. (2016). However, these sensors have limitations, such as a decrease

in measurement accuracy due to the wide-angle divergence of ultrasonic waves and sensitivity to

temperature variations Llorens et al. (2011) ; Sun et al. (2017). LiDAR finds gaps and penetrates

in that manner through vegetation, allowing for vertical classification of crop and soil surfaces

Andrews et al. (2013) ; Grenzdörffer (2014). Yet, its use in estimating crop height for low-stature

plants is limited due to the high cost and large volume of data obtained, which can be difficult to

process Jayathunga et al. (2018) ; Maimaitijiang et al. (2019); Yuan et al. (2018).

2.2.1 UAS Approaches

UASs combined with high-resolution digital cameras have emerged as a promising platform for

obtaining crop height information due to their low cost, high flexibility, and high spatial resolution

A. et al. (2019) ; W. Li et al. (2016); Malambo et al. (2018). SfM algorithms enable the production

of geometrically precise 3D point clouds from a set of overlapping images obtained by RGB sensors

H. et al. (2016) ; P. Hu et al. (2018) ; Hammerle & Hofle (2016); Malambo et al. (2018). The quality

of point clouds generated using SfM algorithms is comparable to those produced by LiDAR, which
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is crucial for the precise study of crop structure A. et al. (2019) ; W. Li et al. (2016).

However, obtaining accurate crop height estimates typically requires at least two flight missions,

a non-vegetated digital terrain model (DTM) shortly after sowing or harvesting, and a digital surface

model (DSM) during the season when crop height needs to be measured. GCPs are also important

for georeferencing among multi-temporal images Bendig et al. (2015a). In many studies, complete

spatial auxiliary (SA) information was not used for crop height estimation due to the experimental

cost or feasibility of data collection B. Li et al. (2020) ; A. J. Mathews & Jensen (2013) ; Tao et al.

(2020).

2.3 Structure-from-Motion Phtogrammetry

Drawing from Starek & Wilkinson (2022), the following text provides a detailed overview of the

use of SfM in UAS mapping applications, outlining the processing workflow and data collection

methods. SfM, a type of photogrammetry employed in processing imagery from small UAS,

relies heavily on acquiring sufficient overlap. This overlap can be broken down into two types:

frontal overlap with respect to the flight direction (or endlap), and side overlap between flight

lines (or sidelap). The importance of overlap becomes evident when considering the nature of

small UAS photogrammetric surveys, which are typically processed using a technique known as

Structure-from-Motion/Multi-View Stereo (SfM/MVS) photogrammetry.

Traditional photogrammetry techniques necessitate the use of precisely calibrated metric cam-

eras, which are typically expensive and thus not ideal for widespread UAS mapping applications.

To circumvent this issue, SfM uses information from multiple overlapping images to extract 3D

object data, eliminating the need for precise camera calibration. SfM accomplishes this by deriving

three-dimensional structures from two-dimensional image sequences that are obtained through the

movement of the camera, providing different perspective views of the scene. In this scenario, the

UAS functions as the moving platform, facilitating the implementation of SfM with an onboard

camera by acquiring images with sufficient overlap.

The SfM processing workflow consists of several stages, starting with Keypoint Extraction

and Matching. In this initial stage, image sequences are input into the software, and a keypoint
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detection algorithm, such as the scale-invariant feature transform (SIFT), is used to automatically

extract features and find keypoint correspondences between overlapping images. Keypoints are

points of interest on the UAS images that can be easily recognized by the SfM software’s automated

keypoint extraction and correspondence algorithms.

The next stage, Bundle Adjustment and Sparse Point Cloud Creation, involves an iterative

least squares bundle adjustment to minimize the errors in the keypoint correspondences. This

is achieved by automatically solving for camera interior orientation parameters and performing

aerial triangulation to resolve the relative orientation parameters of the camera at the time of image

acquisition. The matching points are then verified, and their 3D coordinates are simultaneously

calculated to generate a sparse point cloud.

This point cloud is then georeferenced using either GCPs or camera geolocations provided by

an onboard GNSS receiver. This step allows the exterior orientation parameters of the camera and

the coordinates of the sparse point cloud to be constrained to a geodetic coordinate system. The

solution can rely solely on the direct georeferencing provided by the onboard GNSS receiver, or

GCPs can be applied to optimize the solution.

Finally, the last stage, 3D Point Cloud Densification, uses the interior and exterior orientation

for each image as input into an MVS algorithm. This algorithm attempts to densify the point cloud

by projecting every pixel at the full image scale or projecting pixels at a reduced image scale. The

result of the UAS-SfM image processing workflow is a densified set of X-Y-Z coordinates of the

imaged scene, referred to as a point cloud. This point cloud, typically colorized by the RGB pixel

values of the digital camera, can have a high point density due to the high camera resolutions and

typical low altitudes at which data are collected. The 3D point cloud can then be used to generate

a digital surface model of the terrain, which can subsequently be used to orthorectify the images

and produce an orthomosaic image or a 3D textured mesh.

A typical SfM image processing workflow is as follows 2.1 from A. Mathews (2021).

9



Figure 2.1
SfM process flow, highlighting the primary stages and frequently employed algorithms. The main
inputs into the SfM image processing workflow, namely aerial photos captured by drones and
GCPs collected in the field, are utilized to generate georeferenced sparse and dense point clouds.
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2.3.1 Georeferencing methods for UAS-SfM

Georeferencing is a complex, labor-intensive process that requires skilled interpretation of loca-

tion information A. Chapman & Wieczorek (2020). Automating this process has been challenging

due to factors such as awareness, collection management systems, staff workload, tool friendliness,

and geographic features Marcer et al. (2021). To overcome these challenges, it is necessary to

enhance resource availability, provide centralized support, develop better-automated tools, improve

databases, and share user stories that promote better georeferencing practices Marcer et al. (2021).

By refining existing procedures and working collectively, the global collections and research com-

munities can harness the immense value of natural history collections, enabling new and broader

applications of the global collections resource for research and public interpretation Marcer et al.

(2021).

Topographic data with high resolution generated by SfM photogrammetry is initially produced

within an arbitrary reference frame. This means that these data points do not have a standardized

spatial context in the first stages of processing. Dinkov (2023) The process of georeferencing, as

described by Harwin & Lucieer (2012), is the transformation of this initial arbitrary data into a

predefined coordinate reference system. This transformation process is pivotal in providing the

data with a standardized spatial context, which can be understood and utilized in further analyses.

Georeferencing can be carried out in two ways: direct and indirect georeferencing. Direct

georeferencing employs known external parameters of the photographs. This method utilizes

information about the camera’s position and orientation at the time each photograph was taken.

This information, often collected from an onboard GNSS receiver and an inertial measurement unit

(IMU), enables the direct linking of image data to real-world geographic coordinates.

On the other hand, indirect georeferencing, as discussed by Sanz-Ablanedo et al. (2018),

involves assigning appropriate coordinates to specific points GCPs that can be recognized in the

images. GCPs are physical markers or natural features present in the landscape that have been

surveyed with high-accuracy positioning equipment. These points are used to anchor the arbitrary

SfM data to real-world coordinates. This method allows for the connection of visual features in
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the photographic data to actual geographic locations, providing the necessary spatial context for

further interpretation and analysis.

2.3.1.1 GNSS+RTK

In the ”Unoccupied Aerial Vehicle Derived 3D Model Evaluation Based on Icesat-2 for Ice

Surface Micro-Topography Analysis in East Antarctica” article, the DJI D-RTK GNSS technology

was implemented for UAS-derived ice sheet micro-topography modeling without GCPs in a study

focused on East Antarctica He et al. (2021). This technology has shown great potential for enhancing

geospatial accuracy and precision in digital agriculture as well.

The DJI UAS technology, including DJI Phantom 4 RTK and D-RTK GNSS mobile station,

was employed in this study to obtain a high-precision UAS photography position without the need

for GCPs He et al. (2021). This is particularly useful in extreme climate conditions, such as

Antarctica, where establishing a ground control network can be challenging. The GNSS RTK

technology and precise point positioning (PPP) technology were used to determine the position of

the base station, while the UAS flight used differential positioning with a dual-frequency receiver

to eliminate ionospheric delay He et al. (2021).

The study found that the vertical accuracy of UAS-SfM generated 3D models without GCPs

decreases significantly with distance to the D-RTK GNSS mobile station, especially in areas with

great gradient variation He et al. (2021). The results indicate that the DJI UAS technology can

achieve acceptable results without ground measurement support in some extreme polar scenarios.

In future applications, distance to the D-RTK GNSS mobile station and terrain should be considered

as the main error sources for UAS model reconstruction He et al. (2021).

The study concluded that the DJI UAS technology has the potential to be applied for ice surface

micro-topography detection if the distance to the D-RTK GNSS mobile station and terrain are

considered He et al. (2021). The use of virtual GCPs and suitable mathematical correction models

could improve the limitations found in this study, expanding UAS applications in polar regions.
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2.3.1.2 GNSS+RTN

In recent years, advances in GNSS positioning technology have led to the development of RTN

to enhance geospatial accuracy and precision. RTN systems, such as the one provided by TxDOT,

offer several advantages over traditional RTK solutions Ouml et al. (2010). For instance, RTN

systems do not require users to set up a physical base station, as they tap into an existing network

of established and error-corrected stations within the system’s coverage area Dao et al. (2004).

RTN systems have demonstrated improved accuracy over RTK systems, with documented ac-

curacy better than 4 cm vertically and 1-6 cm horizontally G. R. Hu et al. (2002). The increased

accuracy and precision provided by RTN systems have significant implications for various appli-

cations, including precision agriculture, which demands highly accurate geospatial data for plant

height estimation and other aspects of crop management Ali (2012).

One study comparing the precision performance of RTK and RTN systems in Los Angeles

County, California, found that the vertical precision for RTN measurements was 2-4 times lower

than that of RTK measurements Benjamin et al. (2020). The findings suggest that RTN systems

could potentially deliver superior accuracy and reliability in positioning data, particularly within

complex settings where standard RTK systems may grapple with challenges such as atmospheric

gradient. However, it should be noted that RTN systems does not resolve issues related to multipath

Kaloop et al. (2020) ; Rovira-Garcia et al. (2020).

