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Abstract

One method of ranking items is to score all of them against a standard scale. Some-

times it is difficult to create or use such a scale. As an alternative, it is possible to

make side-by-side comparisons of some or all of the pairs of items. Then the problem

is to convert the collective pairwise comparisons into a ranking. This problem has

been studied previously in many contexts. This thesis addresses several methods,

including where fuzzy comparisons are made for some, but not all, of the pairs. The

Colley method and PageRank algorithm both use pairwise comparisons for some pairs

to rank all items in a set. This thesis shows how those pairwise comparisons can be

fuzzy. It also shows how Saaty’s method for ranking alternatives can be completed

when not all comparisons are used.
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1 Introduction

When a job opens, many applications will be ranked for intermediate and final con-

sideration. A sports fan wants to rank teams in a league. A student wishes to rank

prospective schools. A internet user wants to rank sites found on the web. This paper

will show how partial comparisons and fuzzy math methods can be used to convert

comparisons to rankings of the various items.

One method of ranking items is to score them against a standard scale. Sometimes

it is difficult to create or use such a scale. In that case, it may be better to compare

pairs of items to each other. Then there is the problem of converting the collective

pairwise comparisons into a total ranking.

To restate the problem in terms of general objects, if S is a collection of objects

{A1, ..., An}, we want to assign a rating ri to each Ai. The result is a total ranking in

which there is a top ranked object Ai with ri ≥ rj, all j. A consequence of the rating

is a comparison

vij =


1, ri > rj

0, ri = rj

−1, ri < rj

for any pair Ai, Aj.

Alternatively, it might start with some pairwise comparisons, say Ai > Aj and

record them with values vij. Then the problem is how to combine the pairwise

comparisons into a ranking. This problem is well known and has many applications.

We propose to study the case where not all pairwise comparisons have been made

and cases where the values of those comparisons are fuzzy.

Wesley Colley created the Colley Method in 2002 and this method is famously

used to rank college football teams. Not all teams need to play each other to generate

a total ranking[16].
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PageRank was original created counting and ranking websites by one of the

founder of Google Company. This method to analysis and evaluation every web

page and then give them a ranking score[7].

Saaty’s Priority Ranking theory, uses pairwise comparisons of all objects to make

a ranking of those objects. The solution uses the eigenvalue equation A∗w = n∗w and

complete crisp data to evaluate intangible things. The analysis also finds consistency

of the individual judgements in the pairwise comparisons[1].
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2 Basic Notions

2.1 Complete vs. Incomplete:

In order to record the results of comparing objects, data will be arranged into a

matrix. Under this system, each pair of objects will be compared and scored easily.

Comparisons that are made with complete data will be assigned as P while the missing

comparisons assigned as M , Since every object is identical to itself, the comparison

is recorded as I.

The ideal case is where objects all pairwise comparsions between the objects A,B,

and C can be made. The ideal matrix for complete information is assigned as matrix

(1) .

A B C

A

B

C


I

P

P

P

I

P

P

P

I


(1)

It is possible that two resumes have very different strengths and weaknesses, two

teams in a league have not played with each other, or two prospective schools that

have not yet been compared. In some cases, it is possible that items A and B and

items B and C can be compared, but item C cannot be compared with A. This

incomplete compansions of a matrix will be record for all present and missing data

in matrix (2).

A B C

A

B

C


I

P

M

P

I

P

M

P

I


(2)
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Specific algorithms have different methods for recording the missing comparisons.

The Colley and PageRank algorithms essentially use the value of 0 to record missing

comparisons. This study will use blanks to indicate missing information in the Saaty’s

Priority Ranking.

2.2 Crisp vs. Fuzzy

Yager(1981) proposed the purpose of ordering fuzzy comparison for the quantities is

to analyze either discrete or continuous data. He also suggested that the objects are

separated by ranking the data between 0 and 1. The first use of fuzzy information was

to generalize set membership. In exactly the same way, Yager generalized comparisons

from being true or false to relative numbers r, 0 ≤ r ≤ 1.

v(A > B) =

 1 if True

0 if False

Fuzzy comparisons express a lack of precision. Yager’s original interpretation was

to let the value be a degree of comparison. With that, write v(A > B) = x where

0 ≤ x ≤ 1 The value of 0 or 1 is crisp and otherwise is fuzzy

As a second interpretation, we can let the comparison f be a fuzzy number. Specif-

ically, write v(A > B) = f , where f = (l,m, r) where m is the real number of greatest

weight of the comparison and the interval (l, r) includes all weights, decreasing at the

endpoints.

Here is one example to help understand the difference between crisp and fuzzy.

Two teams, Carolina and New Orleans, from the National Football League played

twice. Carolina won the first game, so the result is recorded as 1 in the Table 1.

Carolina lost the second game, and the result is recorded as 0.

In addition to fuzzy ratings, it is possible to have fuzzy numbers, along with

appropriate rules for arithmetic. This makes it possible to emulate the calculations
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Table 1: NFL Crisp Example
Win Team Lose Team Crisp
Carolina VS. New Orleans 1

New Orleans VS. Carolina 0

done with crisp numbers. Following [8], a triangular fuzzy number is a triple of real

numbers (l, m, r) representing a piecewise-linear membership function with f(x) = 0

for x ≤ l and x ≥ r and f(m) = 1.

We can make fuzzy comparisons using the score difference for the same two games.

In the first game, Carolina beat New Orleans by a score difference of only 3 points.

With a small difference, the middle number is closer to 0 than 1: 0.3. In the second

the, score difference is much bigger, 25 points. With that large difference, the middle

number is closer to 1 than 0: 0.8. Finally, 0.1 is added and subtracted from the

middle number to get the left and right endpoints for the fuzzy numbers.

Table 2: NFL Fuzzy Example
Win Team Score Lose Team Score (l,m,r)
Carolina 16 New Orleans 13 (.2,.3,.4)

New Orleans 31 Carolina 6 (.7,.8,.9)

5



3 Known Methods

3.1 The Colley Method

Wesley Colley created the Colley Method in 2002 for computing rankings of the

National Football League (NFL) teams. The model only considers the count of the

wins and losses for each team and the number of games each team plays. Since not

all teams play each other, there is incomplete data in this method.

The data and ratings of the teams are recorded in the linear system Cr = b [16],

where b records the net number of wins and losses, C records the record of number

of games played and r = C−1b shows the ratings of the teams. Teams with higher

ratings are ranked higher. Notation for the method is given below.