2.3.1.3 GNSS+PPK

The use of PPK solutions in a UAS has been evaluated for geospatial accuracy in forested

areas. PPK is one of the two primary modifications of kinematic GNSS measurements for UAS

applications, where corrections from a virtual reference station (VRS) are applied post-flight.

The objective of the study conducted by Tomaštı́k et al. (2019) was to compare the accuracy of

photogrammetric products obtained from the UAS PPK solution with the traditional approach

of using GCPs for georeferencing. The study also examined the influence of vegetation season

and flight patterns on the accuracies. The results showed that the PPK solution provided lower

horizontal and vertical errors compared to the GCP approaches. Horizontal errors for PPK did not
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exceed 10 centimeters, while vertical errors remained under 20 centimeters. In contrast, the GCP

solutions exhibited higher errors, with the highest horizontal error reaching 28.2 centimeters and

the highest vertical error reaching 58.1 centimeters. The study concluded that the PPK method

can provide highly accurate spatial data comparable to the GCP approaches, making it a promising

solution for mapping inaccessible and hazardous forest areas.

2.3.1.4 GNSS+PPP

PPP is a widely studied method for determining the coordinates in GNSS surveys without the

need for a nearby reference station. It is a global positioning method that relies on measurements

from multiple satellite constellations, such as GPS, GLONASS, Galileo, and BeiDou. The compar-

ison of PPP with other survey methods, such as RTN and static modes, has been a topic of interest in

scientific and technical applications. However, evaluating the accuracy of the static mode solution,

which is often used as the reference, can be challenging due to various parameters that need to be

considered. Dardanelli et al. (2021) aimed to compare the performance of PPP, NRTK, and static

methods by analyzing the solutions obtained from benchmark points. The tests were conducted

by comparing the solutions in pairs and assessing their congruence. The RTN and static solutions

were based on a local GNSS CORS network analysis, while the PPP solution was obtained using

two different software packages. Statistical analysis was performed to determine the distribution

frequencies of the coordinate residuals and assess their conformity to a normal distribution. The

results showed that the Static vs. RTN pair showed the lowest range of variability and the lowest

standard deviation.

2.3.1.5 Standalone GNSS

Standalone GNSS receivers have become popular due to their reconfigurable and flexible design,

low price, and the possibilities of new specifications and algorithms that can be exploited (Paziewski

(2020)). In recent years, software-defined radio (SDR) technology and Free-and-Open-Source

Software (FOSS) have changed the landscape, with software-defined receivers (SDRs) providing

extreme customization and allowing users to access, visualize, and modify signal acquisition,

tracking, and processing strategies. Many software solutions in GNSS positioning now follow the
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SDR approach, such as GSNRx, ipexSR, N-Gene, and combined GPS and GLONASS software

receivers Petovello et al. (2008); Marco et al. (2001); Maurizio et al. (2009); S. & Mark (2008);

Lee & Park (2002).

One example of an open-source software solution for GNSS signal processing is GNSS-SDR,

which is capable of acquiring, processing, and computing navigation solutions for different con-

stellations such as GPS, GLONASS, and Galileo Carles et al. (2011). In the work by Matteo et al.

(2019) and Matteo et al. (2020), the quality of the pseudo ranges generated by an ultra-low-cost

front-end driven by a software-defined receiver was assessed through code-minus-carrier (CMC)

analysis. This study compared the performance of the SDR against a low-cost commercial-of-the-

shelf (COTS) receiver, the UBX z-f9p.

The results showed that the SDR was not able to acquire all the satellites tracked by the UBX,

and those satellites were characterized by a low signal gain. The CMC analysis confirmed the

presence of more noise in the observables generated by the SDR. Furthermore, the positioning

performance obtained by the SDR was worse than that of the UBX in all scenarios, with the mean

and standard deviation of the UBX horizontal error being about half of those of the SDR Matteo et

al. (2020).

These findings suggest that the limitations of the ultra-low-cost front-end used in the Rafael

micro-SDR driven by GNSS-SDR configuration are the main cause of the noisy measurements

and poor positioning performance. Future work could involve a denoising step of the observables

to improve the positioning algorithm, testing various RF front-ends to assess the influence of

hardware on overall performance, and conducting an in-depth pseudo-range errors analysis Matteo

et al. (2020).

2.3.1.6 Comparison of accuracy and efficiency

Standalone GNSS is a widely used geospatial positioning technique that employs satellites to

provide location and time information Alfred et al. (2015). In agricultural applications, the accuracy

of GNSS-only is often limited to a few meters, making it unsuitable for high-precision tasks such

as plant height estimation.
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In comparison, GNSS+RTK and GNSS+RTN techniques offer higher accuracy. RTN utilizes a

network of fixed reference stations that continuously transmit corrections to improve the positioning

accuracy of mobile receivers Mora et al. (2022). RTK, on the other hand, employs a base station

and a rover to compute real-time differential corrections, resulting in centimeter-level accuracy

K. Wang & El-Mowafy (2021).

While the accuracy of RTN and RTK is superior to GNSS-only, the cost of implementing

these techniques is often higher. Standalone GNSS receivers are more affordable, making them an

attractive option for small-scale farmers. However, the lower accuracy may lead to inefficiencies in

agricultural operations, resulting in increased costs over time Javier et al. (2020).

In contrast, RTN and RTK systems require more sophisticated equipment and infrastructure,

increasing the initial investment Mora et al. (2022); K. Wang & El-Mowafy (2021). Despite the

higher costs, the improved accuracy offered by these techniques can lead to substantial savings in

the long run by optimizing agricultural practices and reducing resource waste Javier et al. (2020).

In terms of efficiency, GNSS+RTK and GNSS+RTN provide real-time corrections, allowing

for immediate and accurate positioning Mora et al. (2022) ; K. Wang & El-Mowafy (2021). This

is particularly advantageous in precision agriculture, where timely decision-making is crucial for

optimal crop management.

Standalone GNSS, while less accurate, still offers some benefits in terms of efficiency. The

simplicity of the technology and its widespread availability make it easy to deploy and use in various

agricultural settings Alfred et al. (2015). However, the lower accuracy may result in inefficient

agricultural practices, which could negate some of the benefits of its ease of use.

2.4 UAS SfM & LiDAR for Crop Height Monitoring

2.4.1 UAS-SfM for Crop Height Monitoring

Estimating plant height is a crucial aspect of precision agriculture, as it provides valuable

information on crop growth and productivity Bendig et al. (2015b). UAS have emerged as a

promising tool for plant height estimation due to their ability to acquire high-resolution imagery

and flexibility in data acquisition Zhang et al. (2022).
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UAS-based plant height estimation generally involves two main steps: (1) deriving a DSM

representing the top of the vegetation and (2) subtracting a DTM or DEM representing the ground

surface to obtain the plant height Duan et al. (2017). Various methods have been proposed for

generating DSMs and DTMs from UAS imagery, such as SfM photogrammetry, LiDAR, and stereo

vision techniques Zhang et al. (2022).

SfM photogrammetry is a widely used technique for generating high-resolution DSMs and

DTMs from UAS-derived imagery. It involves the extraction of 3D information from a sequence

of 2D images captured at different viewpoints Westoby et al. (2012). SfM has been employed

in numerous studies for plant height estimation, demonstrating its effectiveness and accuracy in

different agricultural contexts Zhang et al. (2022).

2.4.2 UAS-LiDAR for Crop Height Monitoring

LiDAR sensors can also be mounted on UAS platforms for direct 3D point cloud generation.

UAS-based LiDAR has shown great potential for plant height estimation due to its ability to find gaps

and penetrates in that manner through vegetation, providing accurate ground surface information

Wallace et al. (2012). Recent advancements in lightweight and compact LiDAR sensors have made

it increasingly feasible to integrate them with UAS platforms for agricultural applications Zhang

et al. (2022). LiDAR technology presents a promising avenue for crop height monitoring. A

study by Hütt et al. (2022) demonstrated the effectiveness of LiDAR scanners mounted on UAVs in

overcoming the shortcomings of traditional remote sensing techniques, such as poor area efficiency,

long post-processing requirements, and the inability to simultaneously capture ground and canopy

data. Their research utilized a RIEGL Mini-VUX-1 LiDAR scanner on a DJI Matrice 600 PRO UAV

to acquire a point cloud from a winter wheat field trial. Through the analysis of the UAS-derived

LiDAR point cloud and the application of LiDAR metrics traditionally used in forest monitoring,

it was found that the 95th percentile of the height of normalized LiDAR points correlated strongly

with manually measured crop heights and crop heights derived from a UAS with optical imaging.

The study further demonstrated the potential of UAS LiDAR metrics in estimating crop traits like

dry biomass (DBM) and nitrogen uptake, making it a promising tool for crop height monitoring

17



and trait estimation in precision agriculture.

UAS-based plant height estimation has demonstrated great potential in precision agriculture,

with various techniques such as SfM photogrammetry, and LiDAR being employed to generate

accurate DSMs and DTMs.

2.5 DTM Generation Techniques

2.5.1 DTM obtained from a pre-plant emergence flight

DTMs obtained from pre-plant emergence flights play a significant role in crop height estimation

Bendig et al. (2013b). This method requires at least two flight missions, one shortly after sowing

or harvesting to capture the non-vegetated terrain and another during the season when crop height

needs to be measured. According to Bendig et al. (2015c), the resulting DTM from the pre-plant

emergence flight represents the ground surface, which aids in the subsequent estimation of plant

heights. This approach is crucial for ensuring the accuracy of crop height estimation when the field

terrain is uneven. However, the technique is reliant on the availability of UAS platforms and the

feasibility of carrying out multiple flights Feng et al. (2019).

2.5.2 DTM based on interpolating ground height points

Another commonly used approach to generate DTMs involves interpolating ground height

points. Feng et al. (2019) applied this technique by splitting the study field into small plots to

obtain bare ground elevation. They then conducted linear interpolation of the soil surface elevation

between adjacent plots to calculate the elevation of the bare ground that was not visible. This

method provides a solution to situations where it is difficult to obtain the DTM accurately from the

DSM when the crop canopy is closed. However, this method still requires a considerable amount

of labor for ground point data collection and interpolation Yue et al. (2017).

2.5.3 DTM created using automatic classification algorithms in PIX4Dmapper

Recently, automatic classification algorithms, like those employed in PIX4Dmapper software,

have been used to create DTMs. Agisoft Photoscan software, similar to PIX4Dmapper, was used

by Liang et al. (2019) and Yilmaz et al. (2018) to classify dense point clouds into ground point

clouds and generate the DTM by interpolation based on the classified ground point clouds. This
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approach is efficient and reduces the need for manual extraction of ground points from the DSM.

However, it requires sophisticated software and an understanding of the classification algorithms.

2.5.4 Comparison of accuracy and reliability

Each of these methods has strengths and weaknesses, and the choice of method depends on

various factors including the availability of resources, the nature of the terrain, and the specific

requirements of the crop height estimation task. Regardless of the method used, it is crucial to take

into account the potential sources of error and the need for accuracy in plant height estimation in

precision agriculture X. Wang et al. (2019b).
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CHAPTER 3: MATERIALS & METHODS

3.1 Study Location

The study was conducted at the Texas A&M AgriLife Research and Extension Center, situated in

Corpus Christi, Texas, USA, with geographical coordinates of 27°46’35”N latitude and 97°33’38”W

longitude as shown in figure 3.2. The research focused on corn crops cultivated during the 2022

agricultural growing season, leveraging the center’s resources and expertise in crop management

and agronomic practices. The selection of this location allowed for the comprehensive evaluation

of georeferencing techniques and UAS-based plant height estimation methods under real-world

conditions, ensuring that the results and insights generated from this study are both relevant and

applicable to the broader agricultural community. As shown in figure 3.2, the study area contained

a corn field with a unique characteristic - it contained three distinct planting dates, each providing

a different stage of crop growth. This entire area was considered in the georeferencing study.

However, for the plant height estimation study, attention was focused solely on the third planting

date. This targeted area, which offered a snapshot of the least mature growth stage, spanned an

area of 40 x 40 meters. Over this area, a total of 36 sections with at least 6 plants were selected to

measure plant height.
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Figure 3.2
Texas A&M AgriLife Research and Extension Center, situated in Corpus Christi, Texas and corn
Field with 36 plot boundaries from which plant height was measured and estimated.

3.2 Equipment & Tools

3.2.1 UAS Platform & GNSS receiver

In this study, a range of state-of-the-art geospatial hardware was employed to accurately and

efficiently collect the data necessary for the research of georeferencing systems comparison and

UAS-based plant height estimation. The primary equipment utilized in the research included the

Emlid Reach RS2 GNSS receiver, the DJI Phantom 4 RTK drone, and the DJI D-RTK 2 Mobile

Station (see figure 3.3).
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Figure 3.3
Hardware used for data collection in this study, including Emlid Reach RS2, DJI Phantom 4 RTK,
and DJI D-RTK 2 Mobile Station.

The Emlid Reach RS2 is a compact and rugged GNSS receiver. This receiver offers multi-

band GNSS support, enabling it to track GPS, GLONASS, BeiDou, Galileo, QZSS, and SBAS

satellite systems. Its L1, L2, and L5 frequency bands provide improved positioning accuracy, faster

convergence times, and enhanced robustness against interference and multipath effects. In this

study, a pair of Emlid Reach RS2 devices were employed for the precise acquisition of Ground

Control Points (GCPs) location data, aiming to assess the comparative performance of various

georeferencing techniques during aerial data capture. The devices were utilized in distinct roles:

one Emlid Reach RS2 functioned as a rover station for pinpointing GCPs, while the second operated

as the base station. Notably, even though Emlid Reach RS2 possesses the capacity to receive RTN

corrections, this functionality was not employed in this study.

The DJI Phantom 4 RTK, released in October 2018, is an advanced aerial mapping platform

that combines the high-resolution imaging capabilities of the DJI Phantom 4 series with RTK

technology for centimeter-level positioning accuracy. The drone’s integrated RTK module allows
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for direct georeferencing of the captured imagery, significantly reducing the need for GCPs and

streamlining the post-processing workflow.

The DJI Phantom 4 RTK has a three-axis stabilized camera with a high-resolution 1-inch (25

mm) 20 MP CMOS sensor FC6310, ensuring the captured aerial imagery exhibits exceptional

detail and clarity. The sensor’s large size allows for enhanced low-light performance and improved

dynamic range, resulting in superior image quality across various lighting conditions. The camera

features a mechanical shutter, which minimizes rolling shutter distortion, a common issue in aerial

imagery captured at high speeds or low altitudes. The Phantom 4 RTK camera has a 24mm (35mm

equivalent) lens with an 84° field of view, providing broad coverage while maintaining a sharp,

distortion-free image. With a maximum resolution of 5472x3648 pixels, the drone can capture

high-resolution aerial imagery, allowing for the generation of accurate and detailed orthomosaics,

digital surface models, and digital terrain models, which are crucial components of this study’s

georeferencing systems comparison and plant height estimation analysis.

The DJI D-RTK 2 Mobile Station is a high-precision GNSS receiver specifically designed to

work in conjunction with DJI’s RTK-enabled drones, such as the Phantom 4 RTK. This mobile

station provides real-time differential corrections to the drone’s RTK module, ensuring centimeter-

level accuracy in the geolocation data of the captured imagery. In the context of this study,

the DJI D-RTK 2 Mobile Station was deployed under operation mode 1 to facilitate the high-

precision georeferencing of aerial images acquired by the Phantom 4 RTK. This enabled the precise

evaluation and comparison of the various georeferencing techniques under investigation. Notably,

when functioning as a base station, the DJI D-RTK 2 Mobile Station could operate utilizing pre-

measured coordinates and altitude data for setup. These coordinates were gathered beforehand with

alternative survey equipment. Consequently, there was no requirement for the station to remain

stationary for a minimum of two hours to establish its precise coordinates and altitude.

TxDOT RTN is a type of high-precision, networked GNSS positioning infrastructure provided

and maintained by TxDOT. It includes a series of permanent GNSS stations, also known as regional

reference points, spread across Texas that continuously collect and transmit GNSS data. These
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stations allow users within that area to receive corrected positioning data in real-time, significantly

increasing the accuracy of their GNSS receivers. Figure 3.4 provides an overview of the 194 TxDOT

Regional Reference Points (RRPs) and RTN across the state. For this project, the Corpus Christi

station, with station code txcc, was utilized to provide RTN signals in real-time to the Phantom 4

RTK platform. It is located at latitude 27.7407931, longitude -97.44166959, and ellipsoid height

of -9.086 (coordinate type: NGS CORS)

Figure 3.4
Geographical location of TxDOT RTN 194 high-accuracy base stations across the state of Texas
as of September 2022.
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3.2.2 PIX4Dmapper & QGIS

In this study, two prominent geospatial software tools were employed to process and analyze

the collected data, ensuring that the findings were generated using the latest industry-standard

methodologies. The software packages used in this research were PIX4Dmapper (Version 4.7.5)

and QGIS (Version 3.22.14-Bialowieza). These tools were selected for their proven capabilities in

handling a wide range of geospatial data types, as well as their compatibility with the hardware

utilized in the study. Each software played a critical role in the data processing, extraction, and

analysis stages of the research, allowing for a comprehensive evaluation of georeferencing systems

comparison and plant height estimation methods.

PIX4Dmapper (Version 4.7.5) is a powerful SfM/multi-view stereo photogrammetry software

suite designed for processing aerial and terrestrial imagery, converting the collected data into highly

accurate georeferenced 2D and 3D models. In this study, PIX4Dmapper was used to process the

aerial imagery captured by the DJI Phantom 4 RTK drone, generating high-resolution orthomosaics,

DSMs, and DTMs for further analysis. The software’s robust algorithms facilitated the automatic

classification of ground points, which enabled the comparison of the various DTM generation

techniques under investigation. Additionally, PIX4Dmapper’s quality assessment tools were in-

strumental in assessing the accuracy and precision of the georeferenced imagery produced using

the different georeferencing methods, as well as calculating georeferencing systems comparison by

leveraging the GCPs established by the Emlid Reach RS2 GNSS receiver.

QGIS (Version 3.22.14-Bialowieza) is a widely recognized, open-source Geographic Informa-

tion System (GIS) software that provides extensive data handling and analysis capabilities. In this

research, QGIS was employed to analyze and extract the geospatial data generated by PIX4Dmapper,

including the orthomosaics, DSMs, DTMs, and canopy height models (CHMs). Plant height was

extracted from the CHMs, which were derived by subtracting the DTMs from the DSMs, effectively

isolating the height of the vegetation above the ground. The Zonal Statistics tool in QGIS enabled

the extraction of values for specific areas, allowing for a detailed assessment of plant height within

the experimental boundaries. By leveraging the capabilities of QGIS, the study effectively extracted
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and analyzed plant height data from the processed imagery, enabling the comparison of the dif-

ferent methods to obtain DTMs and the evaluation of their performance in real-world agricultural

applications.

3.3 Data Collection

3.3.1 UAS Flights

In this study, a series of UAS flights using an RGB camera on a DJI Phantom 4 RTK platform

were meticulously planned and executed to capture high-resolution aerial imagery of the exper-

imental site for subsequent processing and analysis. Five flights were conducted - 03/26/2022,

06/01/2022, 06/16/2022, 07/15/2022, and 04/11/2023 - to ensure that the results could be validated

through repetition, thus enhancing the reliability of the research findings. These UAS flights were

designed to provide the necessary data for comparing various georeferencing and plant height

estimation methods while considering factors such as altitude, flight speed, overlap, and planning

method. GSD for each flight is shown in table 3.1.