• n: number of teams to be rank = order of C.

• rn×1: general rating vector produced by the Colley system is [r1, r2, ..., rn]t

• ti : total number of games played by team i

• nij: number of times team i faced team j

• C is an n× n matrix with Cij =

 2 + ti i = j

−nij i 6= j

• wi : total number of wins accumulated by team i

• li : total number of losses accumulated by team i

• bn×1: n× 1 matrix on the right with bi = 1 + 1
2
(wi − li)

r = C−1b (3)

The original example (Table 4) C is

6



C=



5

0

−1

−2

0

0

0

5

0

0

−1

−2

−1

0

4

−1

0

0

−2

0

−1

6

−1

0

0

−1

0

−1

6

−2

0

−2

0

0

−2

6



C−1 =



0.2607

0.0087

0.0917

0.1059

0.0226

0.0104

0.0087

0.2638

0.0068

0.0183

0.0859

0.1166

0.0917

0.0068

0.2935

0.0824

0.0176

0.0081

0.1059

0.0183

0.0824

0.2237

0.0477

0.0220

0.0226

0.0859

0.0176

0.0477

0.2233

0.1030

0.0104

0.1166

0.0081

0.0220

0.1030

0.2399



b =



1/2

3/2

2

0

1

1


r = C−1b =



0.3597

0.6160

0.6687

0.3149

0.5015

0.5392



and get ranking r.

In making these calculations, it is apparent that C and its inverse always have

nonnegative entries. In fact, they turn out to be nonnegative matrices. We say, a

matrix A is nonnegative, or A ≥ 0, if all its entries are nonnegative, and say a matrix

A is positive, A > 0, if all of its entries are positive [13]. The results we need follow a
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theorem proved by Oscar Perron as well as the Gershgorin Circle Theorem [14]. The

PageRank Algorithm is also an application of Perron’s Theorem.

Following [13], we denote the following for a square matrix,A:

• ρ(A) = max { λ; λ is an eigenvalue of A} and

• if there is more than one eigenvalue for A, µ(A)= max {λ ; λ is an eigenvalue

of A, λ 6= ρ(A)}.

• ρ(A) is called the spectral radius of (A).

Perron’s Theorem [13] can now be stated as below.

Theorem: If A is a square positive matrix then

• ρ(A) > 0,

• ρ(A) is a simple eigenvalue of A,

• to ρ(A) corresponds a positive eigenvector,

• µ(A) < ρ(A),

• lim(m→∞)(A/ρ(A))m ≡ L ≡ xyT , where Ax = ρ(A)x, x > 0;ATy = ρ(A)y, y >

0;xTy = 1,

• for every r, µ(A)/ρ(A) < r < 1, there exists a constant C = C(r, A), such that

for every m||(A− ρ(A))m − L||∞ ≤ Crm,where ||A||∞ = max|aij|.

To complete the demonstration that C−1 is non-negative, Govan [7] applies Ger-

shgorin’s Theorem [2] using the fact that the Colley matrix C is diagonally dominant

|Cii| = |1 + ni| >
∑n

(j 6=i,j=1) |Cij| = ni.

Gershgorin’s Theorem: Every eigenvalue of matrix An satisfies: |λ − Aii| ≤∑
j 6=i |Aij| ; i ∈ 1, 2, ..., n
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Because C is nonsingular and symmetric matrix all eigenvalues are real, so by the

Gershgorin’s Theorem “all eigenvalues of C must be real and positive making C a

Stieltjes matrix, which is a symmetric nonsingular M -matrix” [7]. If matrix X satisfy

every eigenvalue of X is positive and X ∈ M = (Mij) ∈ Rn∗nMij ≤ 0, i 6= j , then

this matrix name is nonsingular Mmatrix.

Therefore, the matrix C−1 is nonnegative. Since C−1 is not negative, the rank-

ing r will depend on the information b, if b is nonnegative, then ranking r will be

nonnegative.

Theorem: The vector r, solution to the Cr = b exists, is unique, and nonnegative.

3.2 The PageRank Algorithm

The internet plays a big role in our daily life as a source of a vast quantity of in-

formation. Search engines, including Google, help us find information on a daily

basis. However, do you know how this search engine works? In 1998, two popular

search algorithms were introduced, the Hypertext Induced Topic Search(HITS) by

Jon Kleinberg and PageRank by Sergey Brin and Larry Page, the future founders of

Google. Brin and Page use their method to rank every web page by giving each page

a rating score.

In this study, we will change the crisp comparisons of web pages to fuzzy compar-

ison and then give them ranking score. We will demonstrate that the Power method

can still be applied to the modified Google matrix to get a ranking.

Consider the example from Langville and Meyer [15] in Figure 1. It is the graph

of a tiny web, or network, in which nodes are linked to one another as follows. There

are 6 nodes which are linked as node 1 can go to 2 and 3, node 2 cannot go to other

node, and node 3 can go back 1, 2, and 5. Node indicated by the arrows. For example

node 2 and 3 are linked from node1. It is important to note that all nodes in this

example are linked in some way.
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Figure 1: Tiny web example from Langville and Meyer[15]

Matrices are used to represent information and calculation with them is a primary

tool used in the PageRank Algorithm. Following [7], the first step in the PageRank

algorithm is to record the links from the graph in an adjacency matrix. The links in

Figure 1 are recorded in the matrix A below using the definition that follows.

Aij =

 1 if there is a link from Pi to Pj

0 otherwise

A =

1 2 3 4 5 6

1

2

3

4

5

6



0

0

1

0

0

0

1

0

1

0

0

0

1

0

0

0

0

0

0

0

0

0

1

1

0

0

1

1

0

0

0

0

0

1

1

0


The next step is to calculate the degree or weight of a node, or the number of links
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starting at that node. Let node Pi have a weight equal to deg−(i) which is a total

number of links from the original node Pi to other nodes. That is, deg−(i) =
∑

j Aij.

In this example deg−(1) = 2 because the node 1 goes to 2 and 3. As in [7], we create

a new matrix H using the definition below.

Hij =

 1/deg−(i) if there is a link from Pi to Pj

0 otherwise

As you can see below the matrix H is not stochastic because the second row is all

zeros. This is because of there not being any links from node 2.