Table 3.1
GSD for each flight at that 25 meters AGL.

UAS Flight Date GSD [cm]
03/26/2022 0.77
06/01/2022 0.77
06/16/2022 0.75
07/15/2022 0.74
04/11/2023 0.74

The UAS flights were performed at an altitude of 25 meters above ground level (AGL), which

is the lowest altitude permissible for the DJI Phantom 4 RTK. Flying at this low altitude allowed

us to obtain the highest possible resolution for the captured imagery, directly contributing to more

accurate results in plant height estimation. The flight speed was set at 2 meters per second, a

deliberate choice to strike a balance between data collection efficiency - the ability to gather the

maximum amount of relevant and accurate data with minimal time and energy - and the level

of detail required for accurate georeferencing and plant height estimation. To achieve optimal

coverage and image quality, the front and side overlap were set to 80%, ensuring a sufficient level of
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redundancy in the captured images to facilitate accurate and reliable photogrammetric processing.

When setting up the UAS mission on the remote controller, the planning method selected was

”Photogrammetry 2D”, which is well-suited for this type of agricultural study, as it allows for the

generation of detailed orthomosaics and elevation models. These carefully chosen parameters were

specifically designed to maximize the quality of the UAS-SfM data collected and the accuracy of the

subsequent analyses, ultimately enhancing the reliability and robustness of the research findings.

Prior to the three core experimental flights (06/01/2022, 06/16/2022, and 07/15/2022), a pre-

liminary flight took place on 03/26/2022 to obtain a DTM before plant emergence. For the

georeferencing objective of this study, the DJI D-RTK 2 Mobile Station was used for georefer-

encing during all flights, providing real-time differential corrections to the DJI Phantom 4 RTK

drone’s onboard RTK module and ensuring centimeter-level accuracy in the geolocation data of the

captured imagery.

Building on the findings from the initial four flights, an additional UAS flight was carried out

on 04/11/2023 to specifically assess the accuracy of aerial imagery when using the DJI D-RTK 2

Mobile Station after changing the input parameters of its known location. The goal of this flight was

to evaluate the performance and reliability of GNSS+RTK in providing accurate georeferencing

information. By examining the impact of modified input parameters on georeferencing accuracy, the

research aimed to improve the previously obtained results and understanding of how such changes

affect the overall quality and precision of geospatial data generated, ultimately contributing to the

development of best practices for using GNSS+RTK in geospatial projects.

3.3.2 Field Measurements

Field data collection was conducted right after UAS-SfM photogrammetric survey for all dates

(06/01/2022, 06/16/2022, 07/15/2022) To collect manual height measurements, a meter scale was

utilized, ensuring that the measurements were consistent and accurate. Starting from the ground

up to the tassel of the plant. Figure 3.5 illustrates where the height was measured to.
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Figure 3.5
Illustration of a corn plant, highlighting its various parts. The image indicates the measurement of
plant height from the ground to the tassel, demonstrating the standardized methodology employed
for manual height measurement in the study.

Data collection was conducted from 36 distinct sections within the 3rd planting field, as shown

in figure 3.2. These sections, each spanning 0.8 meters in width and 1 meter in length, served as

the source for plant height measurements. The field was organized into a layout that featured four

repeated rows, and in adherence to this pattern, manual measurements were taken at intervals of four

rows. Within each section, every plant was measured, with the number of plants per section ranging

between 6 and 12. The criteria for section selection stipulated that only those containing at least six

plants within a 1-meter distance were chosen. To uphold the authenticity and dependability of the

collected field data, measurements were not taken from border plots. This precaution was taken to

reduce possible biases due to edge effects, which could potentially compromise the precision and

applicability of the results.
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CHAPTER 4: METHODOLOGY

4.1 Georeferencing Systems Comparison

A graphical representation of different positioning systems is shown in figure 4.6. Standalone

(uncorrected) GNSS measurements were made during flight by the receiver onboard the UAS

platform; RTK corrected GNSS measurements were made during flight using the DJI D-RTK 2

local GNSS base station; and RTK corrected GNSS measurements were made during flight using

RTN correction service of continuously operating GNSS reference stations provided by TxDOT as

opposed to a local base station. This comparison aimed to investigate the accuracy and efficiency

of these georeferencing methods in the context of UAS-SfM photogrammetry for crop height

measurement and monitoring. By comparing the performance of GNSS-only, GNSS+RTK from

DJI D-RTK 2, and GNSS+RTN from TxDOT, the study sought to determine the most suitable and

accurate georeferencing techniques dependent on accuracy and precision needs.

Figure 4.6
Graphical representation of different positioning systems, including GNSS-only, GNSS+RTK
corrections, and GNSS+RTN.
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The Emlid Reach RS2 GNSS receiver was utilized to survey GCPs. It is a high-precision GNSS

receiver capable of providing centimeter-level accuracy, making it a useful tool for surveying GCPs

in support of UAS survey projects. The use of this equipment facilitated the collection of high-

quality geolocation data, which served as a reference for assessing the accuracy and performance of

the three georeferencing systems under investigation. A total of 9 GCPs were strategically placed

within the study area to provide accurate and reliable geolocation data for the subsequent analysis

and comparison of the georeferencing systems. The selection of GCPs and checkpoints for the

georeferencing systems comparison study is demonstrated in figure 4.7.

Figure 4.7
Aerial view of the field showcasing the strategic placement of GCPs and checkpoints. The image
provides a clear depiction of the spatial distribution of these critical points across the study area.

The distribution pattern of the 9 GCPs in the field was strategically designed to optimize both the

accuracy and the quality of the 3D reconstruction. The number of GCPs selected varied depending

on the experiment, with either 1 or 0 GCPs selected as 3D GCP, and either 8 or 9 GCPs selected as

checkpoints for the georeferencing experiment. In the scenarios where 1 GCP was selected as 3D

GCP, this was located in the center of the field as shown in figure 4.7. The placement of a 3D GCP in

the center of the field is a critical measure to enhance the quality of the reconstruction by mitigating

systematic errors, such as the ”bowl effect”. This effect, often observed in photogrammetry, results

from the accumulation of minor errors in the measurement of the camera lens model throughout
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the photogrammetric process. Checkpoints serve an important role in assessing the accuracy of

the generated model by providing on-site, independently measured data against which the model’s

accuracy can be evaluated. They are an optional but highly recommended component of field setup

for photogrammetric surveys, and their inclusion in this study further validates the resulting 3D

models.

4.1.1 Standalone GNSS

During the first configuration of the study, the DJI Phantom 4 RTK drone was configured to

fly and record the autonomous (uncorrected) GNSS measurements as opposed to utilizing RTK

or another correction method during flight. This decision was made to examine the autonomous

positional accuracy of the GNSS receiver onboard the UAS and assess its performance as a

standalone method for georeferencing of camera/image positions and subsequent UAS-SfM data

products. By focusing on autonomous GNSS measurements, the study aimed to establish a baseline

for comparison with the differential GNSS georeferencing methods that incorporate RTK or RTN

corrections.

4.1.2 GNSS+RTK

After assessing the GNSS-only georeferencing system, the DJI Phantom 4 RTK drone was

configured to fly using GNSS combined with RTK corrections. The objective of this configuration

was to evaluate the performance improvements offered by integrating RTK corrections into the

georeferencing process. By incorporating RTK corrections, the study aimed to determine the

extent to which this advanced georeferencing method could enhance the quality and accuracy of

UAS-SfM data acquisition and analysis when compared to autonomous GNSS (GNSS-only).

The RTK corrections for precise georeferencing were received from a DJI D-RTK 2 local

GNSS base station, enhancing the accuracy of the UAS-SfM survey. This technique required the

acquisition of an accurate base position coordinate, which was obtained by recording a Receiver

Independent Exchange Format (RINEX) file for a period of eight hours. The recording was

conducted using the Emlid Reach RS2 GNSS receiver. After obtaining the RINEX file, the

collected RINEX file was uploaded to the Online Positioning User Service (OPUS), a free online
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service provided by the National Geodetic Survey. OPUS uses data from a network of permanent

GNSS stations to provide corrected coordinates for the uploaded file’s location. After the upload,

OPUS processed the RINEX data and delivered the precise base position coordinate. This base

position coordinate was then configured in the GNSS+RTK base station. During the UAS flights,

the base station transmitted correction data to the drone in real-time, leveraging the RTK method.

This enabled the drone to apply corrections to its GNSS data, significantly enhancing the spatial

accuracy of the acquired images. This process substantially reduced post-processing time.

4.1.3 GNSS+RTN

In the final configuration of the study, the DJI Phantom 4 RTK drone was set to fly using

GNSS combined with TxDOT RTN network corrections. The goal of this configuration was to

explore the performance improvements achieved by incorporating RTN corrections during flight

into the georeferencing process as opposed to using a local base station. By integrating TxDOT

RTN corrections with the GNSS system, the study sought to assess the extent to which this

advanced georeferencing method could further enhance the quality and accuracy of UAS-based

data acquisition and analysis in comparison to the GNSS-only and GNSS+RTK systems. This

comparison not only emphasized the advantages of employing GNSS+RTN corrections but also

offered valuable insights to optimize data collection and processing workflows using the most

advanced and efficient georeferencing methods available.

To facilitate the reception of TxDOT RTN corrections by the DJI Phantom 4 RTK drone, a

Wi-Fi network generated from a mobile hotspot was employed for the DJI remote controller. This

approach allowed for seamless data transmission between the RTN caster and the drone’s remote

controller, ensuring that the drone could consistently receive real-time corrections during the flight.

The credentials required to access the RTN service were provided by TxDOT, ensuring that the

study utilized a reliable and well-maintained source of correction data. Leveraging this mobile

hotspot setup allowed to effectively assess the performance of the GNSS+RTN georeferencing

system under real-world conditions.
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4.2 Plant Height Estimation

For the plant height estimation study, a total of 9 GCPs were strategically placed within the study

area to provide accurate and reliable geolocation data for the subsequent analysis and comparison

of the georeferencing systems. The selection of GCPs and checkpoints for the plant height study is

demonstrated in figure 4.8.