H =

1 2 3 4 5 6

1

2

3

4

5

6



0

0

1/3

0

0

0

1/2

0

1/3

0

0

0

1/2

0

0

0

0

0

0

0

0

0

1/2

1

0

0

1/3

1/2

0

0

0

0

0

1/2

1/2

0


The third step, is to create a stochastic matrix from H. Define the vector a by ai

is zero if row i of A is nonzero and ai is 1 otherwise [7]. Also, let e be the column of

all ones. Then replace the ith row of matrix H with (1/n)aeT . After replacing the

matrix H will become stochastic matrix S

ai =

 1 if HT
i = 0

0 otherwise

and

S = H +
1

n
aeT (4)

11



In the case of our example with the 2nd row of H being zero, we would use

a = [0 1 0 0 0 0]T and eT = [1 1 1 1 1 1]. The resulting Stochastic

matrix S is below.

S =

1 2 3 4 5 6

1

2

3

4

5

6



0

1/6

1/3

0

0

0

1/2

1/6

1/3

0

0

0

1/2

1/6

0

0

0

0

0

1/6

0

0

1/2

1

0

1/6

1/3

1/2

0

0

0

1/6

0

1/2

1/2

0


The last step is to make sure the Stochastic matrix S is irreducible. According to [7],

“A nonnegative matrix is called irreducible if and only if the corresponding directed

graph G(A) is strongly connected”[7]. There are many ways to get result, but only

consider about the simplest way like author Govan paper wrote that “make a rank

1 update to S and ensure that the result stays stochastic by making the sum into a

convex combination”[7]. Therefore, the Google matrix G is

G = Sα + (1− α)evT for 0 < α < 1 (5)

which eT = [1 1 1 1 1 1] and vT = [1/n 1/n 1/n 1/n 1/n 1/n].

At here e is a vector value 1 and v is a probability distribution vector which v > 0.

The resulting G is what is generallly called the Google matrix.
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G =

1 2 3 4 5 6

1

2

3

4

5

6



1−α
n

α
6

+ 1−α
n

α
3

+ 1−α
n

1−α
n

1−α
n

1−α
n

α
2

+ 1−α
n

α
6

+ 1−α
n

α
3

+ 1−α
n

1−α
n

1−α
n

1−α
n

α
2

+ 1−α
n

α
6

+ 1−α
n

1−α
n

1−α
n

1−α
n

1−α
n

1−α
n

α
6

+ 1−α
n

1−α
n

1−α
n

α
2

+ 1−α
n

1−α
n

1−α
n

α
6

+ 1−α
n

α
3

+ 1−α
n

α
2

+ 1−α
n

1−α
n

1−α
n

1−α
n

α
6

+ 1−α
n

1−α
n

α
2

+ 1−α
n

α
2

+ 1−α
n

1−α
n


For this example, the n is 6 and alpha(α) will be given. Brin and Page [3] originally

used α = 0.85. As a check of the stochastic condiation for the Google matrix G: the

sum across row 1: 6 ∗ (1−α)/6 + 2 ∗ (α/2) =1−α+α = 1. Therefore, the dominant

eigenvalue of the matrix G is 1.

With G being a stochastic matrix, the rating vector π is a positive left eigenvector

of G for with the dominant eigenvalue 1. The simplest way to compute π is to apply

the power method to G [17]. That is to start with a postive vector x and iterate the

product GTx, (GT )2x, . . .. The sequence will converge to a rating vector π. That is

to say, the PageRank ranking is solved by the Power method [10]:

• Pick an initial guess x0, ||x0||1 = 1, k = −1

• Repeat [xk+1]T = [xk]TG, until “termination criterion satisfied” ||xk+1xk|| ≤ τ .

The the parameter τ often lies between 10−8 and 10−4.

As in [10], we use the Power method to solve PageRank because it is simple

to implement. Second, the calculations do not have overflow and are accurate and

reliable. Third, the rate of convergence does not depend on the matrix dimension.

Next, few vectors have minimal storage. Finally, the convergence behavior is really

strong (robust).
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3.3 Saaty’s Priority Ranking

In the last two sub-sections, we described methods for generating rankings from in-

complete data. In this sub-section, we will review for Saaty’s Priority Ranking. It

uses complete, pairwise information to generate rankings. It differs from the other

methods presented since it uses human judgements as data instead of objective infor-

mation. The general conditions for Saaty’s Priority Ranking [1] can be used with crisp

or fuzzy comparisons. Before presenting the conditions, we review some background

about judgements and appropriate scales.

People making comparisons normally find a scale to evaluate each individual item

and then compare the scale numbers. However, not all attributes can be measured

with a scale to use this way to make comparisons. Examples include people’s mind,

judgment, love, emotion and other intangible things. The measure of intangible things

cannot absolutely set because the opinion and value will change from one person to

another. If you want to use ruler and scale to this, you should find common standard.

Otherwise, there always someone will not agree with you. Therefore, the only things

we can do is let this intangible object compare side by side. Then find which one is

better or higher.

Many mathematicians have thought about the problem of measurement. The

paper of Saaty [1] cited the great mathematician Henri Lebesgue [11]: “It would

seem that the principle of economy would always require that we evaluate ratios

directly and not as ratios of measurements. However, in practice, all lengths are

measured in meters, all angles in degrees, etc.; that is we employ auxiliary units and,

as it seems, with only the disadvantage of having two measurements to make instead

of one. Sometimes, this is because of experimental difficulties or impossibilities that

prevent the direct comparison of lengths or angles. But there is also another reason”.

That reason is the subject of Saaty’s Priority Ranking and is discussed in this paper.

If the object is intangible, how can we measure those? What scale can we give

14



to measure the intagibles? Saaty’s paper develops a relative measure to compare two

objects in mind. This relieves us of the need to have zero and negative units.

Because the fundamental scale can be define different meaning for every situation,

so there are going to use same table with author Saaty′s section 4. Given two objects,

i and j, we cannot direclty know the weights those objects have in a ranking, wi and

wj, respectively. We humans can compare the two otherwise intangible objects, by

a relative ratio recording the ratio of the weights of the two elements, Aij = wi/wj

instead of measuring the two individual weights directly. The Table 5 fundamental

scale from 1 to 9 means the ratio (wi/wj)/1 For example, if we have two objects, 1

and 2, and write A12 = 5 to mean that the importance of object 1 is 5 times that of

the importance of object 2, or the intensity of the importance of object 1 over object

2 is ’strong.’
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Table 3: Fundamental Scale
Intensity of Im-
portance

Definition

1 Equal Importance Two activities contribute
equally to the objective

2 Weak or slight
3 Moderate importance Experience and judgment

slightly favor one activity
over another

4 Moderate plus
5 Strong importance Experience and judgment

strongly favor one activity
over another

6 Strong plus
7 Very strong An activity is favored very

strongly over another; its
dominance demonstrated in
practice

8 Very,very strong
9 Extreme importance The evidence favoring one

activity over another is of
the highest possible order of
affirmation

1.1-1.9 When activities are very
close a decimal is added to
1 to show their difference as
appropriate

Reciprocals of
above

If activity i has one of the
above nonzero numbers as-
signed to it when compared
with activity j, then j has
the reciprocal value when
compared with i

A logical assumption

Measurements
from ratio scales

When it is desired to use
such numbers in physical
applications. Alternatively,
often one estimates the ra-
tios of such magnitudes by
using judgment

Like the author Saaty’s paper, we assume each element weight will not be zero.

Also, any pairwise comparison must be a positive ratio because the weights are both
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positive. Also, the ratio cannot be zero, because the reciprocal must also be a ratio,

and zero has no meningful reciprocal.

Now we are in a position to give details on how Saaty mathematically formats

and solves his Saaty’s Priority Ranking. This is done with the criteria below.

• n, positive integer greater than 1 is the number of objects to ranked.

• The ranking is a positive vector w = [w1, w2, ..., wn]t

• Ranking w determines a ranking matrix A, with elements Aij= wi/wj .

• Aij > 0, for all 1 ≤ i, j ≤ n

• Aij = 1/Aji, for all 1 ≤ i, j ≤ n

– Special case: Aii = 1 , for all i, 1 ≤ i ≤ n

• Aij × Ajk = Aik, for all 1 ≤ i, j, k ≤ n

• Aw = nw

Note that the last line means that the ranking vector, w can be recovered from A as

the eigenvector corresponding to the eigenvalue, n. We illustrate the properties and

recovery in the 2x2 case.

A2∗2 =

A11 A12

A21 A22

 =

 1
w1

w2
w2

w1

1



A ∗ w = n ∗ w (6)

 1 w1

w2

w2

w1
1


w1

w2

 = 2

w1

w2


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In the previous discusson, the matrix of pairwise weights is Aij = wi/wj and

linear algebra equation is Aw = nw. Solving the equation and finding the weights w

is this paper’s purpose. In the Saaty Priority Ranking, the condition Aij ×Ajk = Aik

enforces consistency among the entries. It is common, however for human judgement

and the use of Saaty’s scale to not be perfectly consistent. The most we can expect

of a priority matrix A is that Aij = 1/Aji, for all 1 ≤ i, j ≤ n. A matrix satisfying

this condition is called a ’reciprocal matrix.’ However, before solving eigenvalues,

the problem need check the consistency of a matrix. We will call a reciprocal matrix

’consistent’ if it satisfies the condition Ajk = Aik/Aij, or expressed another way,

Aij ∗ Ajk = Aik. Here are two examples to illustrate consistency.

A Consistent Matrix

A B C

A

B

C


1

1/2

3/2

2

1

3

2/3

1/3

1


This 3-by-3 matrix, satisfies the condition A12 ∗ A23 = A13 and A23 ∗ A31 = A21

demonstrating that the matrix is consistent.

An Inconsistent Matrix:

A B C

A

B

C


1

1/2

5/4

2

1

3

4/5

1/3

1


In this example, the A12 ∗ A23 6= A13 and A23 ∗ A31 6= A21. So this matrix is not

consistent.

To measure the lack of consistency of a reciprocal matrix, Saaty created a Consis-

tency ratio (C. R.)[20] of a pairwise comparison matrix as the ratio of its consistency

index µ to the corresponding random index value as in Saaty’s paper. According to
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the Saaty’s paper, allowable consistency ratio should not be more than 10 percent-

age and also cannot less than 1 percentage or 0.1 percentage without trivializing the

impact of inconsistency.

Consistency index µ ≡ (λmax − n)/(n− 1) (7)

In this study, if a matrix has a tolerable consistency ratio, then the matrix is

meaningful. So, if a matrix is inconsistent, one must find the consistency index µ and

determine this matrix is meaningful or not.

Finally, we note, Saaty’s Priority Ranking can be used in either the fuzzy or crisp

case. Use linear algebra to solve eigenvector w. In the case that the entries of A are

fuzzy, the vector w is found as in a paper by Broek and Noppen [1]. The four steps

in that paper are

• Step 1: Obtain triangular fuzzy numbers (lij,mij, rij) for the logarithms of the

fuzzy pairwise comparisons Aij for 1 ≤ j < i ≤ N

• Step 2: Solve the linear programming problem (using the simplex algorithm) to

maximize α with variables α and ui(2 ≤ i ≤ N) and the following constraints:

– ui − uj ≤ rij − α(rij − mij)li1 − α(mi1 − li1) + lj1 + α(mj1 − lj1) for all

2 ≤ j < i ≤ N

– ui − uj ≥ lij − α(rij − mij)li1 − α(mi1 − li1) + lj1 + α(mj1 − lj1) for all

2 ≤ j < i ≤ N

– ui ≤ ri1 − li1 − α(ri1 − li1) for all 2 ≤ i ≤ N

• Step 3: w1 = 1 and wi = exp(ui + li1 + α(mi1 − li1)) for all 2 ≤ i ≤ N

• Step 4: normalize w
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4 Investigations and Results

There are many methods applied to the ranking problem. Examples include the

PageRank method, the Hyperlink-Induced Topic search model, the Colley Matrix

method, the Keener Ranking model, and Massey Least Squares Rating. This paper

only focuses on fuzzy versions of the Colley method and the PageRank method and

completing information for the Saaty’s Priorty Ranking.

4.1 A Fuzzy Version of the Colley Method

This section provides an opportunity to generalize a crisp incomplete method. The

Colley method as described in Section 3.1 uses incomplete, crisp pairwise comparisons

to rank objects. We will show how to adapt the method to use incomplete, fuzzy

pairwise comparisons to rank objects .

The Colley method relies on the outcomes of games in the form of wins and losses

for each team. Think of that as the accumulation of comparisons between that team

and the others that it has played. We will apply the method to other situations, such

as pairwise comparison of resumes. Where the result of the comparisons are fuzzy.