Figure 4.8
Aerial view of the field showcasing the strategic placement of GCPs and checkpoints. The image
provides a clear depiction of the spatial distribution of these critical points across the study area.

Five of these points were used as 3D GCPs, one placed at each corner of the field and one

in the middle. The corner placement of the 3D GCPs is a common practice to provide a frame

of reference that covers the entire area of interest, ensuring accurate geolocation across the whole

field. The remaining four GCPs were positioned along the edges of the field and designated as

checkpoints.

4.3 SfM Data Processing

The image sets acquired from each UAS flight and respective GNSS method (GNSS-only,

GNSS+RTK, GNSS+RTN) applied for georeferencing of the image locations were imported into

the commercial SfM photogrammetry software, PIX4Dmapper, to process and generate geospatial

data products for subsequent analysis, including estimation of canopy height. A description of

the photogrammetric data processing workflow implemented within the PIX4Dmapper software is
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provided below.

4.3.1 Georeferencing Studies

4.3.1.1 Import Imagery

The image sets acquired with corrections from GNSS methods (uncorrected, RTK, RTN)

were imported into the PIX4Dmapper SfM photogrammetry software to process and generate

geospatial data, based on the geotag locations. Once the images have been successfully imported,

PIX4Dmapper automatically parses the embedded geolocation and orientation metadata, which

will be utilized in subsequent processing steps.

To ensure consistent and accurate georeferencing throughout the project, users must configure

the coordinate system and geolocation accuracy settings within PIX4Dmapper. When analyzing the

imagery dataset from uncorrected GNSS and GNSS+RTK, the World Geodetic System 1984 (WGS

1984) datum was selected as the geographic coordinate system which is the global reference system

used by the GNSS measurements recorded by the receiver onboard the UAS. On the other hand, when

analyzing the imagery dataset from GNSS+RTN, the NAD83 National Spatial Reference System

2011 (NAD83 2011) datum was selected as the geographic coordinate system which is the reference

system used by TxDOT RTN. Additionally, the geolocation accuracy was set to ”Standard,” which

balances processing time with the level of precision required for most applications. Once these

settings were configured, PIX4Dmapper automatically detected the camera model used to capture

the raw imagery, in this case, the FC6360. This step is crucial for ensuring that the software

correctly interprets and processes the image data, accounting for the unique characteristics and

specifications of the camera sensor used in the drone.

4.3.1.2 Photo Alignment & Calibration

After importing the raw images into PIX4Dmapper, the calibration and estimation of the camera

exterior orientations (position and orientation of the camera at the time each photo was acquired)

was initiated. The following is the configuration selected from the Initial Processing menu. The

custom option with 1 (original image size) was selected for keypoints image scale, which allowed

for a more accurate alignment by retaining the original image resolution. The aerial grid or corridor
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was chosen as the option for matching image pairs, and geometrically verified matching was used to

improve the accuracy of the results. The targeted number of keypoints was set to automatic, which

determined the number of keypoints based on the number of images and the image content. To

ensure accurate geolocation and orientation, the calibration method was set to ’accurate geolocation

and orientation’, and the rematch option was selected to further refine the alignment if necessary.

These parameters were specifically selected to obtain a high-quality alignment that would facilitate

the generation of accurate georeferenced data.

4.3.1.3 Import GCPs & Re-optimize

During the GCP importing process in PIX4Dmapper, the WGS 84 geographic coordinate system

was selected. A complete summary of the GCP placement for the georeferencing experiment is

shown in table 4.2. Once the GCPs were imported, the GCP tagging process began to locate

the center of the GCP in the image. This process involved identifying and marking the GCPs on

each image, which allowed for precise georeferencing during the point cloud and mesh generation

process. After GCP tagging, the reoptimize process was performed, which re-adjusted the position

and orientation of the camera to improve the accuracy of the results.

Table 4.2
Experiement GCP placement setting.

UAS Flight Date Number of GCPs & Type GNSS Receiver
06/01/2022 8 Checkpoints; 1 3D GCP GNSS+RTK
06/01/2022 9 Checkpoints; 0 3D GCP GNSS+RTK
06/01/2022 8 Checkpoints; 1 3D GCP Uncorrected GNSS
06/01/2022 9 Checkpoints; 0 3D GCP Uncorrected GNSS
06/16/2022 8 Checkpoints; 1 3D GCP GNSS+RTK
06/16/2022 9 Checkpoints; 0 3D GCP GNSS+RTK
06/16/2022 8 Checkpoints; 1 3D GCP GNSS+RTN
06/16/2022 9 Checkpoints; 0 3D GCP GNSS+RTN
06/16/2022 8 Checkpoints; 1 3D GCP Uncorrected GNSS
06/16/2022 9 Checkpoints; 0 3D GCP Uncorrected GNSS
07/15/2022 8 Checkpoints; 1 3D GCP GNSS+RTK
07/15/2022 9 Checkpoints; 0 3D GCP GNSS+RTK
07/15/2022 8 Checkpoints; 1 3D GCP GNSS+RTN
07/15/2022 9 Checkpoints; 0 3D GCP GNSS+RTN
07/15/2022 8 Checkpoints; 1 3D GCP Uncorrected GNSS
07/15/2022 9 Checkpoints; 0 3D GCP Uncorrected GNSS
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4.3.1.4 Generate Quality Report

One of the essential outputs generated by the software is a comprehensive quality report, which

provides an overview of the project’s accuracy and quality metrics. For this study, the primary

focus was on the results presented in the geolocation details section of the report, specifically about

the GCPs. Therefore, in this particular case, neither the orthorectified orthomosaic nor the DSM

were generated.

The geolocation details section of the report contains essential information about the accuracy

and precision of the GCPs used during the project. These metrics are crucial for evaluating the

overall accuracy of the 3D reconstruction (densified point cloud) of the imaged scene, which

directly impacts the quality of the generated orthomosaics, DSMs, and DTMs. In this study, the

main focus was on the values for Root Mean Square Error (RMSE) for X, Y, and Z coordinates.

The RMSE represents the average difference between the true and estimated values for each

coordinate, with lower values indicating a higher level of accuracy. The formula to calculate RMSE

is RMSE(𝑥, 𝑥) =
√︃∑𝑁

𝑖=1 (𝑥𝑖−𝑥𝑖)2

𝑁
where N is the number of data points, 𝑥𝑖 is the i-th measurement, and

𝑥𝑖 is its corresponding prediction.

4.3.2 Plant Height Studies

4.3.2.1 Import Imagery

The image sets acquired with corrections only from GNSS+RTK method, were imported into the

PIX4Dmapper SfM photogrammetry software to process and generate geospatial data based on the

geotag locations. Once the images have been successfully imported, PIX4Dmapper automatically

parses the embedded geolocation and orientation metadata, which will be utilized in subsequent

processing steps.

To ensure consistent and accurate georeferencing throughout the project, users must configure

the coordinate system and geolocation accuracy settings within PIX4Dmapper. For this study, the

World Geodetic System 1984 (WGS 1984) datum was selected as the geographic coordinate system,

which is the global reference system used by the GNSS measurements recorded by the receiver

onboard the UAS. Additionally, the geolocation accuracy was set to ”Standard,” which balances
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processing time with the level of precision required for most applications. Once these settings

were configured, PIX4Dmapper automatically detected the camera model used to capture the raw

imagery, in this case, the FC6360. This step is crucial for ensuring that the software correctly

interprets and processes the image data, accounting for the unique characteristics and specifications

of the camera sensor used in the drone.

4.3.2.2 Photo Alignment & Calibration

After importing the raw images into PIX4Dmapper, the next step was to align the photos. In the

alignment process, the full option was selected for the keypoints image scale, which allows for the

detection of keypoints in the full-resolution images. The aerial grid or corridor option was selected

for the matching image pairs, which optimizes the matching process for aerial images taken in a grid

or corridor flight pattern. The targeted number of keypoints was set to automatic, which allows the

software to automatically adjust the number of keypoints based on the image content and quality.

Finally, the calibration method was set to standard, which uses a mathematical model to correct

for lens distortion and calibrate the camera parameters. The alignment process is critical to ensure

accurate orthomosaic and DSM generation, which is necessary for obtaining accurate estimates of

plant height from the images.

4.3.2.3 Import GCPs & Re-optimize

To improve the accuracy of the georeferencing process, GCPs were imported into PIX4Dmapper.

The GCPs were collected on the field using the Emlid Reach RS2 receiver. WGS 84 was selected

as the GCP coordinate system in PIX4Dmapper, which matched the coordinate system used by the

Emlid Reach RS2. A total of five GCPs were selected as 3D GCPs, while four GCPs were selected

as checkpoints to validate the accuracy of the processing. Once the GCPs were imported into

PIX4Dmapper, the GCP tagging process began to locate the center of the GCP in the images. This

process involved manually placing a marker on the center of the cross of each GCP in each image

in which it was visible. By using GCPs, the software can adjust the positioning and orientation of

the images, which helps to improve the accuracy of the final output.
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4.3.2.4 Point Cloud and Mesh

Once the photos were aligned and GCPs imported in PIX4Dmapper, the point cloud and mesh

generation process was initiated. For the point cloud, image scale option of 1 (original image size)

with multiscale enabled was selected. This option allows the creation of a dense and accurate point

cloud. Then, the point density was set to optimal and selected a minimum of 3 matches. This

ensured that the point density and processing time were balanced to obtain a satisfactory point

cloud. Following the point cloud generation, the mesh was created using the medium resolution

setting in the 3D textured mesh options. This setting produced a mesh with a reasonable number of

triangles while maintaining an adequate level of detail. The point cloud generated in the previous

step was used for mesh generation. Selecting these specific parameters allowed to generate a

high-quality mesh that accurately represented the topography and vegetation structure of the study

area.

4.3.2.5 Generate DSM, DTM, and Orthomosaic

After the point cloud and mesh generation, the next step was the generation of the DSM and

orthomosaic in PIX4Dmapper. The resolution was set to 5 cm/pixel ensuring that both the DTM

and DSM had the same resolution. During the generation process, to improve the quality of the

output, the options to use noise filtering and surface smoothing were selected. Additionally, sharp

was selected as the DSM filter type, which is a suitable filter type for agricultural areas with sharp

changes in height. The method used to raster the DSM was inverse distance weighting, which

assigns weights to neighboring points to estimate the height at a specific location.

In this study, the DTM was generated using three different methods to evaluate their effectiveness

and accuracy creating a more reliable representation of the ground surface, which is crucial for

generating accurate CHMs. The first method involved utilizing the automatic classification tool

from PIX4Dmapper, which generated the DTM with the same resolution as the DSM. The point

cloud classification tool was employed to improve the DTM generation process by classifying

ground points, thereby facilitating the accurate identification of the terrain and the creation of a

reliable DTM. The second method for generating the DTM involved using the Triangulated Irregular
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Network (TIN) interpolation tool available in QGIS. This approach allowed for the construction

of a surface model by connecting adjacent ground elevation points that were selected manually all

over the field, resulting in a detailed and accurate representation of the ground surface. The third

method of generating the DTM was based on using elevation data from a flight conducted before

plant emergence. This approach leveraged existing elevation data, for representing the ground

surface on the terrain model.

With the DSM and DTM generated, the next step was the orthomosaic generation process. The

orthomosaic is a geometrically corrected aerial image that has been adjusted to have a uniform

scale, so distances can be measured directly from it. To ensure consistency throughout the analysis,

the orthomosaic was set to have the same resolution as the DSM and DTM

4.3.3 Generate CHM

To generate the CHM, DSM was subtracted from the DTM using the raster calculator tool in

QGIS. Since both the DSM and DTM had the same resolution, the resolution was preserved for

the generated CHM. This ensured that the spatial consistency and accuracy of the analysis were

maintained. For the purpose of this research, the output Coordinate Reference System (CRS) used

was EPSG:32614 - WGS 84 / UTM zone 14N, which facilitated data integration with other spatial

datasets within the study area.

4.3.4 Obtain Plant Height

In this study, the Zonal Statistics tool in QGIS was utilized to calculate the maximum height of

plants from the CHM within the designated plot boundaries. This tool operates by overlaying the

vector geometries (i.e., the plot boundaries) onto the raster dataset (i.e., the CHM) and computing

the desired statistics (in this case, the maximum height) for each zone or plot.

4.3.5 Generate Canopy Cover

To implement the Canopeo method using QGIS, the orthomosaic images were first imported

into QGIS. In this case, the Raster Calculator was used to apply a color-based segmentation formula

to separate green vegetation pixels from the background. The formula,

((Red/Green) < 0.95 𝐴𝑁𝐷 (Blue/Green) < 0.95 𝐴𝑁𝐷 (2∗Green−Red−Blue) > 20)
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is designed to emphasize the greenness of vegetation and minimize the influence of other colors,

allowing for a more accurate estimation of canopy cover. This workflow is shown in figure 4.9.

By applying this formula within the Raster Calculator tool, a new raster layer was generated

that highlights the areas of green vegetation in the orthomosaic images. This layer can then be used

to calculate the fractional green canopy cover by determining the ratio of green vegetation pixels

to the total number of pixels within the defined area of interest.

Figure 4.9
Illustration of the UAS green canopy cover estimation workflow. The image provides a
step-by-step visual guide of the process, from initial pixel classification to final percentage cover
computation.

4.4 Comparative Accuracy Assessment

For further analysis, the next step was a detailed comparison of the accuracy in both the

horizontal (X, Y) direction and the vertical (Z) direction. This values can be obtained from a report

generated from Pix4Dmapper. An example of this report is shown in figure 4.10.

Bar charts were computed to present the RMSE values in a visual format for the X, Y, and Z

coordinate components for each GNSS method and UAS flight. The effectiveness of the different

40



georeferencing methods could be determined from the visual and quantitative RMS results, thereby

allowing the selection of the most suitable approach for the study.

Figure 4.10
An example of report displaying the georeferencing errors for each checkpoint. The table provides
a comprehensive breakdown of both horizontal and vertical inaccuracies, offering a quantitative
assessment of geospatial accuracy in the study.

4.5 Estimating Plant Height from SfM

The generated geospatial data products output from Pix4Dmapper software, described above,

were applied to estimate canopy height models for each UAS flight as described below. The

workflow can be observed in figure 4.11.
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Figure 4.11
Illustration of the UAS derived plant height estimation workflow. The image provides a
step-by-step visual guide of the process, from initial data acquisition to final height estimation and
comparison.

With these outputs in hand, QGIS was employed to generate CHMs for every UAS flight date by

subtracting the DTM from the DSM. Given that the DSMs and DTMs were generated at a resolution

of 5 cm/pixel, the derived CHMs were also produced at the same resolution of 5 cm/pixel. Once the

CHMs were generated, 36 plot boundaries of 0.8 meters in width and 1 meter in length were created

to reduce the area containing ground and focus only on the area with plants. Example of these

boundaries are shown in figure 4.12. The beginning and end of each boundary were surveyed using

an Emlid Reach RS2 at the moment of manually measuring the plants in the field. Subsequently,

the Zonal Statistics tool within QGIS was utilized to extract maximum height values from drawn

plots.
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Figure 4.12
Schematic representation of plot boundaries, each measuring 0.8 meters in width and 1 meter in
length, encircling the area of interest where plant heights were manually assessed.

4.5.1 Statistical Evaluation of UAS-SfM Plant Height Estimation Error

The relationship between the UAS-based crop canopy height estimates and ground-based mea-

surements was obtained from calculating coefficient of determination (R2).
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CHAPTER 5: RESULTS & DISCUSSION

5.1 Georeferencing Systems Comparison

5.1.1 Results

Figures below show horizontal and vertical RMSE based on the PIX4Dmapper accuracy values

provided in quality reports relative to checkpoints. These accuracy values report the difference in

the result of the SfM bundle adjustment implemented in PIX4Dmapper to reconstruct the 3D target

coordinate relative to the GCP coordinates surveyed using the ground-based methods.

Figures 5.13, 5.14, and 5.15, represent data collected on the 1st of June, 2022, using GNSS-

only and GNSS+RTK. Best results were obtained when using GNSS+RTK from the DJI D-RTK 2

mobile station. Moreover, for horizontal accuracy assessment (X) and vertical accuracy assessment

(Z), accuracy improved when using 1 GCP in comparison to not using any. In every scenario, the

use of GNSS-only and no GCP reported the least accurate results.

Figure 5.13
Horizontal accuracy (X) for 06/01/2022 comparing the RMSE measured in centimeters between
GNSS-only and GNSS+RTK, considering different quantities of GCPs.
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Figure 5.14
Horizontal accuracy (Y) for 06/01/2022 comparing the RMSE measured in centimeters between
GNSS-only and GNSS+RTK, considering different quantities of GCPs.

Figure 5.15
Vertical accuracy (Z) for 06/01/2022 comparing the RMSE measured in centimeters between
GNSS-only and GNSS+RTK, considering different quantities of GCPs.

Figures 5.16, 5.17, and 5.18, represent data collected on the 16th of June, 2022, using GNSS-

only, GNSS+RTK and GNSS+RTN. For horizontal accuracy assessment (X) and vertical accuracy
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assessment (Z), accuracy improved when using GNSS+RTK from the DJI D-RTK 2 mobile station.

Moreover, the use of 1 GCP in GNSS-only corrections, significantly improved the results. In every

scenario, the use of GNSS-only and no GCP reported the least accurate results.

Figure 5.16
Horizontal accuracy (X) for 06/16/2022 comparing the RMSE measured in centimeters between
GNSS-only, GNSS+RTK, and GNSS+RTN, considering different quantities of GCPs.
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Figure 5.17
Horizontal accuracy (Y) for 06/16/2022 comparing the RMSE measured in centimeters between
GNSS-only, GNSS+RTK, and GNSS+RTN, considering different quantities of GCPs.

Figure 5.18
Vertical accuracy (Z) for 06/16/2022 comparing the RMSE measured in centimeters between
GNSS-only, GNSS+RTK, and GNSS+RTN, considering different quantities of GCPs.

Figures 5.19, 5.20, and 5.21, represent data collected on the 15th of July, 2022, using GNSS-

only, GNSS+RTK and GNSS+RTN. For all accuracy assessments, the use of 1 GCP in comparison
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to not using any, improves results in the different georeferencing methods. For horizontal accuracy

assessment (X) and (Y), accuracy improved when using GNSS+RTK from the DJI D-RTK 2 mobile

station. The sizeable error observed during the GNSS-only experiment for this date, may have been

attributed to random error. In every scenario, the use of GNSS-only and no GCP reported the least

accurate results.

Figure 5.19
Horizontal accuracy (X) for 07/15/2022 comparing the RMSE measured in centimeters between
GNSS-only, GNSS+RTK, and GNSS+RTN, considering different quantities of GCPs.
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Figure 5.20
Horizontal accuracy (Y) for 07/15/2022 comparing the RMSE measured in centimeters between
GNSS-only, GNSS+RTK, and GNSS+RTN, considering different quantities of GCPs.

Figure 5.21
Vertical accuracy (Z) for 07/15/2022 comparing the RMSE measured in centimeters between
GNSS-only, GNSS+RTK, and GNSS+RTN, considering different quantities of GCPs.

During analysis, an unforeseen discrepancy was encountered in vertical accuracy (Z) while

employing the GNSS+RTK for geospatial data collection. This unexpected error estimation led
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us to revisit the methodology, prompting a resurvey of the reference points initially utilized for

both, the DJI and the EMLID Reach base stations. The objective was to assess the discrepancy and

attain more accurate measurements by comparing the original geospatial data—latitude, longitude,

and ellipsoid height—with newly acquired geographical data derived from two different sources,

namely OPUS processing services and TxDOT RTN. Findings revealed a substantial variation in

the ellipsoid height measurements, with a difference of approximately 1.2 meters detected. This

can be observed in table 5.3
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Table 5.3
Comparative analysis showing significant discrepancy of approximately 1.2 meters in ellipsoid height measurements between the
original data collected for both GNSS+RTK and EMLID Reach base stations and the new data derived from OPUS processing services
and GNSS+RTK.