Recall that the record of wins and losses for team i is recorded at bi in the formula

(8). We will adapt bi to express fuzzy information.

bi = 1 +
1

2
(wi − li) (8)

The Matrix C will remain a crisp number.Then we can solve ranking r = C−1b

and consider whether the product C−1b is meaningful.

We have considered the case that fuzzy comparisons could be a degree x and x

between 0 and 1. We will review it for completeness sake to indicate how it could also

be used with the method of this section. For this section, we will make comparisons

using fuzzy numbers (l,m, r) or(m−∆,m,m+∆) in the vector b in the Colley Method.
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Having done that, we need to consider whether the product C−1b is meaningful.

Situation One: Lets assume A > B and v(A > B) = x where x is the degree of

comparison and 0 ≤ x ≤ 1. It can write w = x and l = −x. Find each comparison x,

then it can generalize the Colley method as

bi = 1 +
1

2
(
∑

wi +
∑

li) (9)

where the sum is indexed over all possible comparisons between object i and other

objects.

Situation Two: Lets assume A > B and v(A > B) = (a, b, c) fuzzy number f .

Then v(B > A) is −f , (−c,−b,−a). Which c > b > a, find f+(−f) = (a−c, 0, c−a).

Generalizing the Colley method to get bi

bi = 1 +
1

2
(
∑

f(wi) +
∑

f(li)) (10)

Again, the sum is indexed over all comparisons of object i with other objects. As

in Section 3.1, the matrix C and its inverse are positive matrices. All that remains is

to determine whether r = C−1 ∗ b is meaningful or not.

For the Colley matrix method, there has no bias toward conference, no pre-season

poll, history, etc. This method uses a minimum of assumptions and no ad hoc ad-

justments. Nonetheless, it adjusts for strength of schedule, ignores runaway scores,

and produces common sense results [4]. It can be reproducible.

Colley’s ranking algorithm utilizes an idea from probability, known as Laplace’s

rule of succession [19]. The proof part will not be in this paper. We will example

from author Govan’s paper

For this time study, use the fuzzy comparison to check that can this method get

same ranking r with a crisp number? But this time does not consider about the alpha

number and boundary meaningful or not. Fuzzy numbers just according to the two
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Figure 2: Alpha-cut and Boundary

Table 4: NFL Game
Team Score Team Score Difference (l,m,r) ∆ = 0.1

Carolina 16 New Orleans 13 3 (.2,.3,.4)
Dallas 38 Philadelphia 17 21 (.6,.7,.8)
Dallas 28 Washington 23 5 (.2,.3,.4)

Houston 34 Carolina 21 13 (.5,.6,.7)
Houston 23 New Orleans 10 13 (.5,.6,.7)

New Orleans 31 Carolina 6 25 (.7,.8,.9)
Philadelphia 33 Washington 25 8 (.4,.5,.6)
Philadelphia 38 New Orleans 23 6 (.5,.6,.7)
Washington 27 Dallas 6 21 (.6,.7,.8)
Washington 20 Philadelphia 12 8 (.4,.5,.6)

Table 5: Each Team Played Times
Team Played Times

Carolina (g1) 3
Dallas (g2) 3

Houston (g3) 2
New Orleans (g4) 4
Philadelphia (g5) 4
Washington (g6) 4

team score difference.

This study will keep the same value for matrix C. The games will still be 10 games,

but this time will set Carolina versus New Orleans fuzzy score be f1=[0.2,0.3,0.4],
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Dallas versus Philadelphia f2=[0.6,0.7,0.8] . . . f10=[0.4,0.5,0.6]. However, there one

condition need consider about that is if one team losing for one game, then the fuzzy

number will be reversed left to right and get a negative sign. Like Carolina versus New

Orleans losing fuzzy number will be z1 = [-0.4, -0.3, -0.2], Dallas versus Philadelphia

losing will be z2 = [-0.8, -0.7, -0.6] and so on. Next step, set Carolina be (g1), Dallas

be (g2), etc (Table 5). Then find each team winning and losing the game for total

games. Using fuzzy arithmetic to get each teams total fuzzy number. For example,

Carolina won the first game and lost the fourth and sixth games, so g1 is the net

sum of those three results, giving (−1.4,−1.1,−0.8). The results for each team are

recorded in the fuzzy information matrix, b.

b =



−1.4

0

1

−1.1

−0.5

0

−1.1

0.3

1.2

−0.7

−0.1

0.4

−0.8

0.6

1.4

−0.3

0.3

0.8



Using the equation r = C−1b, the fuzzy ratings of the teams are in the fuzzy vector

r with the ranking of the teams being found by comparing ratings.

r =



−0.4012

−0.0685

0.0658

−0.3358

−0.1781

−0.0822

−0.2464

0.1029

0.1972

−0.1647

0.0075

0.1035

−0.0917

0.2743

0.3287

0.0064

0.1932

0.2892


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The ranking of the teams in the original, crisp example based on the ratings is

Houston, Dallas, Washington, Philadelphia, Carolina, and New Orleans. However,

the ranking based on the fuzzy rating r ranks the teams from first to last as Houston,

Dallas, Washington, Philadelphia, New Orleans, and Carolina. The result is a little

different because the big game score in the game of New Orleans versus Carolina and

the set of fuzzy number also relative.

While the ranking of the top two teams, Houston with rating [0.0658, 0.1972, 0.3287]

and Dallas with rating [−0.0822, 0.1035, 0.2892], is based on the middle of each team’s

fuzzy rating. There is some overlap between the fuzzy ratings. We will need to use

α-cuts to determine a level needed to distinguish the two teams. In general, we need

to find the smallest α for triangular fuzzy number for which Team 1 >α Team 2, or

(l1,m1, r1)
α > (l2,m2, r2)

α. The solutions for various comparisons between teams in

this example are shown in Table 6.

Using the example above and fuzzy number (l,m, r) or (m−∆,m,m+ ∆), then

we can draw the triangular fuzzy number and using linear equation find the two lines

intersection. This intersection point y value is α value. Then find every intersection

and compare them. Find the biggest one and using the biggest α to operation α-cut.