# Use Survey Eqpt Latitude (dd) Longitude (dd) Ellipsoidal ht. (m) Processing Datum
1 Emlid RS2 V-MAP 27° 46’ 57.3204” -97° 33’ 45.2694” -11.407 - NAD83(2011)
1 Emlid RS2 EMLID RS2 27° 46’ 57.3234” -97° 33’ 45.2592” -10.156 OPUS NAD83(2011)
1 Emlid RS2 TxDOT 27° 46’ 57.3234” -97° 33’ 45.2556” -10.155 - NAD83(2011)
Diff. - - - - -1.251 - -
2 GNSS+RTK V-MAP 27° 46’ 57.4962” -97° 33’ 45.7236” -11.506 - NAD83(2011)
2 GNSS+RTK EMLID RS2 27° 46’ 57.4998” -97° 33’ 45.7122” -10.218 OPUS NAD83(2011)
2 GNSS+RTK TxDOT 27° 46’ 57.4998” -97° 33’ 45.7122” -10.192 - NAD83(2011)
Diff. - - - - -1.288 - -
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The accuracy of the UAS imagery data and surveying GCPs using GNSS+RTK and the EMLID

RS2 receiver was challenged by a height error of approximately 1.2 meters. Interestingly, both

systems exhibited a similar level of error, thus placing the measurements on a commensurate scale.

However, further inspection uncovered an additional discrepancy: the height of the GNSS+RTK

rod was off by 1.802 meters.

To identify the source of these errors, a thorough investigation was conducted. This examination

led to the realization that an essential factor had been initially overlooked: the height of the RTK

collector above the ground when using the GNSS+RTK base station. This height is determined

by adding the distance from the top of the rod to the phase center to the total rod length as shown

in figure 5.22. Given that the measurement of the GNSS base station receiver is taken at the

phase center in the antenna, a correction of subtracting 1.802 meters from the original point was

necessary.

Informed by this revelation, the RTK coordinate offset was adjusted accordingly. Following

this correction, a new UAS imagery survey was executed on the subsequent flight date of April 11,

2023 specifically for the vertical accuracy assessment. This experience underscored the critical

importance of rigorous attention to detail, particularly in the setup and calibration of RTK systems,

to ensure data precision.
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Figure 5.22
Detailed illustration of the DJI D-RTK 2 collector, showing the rod length and the measurement
from the top of the rod to the phase center. The image illustrates the key components that
constitute the total height of the RTK collector, a critical parameter in enhancing geospatial
accuracy.

In figure 5.23, for data collected on the 11th of April, 2023, best results were obtained when

using 1 GCP in comparison to not using any.

Figure 5.23
Vertical accuracy (Z) for 04/11/2023 comparing the RMSE measured in centimeters between
GNSS+RTK considering different quantities of GCPs.
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The study carried out a comprehensive analysis of the RMSE for X, Y, and Z coordinates

for each GNSS georeferencing method across four distinct flight dates. These methods included

GNSS-only, GNSS+RTK, and GNSS+RTN. A summary for all data collected is shown in table 5.4.

Table 5.4
Summary of RMSE for X, Y, and Z coordinates for each GNSS method.

Date Georeferencing GCPs Acc. X (cm) Acc. Y (cm) Acc. Z (cm)
6/1/2022 GNSS-only 0 16.59 40.06 405.33
6/1/2022 GNSS-only 1 14.22 14.77 41.07
6/1/2022 GNSS+RTK 0 5.47 1.4 28.57
6/1/2022 GNSS+RTK 1 2.68 2.18 3.45
6/16/2023 GNSS-only 0 23.71 178.27 768.69
6/16/2023 GNSS-only 1 12.24 10.12 37.87
6/16/2023 GNSS+RTK 0 3.73 2.26 32
6/16/2023 GNSS+RTK 1 1.96 2.28 4.94
6/16/2023 GNSS+RTN 0 3.8 2.28 32.55
6/16/2023 GNSS+RTN 1 5.34 1.9 19.89
7/15/2023 GNSS-only 0 27.51 24.61 57.48
7/15/2023 GNSS-only 1 16.68 12.94 45.64
7/15/2023 GNSS+RTK 0 3.28 1.8 28.57
7/15/2023 GNSS+RTK 1 2.39 1.6 4.34
7/15/2023 GNSS+RTN 0 3.31 1.91 25.12
7/15/2023 GNSS+RTN 1 2.45 1.75 5.17
4/11/2023 GNSS+RTK 0 - - 2.35
4/11/2023 GNSS+RTK 1 - - 1.32

The table presents a detailed comparison of the accuracy achieved by different georeferencing

methods - GNSS-only, GNSS+RTK, and GNSS+RTN - across various dates. These comparisons

consider assessments of horizontal accuracy (X and Y coordinates) and vertical accuracy (Z

coordinate).

For most of the results, the accuracy of checkpoints, in this case reported as RMSE (cm), was

inversively proportional to the number of GCPs been used. Moreover, comparing vertical accuracy

0 GCPs vs 1 GCP, the use of 1 GCP substantially decreases the error. It is for this reason that for

the second objective of this research, GNSS+RTK was utilized as the source for correction from

common errors in satellite navigation systems. For the flight dates of 06/16/2022 and 07/15/2022, all

three georeferencing methods were implemented and tested. Among all the assessments conducted,
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GNSS+RTK demonstrated superior performance in 80% of the tests when compared to the other

two methods. Moreover, it yielded the most accurate results for the vertical accuracy assessment

Z (cm). On the flight date of 06/01/2022, only two georeferencing methods, namely GNSS-only

and GNSS+RTK, were tested. In all assessments conducted on this date, GNSS+RTK performed

better than GNSS-only. Lastly, for the data collected on 04/11/2023, only GNSS+RTK was used.

This followed a correction in the RTK coordinate offset after an unforeseen discrepancy in vertical

accuracy (Z) was observed in previous data collection efforts. The corrected GNSS+RTK achieved

notably high vertical accuracy assessment Z (cm), as indicated by the low error values.

In conclusion, the results consistently highlight GNSS+RTK as the most effective georeferenc-

ing method among those tested, particularly in terms of its vertical accuracy. This finding has

significant implications for precision agriculture applications such as plant height estimation from

UAS imagery and reinforces the importance of choosing the appropriate georeferencing method

for achieving accurate and reliable data.

5.1.2 Discussion

The two primary objectives of this study, georeferencing systems comparison and plant height

estimation, encountered challenges due to the accuracy of the UAS imagery data and the survey of

GCPs using GNSS+RTK and the EMLID RS2 receiver. This became evident when the original

geospatial data — consisting of latitude, longitude, and ellipsoid height — was compared with the

newly acquired geographical data derived from two different sources: OPUS processing services

and TxDOT RTN. The comparison revealed that the ellipsoid height had been compromised by

a height error of approximately 1.2 meters. Interestingly, both systems displayed a comparable

level of error, which kept the measurements on a similar scale. However, a deeper investigation

unearthed an additional discrepancy: the GNSS+RTK rod’s height was offset by 1.802 meters.

Concerning the georeferencing systems comparison objective, the investigation was prompted

by the high inaccuracy of the vertical accuracy assessment. Further analysis revealed that the

overlooked height of the RTK collector above the ground, when operating the DJI D-RTK 2 base

station, was a significant underlying factor. As the GNSS base station receiver’s measurement is
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taken at the phase center in the antenna, a correction of subtracting 1.802 meters from the original

point was necessary. Subsequent results, as demonstrated in the figure 5.23, indicated enhanced

accuracy concerning the vertical accuracy assessment when using GNSS+RTK.

Results consistently showed that GNSS+RTK yielded the best outcomes across data collected

on multiple dates (figures 5.13, 5.14, 5.15, 5.16, 5.18, 5.19, 5.20, 5.21). Furthermore, the use of

one GCP improved accuracy compared to scenarios with no GCPs used, while GNSS-only without

any GCP reported the least accurate results.

These findings underscore the critical role of rigorous georeferencing techniques, GCP utiliza-

tion, and precise calibration of RTK systems for enhancing the reliability and accuracy of geospatial

data in precision agriculture and remote sensing applications. This study thus provides a valuable

reference for future research and applications in these fields.

5.2 Plant Height Estimation

5.2.1 Results

The estimation of plant height in the study was conducted through a robust comparison between

manually measured plant height and the height obtained post-processing of datasets using the

SfM algorithm. For this analysis, the georeferencing method used for imagery collection was

GNSS+RTK. Further, during the SfM processing stage within PIX4Dmapper, a total of five GCPs

were selected as 3D GCPs. This selection included one GCP at each corner of the field and one

in the center to minimize the bowl effect in photogrammetry. The remaining four GCPs were

designated as checkpoints.

A key metric in this analysis was the determination of the coefficient of determination (R2)

value, which provided a measure of how closely the estimated plant height matched the manually

measured values, thereby offering a quantitative assessment of the accuracy of the approach. To

further refine plant height estimation, three different methods were employed to create a DTM: DTM

derived from automatic classification on PIX4Dmapper, DTM obtained by interpolating ground

points, and DTM generated from flight conducted before plant emergence. Each of these methods

offered distinct perspectives on the terrain and plant height, adding depth to the understanding
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of the subject. Additionally, the analysis accounted for variations in green canopy cover within

defined plot boundaries. The results were examined systematically for different percentages of

green canopy cover, highlighting the influence of vegetation density on plant height estimation.