For the Table 4 example (∆=0.1), there had 10 group fuzzy numbers, but only three

intersections exist (Figure 3):

Table 6: Find the α
α Point Equation x,y α
α1 (0.6,1)(0.5,0);(0.3,1)(0.6,0) y=10x-5;y=-10x+6 (11/20,1/2) 1/2
α2 (0.6,1)(0.7,0);(0.7,1)(0.6,0) y=10x-6;y=-10x+7 (13/20,1/2) 1/2
α3 (0.8,1)(0.7,0);(0.7,1)(0.8,0) y=10x-7;y=-10x+8 (3/4,1/2) 1/2

Therefore the α =1/2. (Table 6). This result, along with the minimum alpha for

various values of ∆ number is recorded in Table 7.

In general, we find the relationship between α and ∆ to follow the formula α =

1 − 0.05/∆ . If ∆ become smaller, then intersection decreasing and the alpha value
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Figure 3: Alpha cut

Table 7: Delta affect Alpha Value
Delta Intersection α
0.05 0 0
0.1 3 1/2
0.15 6 2/3
0.2 8 3/4

closer to 0. If ∆ become bigger, then intersection increasing and α will increase.
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4.2 A Fuzzy version of the PageRank Algorithm

Figure 4: Example of Langville and Meyer [15] with Fuzzy Weights

The Google matrix uses the presence or absence of links to rank nodes. A famous

example from Langville and Meyer [15] is studied by changing the crisp numbers to

the fuzzy numbers. For example: the weight in the link from 1 to 3 is 1/4 and from

3 to 1 is 3/4 that means from 3 to 1 is more important than 1 to 3. The first step in

this adaptation of the PageRank algorithm[15] is to change the weights in the graph.

See the Figure 4.

The matrix A is now has weights in the interval [0, 1] instead of indicators of 1 or

0.

Aij =

 0 < Fuzzy ≤ 1 if there is a link from Pi to Pj

0 otherwise
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A =

1 2 3 4 5 6

1

2

3

4

5

6



0

0

3/4

0

0

0

1/2

0

1/4

0

0

0

1/4

0

0

0

0

0

0

0

0

0

1/2

1/4

0

0

1

3/4

0

0

0

0

0

1/4

1/2

0


Next, as in the original PageRank algorithm, let node Pi have a weight equal to

deg−(i) which is a total number from the original node pi to other node. The deg−(i)

will be deg−(i) =
∑

j Aij

Second step, the Hyperlink matrix is made into an almost stochastic matrix[15]

as in

Hij =

 aij/deg
−(i) if there is a link from Pi to Pj

0 otherwise

where ai =

 Fuzzy if HT
i = 0

0 otherwise
and e = [1 1 1 1 1 1]T

H =

1 2 3 4 5 6

1

2

3

4

5

6



0

0

3/7

0

0

0

2/3

0

1/7

0

0

0

1/3

0

0

0

0

0

0

0

0

0

1/2

1

0

0

3/7

3/4

0

0

0

0

0

1/4

1/2

0


The matrix H is stochastic except for a row of zeros. That row of H is completed

27



to make a stochastic matrix by means of the update as in [15].

S = H +
1

n
aeT (11)

S =

1 2 3 4 5 6

1

2

3

4

5

6



0

1/6

3/7

0

0

0

2/3

1/6

1/7

0

0

0

1/3

1/6

0

0

0

0

0

1/6

0

0

1/2

1

0

1/6

3/7

3/4

0

0

0

1/6

0

1/4

1/2

0


Next, the Google matrix, G, is found by means of

G = Sα +
(1− α)

n
eeT for 0 < α < 1 (12)

G =

1 2 3 4 5 6

1

2

3

4

5

6



1−α
n

α
6

+ 1−α
n

3α
7

+ 1−α
n

1−α
n

1−α
n

1−α
n

2α
3

+ 1−α
n

α
6

+ 1−α
n

α
7

+ 1−α
n

1−α
n

1−α
n

1−α
n

α
3

+ 1−α
n

α
6

+ 1−α
n

1−α
n

1−α
n

1−α
n

1−α
n

1−α
n

α
6

+ 1−α
n

1−α
n

1−α
n

α
2

+ 1−α
n

1−α
n

1−α
n

α
6

+ 1−α
n

3α
7

+ 1−α
n

3α
4

+ 1−α
n

1−α
n

1−α
n

1−α
n

α
6

+ 1−α
n

1−α
n

α
4

+ 1−α
n

α
2

+ 1−α
n

1−α
n


Check the Google matrix again and still find same eigenvalues that are 1.

The main result of this section is to randomly sample the rankings from graphs

following the example of Langville and Meyer with the indicators 1 replaced by fuzzy

weights from the set {1/4, 1/2, 3/4, 1}. That sampling was done using Matlab 10,000

times. The average ranking of the nodes is given in the vector r. See (Appendix B)

for details of the code.
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r =



5.7065

4.1914

5.1021

1.0003

2.7821

2.2176



Table 8: Crisp VS. Fuzzy
Num Crisp Rank Fuzzy Rank

1 6 5.7065
2 4 4.1914
3 5 5.1021
4 1 1.0003
5 3 2.7821
6 2 2.2176

From this example, node 4 get the first place, node 6 get second and node 1 get last

position. In this 10,000 time, each time they can get different rankings because the

change of initial fuzzy data. Compare to original Google matrix, this fuzzy number

will affect the final answer ranking r. This example is not going to further because

we are not studying the PageRank method, only checks what difference exist when

use fuzzy instead of crisp number.
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4.3 Incomplete Information in the Saaty’s Priority Ranking

For this study, data collected was comparisons of MBA program using the Funda-

mental Scale (Table 3). This example data expressed a personal judgement. In this

section, we will investigate using Saaty Priority Ranking of subsets of that data.

One person wants to read Master of Business Administration (MBA) programs in

Texas State. Find website suggest from http://find-mba.com/schools/usa/texas and

filter for Schools with AACSB, AMBA and/or EQUIS accredition only and Schools

ranked by FT, BusinessWeek and/or Economist. After the filter choose there are only

ten business school left (Table 9).