In table 5.5 and figure 5.24, for data collected on the 1st of June, 2022, there was no significant

difference from results when comparing DTM from interpolating ground points and DTM from

before the plant emerged. Automatically classification of ground points for the creation of DTM

performed slightly worse for boundaries with canopy cover higher than 90 percent, but better for

most canopy cover scenario. In every scenario, canopy cover higher than 90 percent reported the

most accurate results.

Table 5.5
Coefficient of determination (R2) values obtained from various DTM creation techniques and
different green canopy cover percentages for 06/01/2022.

Experiment Compared R2

DSM, DTM from Pix4DMapper Automatic Classification Tool for 36 plants 0.33
DSM, DTM from Pix4DMapper Automatic Classification Tool CC ≥ 60 0.27
DSM, DTM from Pix4DMapper Automatic Classification Tool CC ≥ 70 0.29
DSM, DTM from Pix4DMapper Automatic Classification Tool CC ≥ 90 0.89

DSM from Pix4DMapper – DTM Interpolated for 36 plants 0.30
DSM from Pix4DMapper – DTM Interpolated CC ≥ 60 0.25
DSM from Pix4DMapper – DTM Interpolated CC ≥ 70 0.27
DSM from Pix4DMapper – DTM Interpolated CC ≥ 80 0.73
DSM from Pix4DMapper – DTM Interpolated CC ≥ 90 0.92

DSM from Pix4DMapper – DTM from March 26th, 2022 flight for 36 plants 0.32
DSM from Pix4DMapper – DTM from March 26th, 2022 flight CC ≥ 60 0.27
DSM from Pix4DMapper – DTM from March 26th, 2022 flight CC ≥ 70 0.29
DSM from Pix4DMapper – DTM from March 26th, 2022 flight CC ≥ 80 0.70
DSM from Pix4DMapper – DTM from March 26th, 2022 flight CC ≥ 90 0.92
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Figure 5.24
Coefficient of determination (R2) values obtained from various DTM creation techniques and
different green canopy cover percentages for 06/01/2022.

In table 5.6 and figure 5.25, for data collected on the 16th of June, 2022, DTM generated from

interpolating ground points resulted in higher coefficient of determination (R2). Automatically

classification of ground points for the creation of DTM performed better than DTM obtained from

flight conducted before plant emergence. In every scenario, canopy cover higher than 64 percent

reported the most accurate results.

Table 5.6
Coefficient of determination (R2) values obtained from various DTM creation techniques and
different green canopy cover percentages for 06/16/2022.

Experiment Compared R2

DSM, DTM from Pix4DMapper Automatic Classification Tool for 36 plants 0.42
DSM, DTM from Pix4DMapper Automatic Classification Tool CC ≥ 60 0.53
DSM, DTM from Pix4DMapper Automatic Classification Tool CC ≥ 64 0.74

DSM from Pix4DMapper – DTM Interpolated for 36 plants 0.43
DSM from Pix4DMapper – DTM Interpolated CC ≥ 60 0.64
DSM from Pix4DMapper – DTM Interpolated CC ≥ 64 0.78

DSM from Pix4DMapper – DTM from March 26th, 2022 flight for 36 plants 0.38
DSM from Pix4DMapper – DTM from March 26th, 2022 flight CC ≥ 60 0.49
DSM from Pix4DMapper – DTM from March 26th, 2022 flight CC ≥ 64 0.62
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Figure 5.25
Coefficient of determination (R2) values obtained from various DTM creation techniques and
different green canopy cover percentages for 06/16/2022.

5.2.2 Discussion

In this study, the accuracy of plant height estimation was evaluated, an important aspect of

precision agriculture. Manually measured plant height with height obtained through processing

datasets with the SfM algorithm was compared. The accuracy was determined by the coefficient of

determination (R2) value, a measure of how close the estimated plant height matched the manual

measurements.

Three unique methods were utilized for creating a DTM: automatic classification on PIX4Dmapper,

interpolating ground points, and using pre-plant emergence flight data. The quality and accuracy of

the plant height estimates were significantly influenced by the DSM, its resolution, and the quality

of the 3D point cloud generated from the SfM/MVS workflow in PIX4Dmapper.

Our analysis considered variations in green canopy cover and examined results for different

percentages. As shown in tables 5.5 and 5.6, high canopy cover percentages generally led to more

accurate results. Moreover, it was found that factors such as plant color, possibly linked with

maturity and health, could influence the accuracy of plant height estimation.
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The comparison of different DTM creation methods showed slight differences. For data col-

lected in June 1st, the DTMs generated from interpolated ground points and pre-plant emergence

flights yielded similar results. On the other hand, for data collected in June 16th, the DTMs

generated from interpolated ground points outperformed automatic classification and pre-plant

emergence flights.

These findings emphasize the importance of multiple factors, including the DTM creation

method, the percentage of green canopy cover, plant color and maturity, and the quality of the UAS-

SfM generated DSM, in achieving accurate corn height estimations. Moreover, maintaining the

same resolution in the DTM, DSM, and Canopy Height Model (CHM) contributes to the precision

and reliability of the estimations.

Our study also showed potential for accurate early-season plant height estimations through

precise georeferencing and GCPs utilization, with either GNSS+RTK or GNSS+RTN.

Additionally, all DTM generation techniques were accurate for corn plants in their early maturity

stage, offering adaptability in precision agriculture. Observations on plant color and maturity im-

pacting estimation accuracy provide new research opportunities, such as exploring different spectral

bands to account for variations in plant color and maturity, enhancing plant height estimation.

However, there were limitations, including late flight timing introducing potential inaccuracies

in phenotypic plant data, potential errors in input coordinates for the DJI D-RTK 2 Mobile Sta-

tion (GNSS+RTK) and EMLID Reach base station impacting georeferencing accuracy, and flight

parameters like wind conditions and grid missions affecting image quality.

In future research, scheduling flights at different crop maturity stages and ensuring accurate

input coordinates, alongside methodological refinements like windless conditions and double grid

missions, can enhance geospatial data quality. Flying at lower altitudes may also improve the

point cloud quality. These adjustments can enhance georeferencing and plant height estimation

methodologies, contributing to better precision agriculture practices.
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CHAPTER 6: CONCLUSIONS & FUTURE WORK

6.1 Conclusions

The overarching goal of this research was to asses different georeferencing techniques and DTM

generation method to improve geospatial data quality and crop canopy height estimation in the field

of UAS-SfM surveying.

In our analysis comparing different georeferencing systems, it initially seemed that the GNSS+RTK

method consistently outperformed the other techniques, delivering more accurate results across var-

ious dates. This was especially evident in the context of vertical accuracy, where it seemed to surpass

the results of GNSS-only and GNSS+RTN methods. An impressive improvement was also seen in

the accuracy of the ellipsoid height measurements when using GNSS+RTK, once the overlooked

height of the RTK collector off the ground was corrected. This underlined the importance of careful

setup and calibration in RTK systems for precise results. Also there was a remarkable improve-

ment in accuracy when at least one GCP was used, compared to scenarios where no GCPs were

employed. In contrast, the GNSS-only method, when used without any GCPs, tended to deliver the

least accurate results in all our tests. These results emphasize the importance of using GCPs and

the GNSS+RTK method to increase georeferencing accuracy. However, a note of caution must be

added. Despite these overall trends, there were some instances where the GNSS+RTK method did

not consistently outperform the other techniques. A notable example was the large error observed

in the GNSS+RTN and 1 GCP Vertical accuracy (Z) for the data collected on 06/16/2022. This

discrepancy was significantly larger than those seen on other dates, indicating some inconsistency

in the results. This reminds us that while the GNSS+RTK method might generally deliver supe-

rior accuracy, there can be exceptions, and further investigation is required to understand these

inconsistencies.

The importance of GCPs in the georeferencing process was a key finding in the study. It was

revealed that even the inclusion of a single GCP could enhance the accuracy of results. This

insight highlights the value of incorporating GCPs into georeferencing practices, underlining their

role in shaping effective decision-making and management strategies in agriculture. Consequently,
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the findings from this study can contribute to the optimization of precision farming strategies and

workflows, ultimately enhancing the overall efficiency and productivity of agricultural operations.

Comparing the DTM creation methods yielded insightful differences. For instance, in June

1st, the DTMs generated from interpolated ground points and pre-plant emergence flights yielded

similar results. In June 16th, the DTMs generated from interpolated ground points outperformed

automatic classification and pre-plant emergence flights.

In summary, this study suggests that plant height estimation accuracy consistently improves

with higher canopy cover percentages, a combination of factors including DTM creation methods,

precise georeferencing, use of GCPs, and consideration of plant color and maturity can contribute

to accurate and efficient UAS-SfM surveys methodologies in precision agriculture.

6.2 Recommendations & Future Work

Building upon the outcomes of this research, there are promising directions for future exploration

in precision agriculture. The timing of data collection flights could be further optimized to enhance

the accuracy of plant height estimation. This could entail scheduling flights at different crop maturity

stages, yielding a broader range of phenotypic data. In addition, alterations to flight parameters,

such as conducting operations during no-wind conditions, utilizing Double Grid missions for

enhanced data points, and experimenting with lower flight altitudes may improve the quality of the

UAS-SfM data collected. Ensuring the precise accuracy of input coordinates for devices like DJI

D-RTK 2 Mobile Station and EMLID Reach base station is also of crucial importance to enhance

georeferencing accuracy.

Future investigations could examine the accuracy of plant height estimations in different types

of crops, thus testing the findings’ generalizability. Concurrently, the impact of plant color and

maturity on estimation accuracy warrants further study. The physical marking of plot boundaries

instead of using the EMLID Reach rover could minimize potential errors, making this an area for

future research.

Finally, these findings’ practical applications extend beyond plant height estimation, potentially

including plant volume calculation, which could offer more detailed insights into plant growth and
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health. Integrating these methods with other remote sensing technologies, such as multispectral

imaging, can facilitate the generation of comprehensive phenotypic data on crop health. The

potential benefits of LiDAR data in creating accurate point clouds makes it a compelling field

for further research. These findings and methodologies can significantly contribute to precision

agriculture; they highlight the need for ongoing research to continue advancing this field.
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