Table 9: MBA Programs Example
Number School Name

1 University of Texas at Austin - McCombs School of Business
2 Texas A&M University - Mays Business School
3 The University of Texas at Dallas - Naveen Jindal School of Management
4 Rice University - Jesse H. Jones Graduate School of Business
5 Southern Methodist University - Cox School of Business
6 University of Houston - C. T. Bauer College of Business
7 University of Texas at San Antonio - College of Business
8 Texas Christian University - Neeley School of Business
9 Baylor University - Hankamer School of Business
10 Texas Tech University - Rawls College of Business

Next, every two universities were compared using personal judgement following

the Fundamental Scale shown in Table 3. Again, this matrix will use one personal’s

opinion and may vary with individuals. For example, comparing University of Texas

at Austin(1) compare with Texas A&M University(2), these two university both have

better rank, better reputation, nice school environment, and otherwise similar. There-

fore, I compare these university and give them a score 1 because they are of equal

importance to me. If University of Texas at Austin (#1 on the list) compares with

Baylor University (#9), the score will be 9 because this person did not known much

about Baylor University information, so University of Texas at Austin is extremly
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important to me. It is a coincidence that the listing numbers and scale scores ex-

pressing the intensity of relative preference coincide. Therefore, this complete data

from personal opinions implementing the Fundamental Scale in Table 3.

Complete Matrix :

1 2 3 4 5 6 7 8 9 10

1

2

3

4

5

6

7

8

9

10



1

1

1/7

1/3

1/8

1/5

1/6

1/8

1/9

1/5

1

1

1/7

1/3

1/8

1/5

1/6

1/8

1/9

1/5

7

7

1

7/3

7/8

7/5

7/6

7/8

7/9

7/5

3

3

3/7

1

3/8

3/5

1/2

3/8

1/3

3/5

8

8

8/7

8/3

1

8/5

8/6

1

8/9

8/5

5

5

5/7

5/3

5/8

1

5/6

5/8

5/9

1

6

6

6/7

2

6/8

6/5

1

6/8

6/9

6/5

8

8

8/7

8/3

1

8/5

8/6

1

8/9

8/5

9

9

9/7

3

9/8

9/5

9/6

9/8

1

9/5

5

5

5/7

5/3

5/8

1

5/6

5/8

5/9

1



Eigenvalues λmax = 11.4296 (calculated using MATLAB)

Consistency index µ ≡ λmax−n
n−1 = 11.2496−10

10−1 = 1.2496
9

= 0.1388

Consistency ratio = µ/RI = 0.1388/1.49 = 0.09 ≈ 0.1

Generating the complete matrix above was time consuming. It is natural to won-

der what results we can get if only partial information exists. Can we still get the

same or similar result? To study this, we assume there is a 10-by-10 consistent matrix,

and we only use the first row of data from the original matrix.

1 2 3 4 5 6 7 8 9 10

1

(
1 1 7 3 8 5 6 8 9 5

)
To complete the matrix, use the consistency condition. In this partial example,

first row already known. Then the first column can be computed by taking reciprocals
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and the diagonal values are a11, a22, · · · , ann = 1, so the matrix will be as follows. The

graph of the matrix shows that all items are linked by a comparison.

Link Matrix :

1 2 3 4 5 6 7 8 9 10

1

2

3

4

5

6

7

8

9

10



1

1

1/7

1/3

1/8

1/5

1/6

1/8

1/9

1/5

1

1

0

0

0

0

0

0

0

0

7

0

1

0

0

0

0

0

0

0

3

0

0

1

0

0

0

0

0

0

8

0

0

0

1

0

0

0

0

0

5

0

0

0

0

1

0

0

0

0

6

0

0

0

0

0

1

0

0

0

8

0

0

0

0

0

0

1

0

0

9

0

0

0

0

0

0

0

1

0

5

0

0

0

0

0

0

0

0

1



Figure 5: Link

Next, complete the matrix using the consistency condition aij ∗ ajk = aik. We

calculate a23 and others below as examples. Notice that when there is more than one

way to calculate a comparison, as for a34, the results are identical.

• a23 = a21 ∗ a13 = 1 ∗ 7 = 7
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• a34 =

 a31 ∗ a14 = 1/7 ∗ 3 = 3/7

a32 ∗ a24 = 1/7 ∗ 3 = 3/7

• a45 =


a41 ∗ a15 = 1/3 ∗ 8 = 8/3

a42 ∗ a25 = 1/3 ∗ 8 = 8/3

a43 ∗ a35 = 7/3 ∗ 8/7 = 8/3

The result of determining all comparisons using the consistency condition is recorded

in a New Matrix.

New Matrix :

1 2 3 4 5 6 7 8 9 10

1

2

3

4

5

6

7

8

9

10



1

1

1/7

1/3

1/8

1/5

1/6

1/8

1/9

1/5

1

1

1/7

1/3

1/8

1/5

1/6

1/8

1/9

1/5

7

7

1

7/3

7/8

7/5

7/6

7/8

7/9

7/5

3

3

3/7

1

3/8

3/5

1/2

3/8

1/3

3/5

8

8

8/7

8/3

1

8/5

8/6

1

8/9

8/5

5

5

5/7

5/3

5/8

1

5/6

5/8

5/9

1

6

6

6/7

2

6/8

6/5

1

6/8

6/9

6/5

8

8

8/7

8/3

1

8/5

8/6

1

8/9

8/5

9

9

9/7

3

9/8

9/5

9/6

9/8

1

9/5

5

5

5/7

5/3

5/8

1

5/6

5/8

5/9

1


Eigenvalues λmax = 10

Consistency index µ ≡ λmax−n
n−1 = 10−10

10−1 = 0
9

= 0

Consistency ratio = µ/RI = 0/1.49 = 0

The results of completing the comparison matrix from the partial data shows us a

consistency ratio of 0. This indicates the entire matrix is perfectly consistent. There

are no judgments that are out of line.

This example shows that partial information can be completed to total informa-

tion. Notice, also, that the matrix from a subset of all information is more consisten
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than the matrix from all of the data. .

For a second example, we randomly pick any 9 random numbers from the upper

triangle of the matrix, then complete the rest part to see the consistency ratio is still

acceptable or not.

Random Matrix :

1 2 3 4 5 6 7 8 9 10

1

2

3

4

5

6

7

8

9

10



1

0

1/7

0

1/8

1/5

0

0

1/9

0

0

1

0

1/2

0

0

0

0

0

0

7

0

1

0

0

1

0

0

0

0

0

2

0

1

0

0

1/8

0

0

0

8

0

0

0

1

0

0

1/3

0

0

5

0

1

0

0

1

0

0

0

0

0

0

0

8

0

0

1

0

0

1/2

0

0

0

0

3

0

0

1

0

0

9

0

0

0

0

0

0

0

1

0

0

0

0

0

0

0

2

0

0

1



Figure 6: Random

Eigenvalues λmax =?
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Consistency index µ ≡ λmax−n
n−1 = ?−10

10−1 = ?
9

=?

Consistency ratio = µ/RI =?/1.49 =?

This incomplete matrix was chosen at random from the complete matrix. The

diagonal data and lower triangular reciprocal numbers are also filled in the matrix.

Then only a few missing entries are still there. The rest of the missing data are

there because there are no links between those two groups, then the matrix cannot

coompleted. Like:a18 = a15 ∗ a58 = 8 ∗ 3 = 24, but a28 cannot be computed. The

eigenvalue, Consistency Index and Consistency Ratio cannot be calculated.

The graph makes it clear what the problem is. There is no comparison between

objects in the two subgraphs consisting of items {1, 3, 5, 6, 8, 9} and {2, 4, 7, 10}. That

is, the graph is not connected. This is further illustrated in the next example.

The next example will be Left corner data

Left Corner Matrix :

1 2 3 4 5 6 7 8 9 10

1

2

3

4

5

6

7

8

9

10



1

1

1/7

1/3

1/8

0

0

0

0

0

1

1

1/3

1/2

1/8

0

0

0

0

0

7

3

1

5

1/2

0

0

0

0

0

3

2

1/5

1

1/9

0

0

0

0

0

8

8

1/2

9

1

0

0

0

0

0

0

0

0

0

0

1

0

0

0

0

0

0

0

0

0

0

1

0

0

0

0

0

0

0

0

0

0

1

0

0

0

0

0

0

0

0

0

0

1

0

0

0

0

0

0

0

0

0

0

1


Eigenvalues λmax =?

Consistency index µ ≡ λmax−n
n−1 = ?−10

10−1 = ?
9

=?

Consistency ratio = µ/RI =?/1.49 =?

This similar example is filled with incomplete data, the left corner partial infor-
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Figure 7: Left Corner

mation is already completed, and there are no links between one group to another.

Therefore, this example cannot be completed.

The partial information for the next example is from above the main diagonal.

Looking at the graph in Figure 8 shows that the graph is connected. We expect,

therefore, to be able to complete the matrix in this case.

Diagonal Matrix :

1 2 3 4 5 6 7 8 9 10

1

2

3

4

5

6

7

8

9

10



1

1

0

0

0

0

0

0

0

0

1

1

1/3

0

0

0

0

0

0

0

0

3

1

5

0

0

0

0

0

0

0

0

1/5

1

1/9

0

0

0

0

0

0

0

0

9

1

6

0

0

0

0

0

0

0

0

1/6

1

1/3

0

0

0

0

0

0

0

0

3

1

1/6

0

0

0

0

0

0

0

0

6

1

1

0

0

0

0

0

0

0

0

1

1

5

0

0

0

0

0

0

0

0

1/5

1


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Figure 8: Diagonal

Eigenvalues λmax = 10

Consistency index µ ≡ λmax−n
n−1 = 10−10

10−1 = 0
9

= 0

Consistency ratio = µ/RI = 0/1.49 = 0

So, indeed, the partial information in this example can be completed. Again, the

matrix is perfectly consistent.

In a last example with partial information, the graph in Figure 9 is connected,

but also contains loops. This means pairs of objects, say 1 and 5, can be connected

in two different ways. Objects 1 and 5 are connected through 1-2-4-5 and 1-3-5.
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Loop Matrix :

1 2 3 4 5 6 7 8 9 10

1

2

3

4

5

6

7

8

9

10



1

1

1/7

0

0

0

0

0

0

0

1

1

0

1/2

0

0

0

0

0

0

7

0

1

0

1/2

0

0

0

0

0

0

2

0

1

1/9

0

0

0

0

0

0

0

2

9

1

6

0

0

0

0

0

0

0

0

1/6

1

1/3

1/7

0

0

0

0

0

0

0

3

1

0

1/6

0

0

0

0

0

0

7

0

1

0

5

0

0

0

0

0

0

6

0

1

5

0

0

0

0

0

0

0

1/5

1/5

1



Figure 9: Loop

Eigenvalues λmax = 10.0351

Consistency index µ ≡ λmax−n
n−1 = 10.0351−10

10−1 = 0.0039

Consistency ratio = µ/RI = 0.0039/1.49 = 0.0026

The result show us the partial example get consistency ratio = 0.003. This ratio

is acceptable since it is less than 10%. This is very special example. The next part
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shows how to solve these missing data.This is a very special example.

From the Saaty’s paper, if the consistency ratio number is bigger than people are

expected or above the scale boundary, they can do three things: first, find the most

inconsistent judgment which is ij = aij ∗ (wj/wi) in the matrix. Second, determine

the range of value. Third, ask the judge to reconsider a certain value in the matrix

and fix that value.

From partial pairwise information to get full expect full information, we can get

our theorem:

Theorem : Partial matrix get full matrix iff there is connected graph. The

solution is unique iff there is a connected tree.

Here has one question that we need to solve. If partial matrix connects and there

is a loop, then the matrix will become to an inconsistent. Here has some information

should know AW = nW ⇔ AW = λW if λ belong to consistency matrix. The

original condition is [Wi/W1,Wi/W2, · · · ,Wi/Wn] ∗ [W1,W2, · · · ,Wn]T = n ∗Wi and∑
Wi = 1. However, for inconsistency to get W ′ = 1/S∗W => AW ′ = A∗1/S∗W =

1/S ∗ AW = 1/S ∗ λW = λ ∗ (1/S ∗W ) = λW ′. Here is simple loop example

Simple Loop Matrix :

1 2 3 4

1

2

3

4



1

1/2

1/7

0

2

1

0

1/3

7

0

1

1

0

3

1

1


According to the information above, using this partial information we can get full

information first. Like a14 = a12∗a24 = 2∗3 = 6 and a14 = a13∗a34 = 7∗1 = 7. There

are two different ways to get a different answer because the matrix is inconsistent.

So we consider the geometric mean a14 ∗ a14 = a12 ∗ a24 ∗ a13 ∗ a34, then get a14 =

√
a12 ∗ a24 ∗ a13 ∗ a34 =

√
42 ≈ 6.4807 and a41 =

√
a14 =≈ 0.1543

When we finish entries in the entire matrix, the next step is to use matlab to

39



Figure 10: Simple Loop

find this eigenvalues λmax = 4.0015 and eigenvectors w1 = 0.8848, w2 = 0.4257, w3 =

0.1314, w4 = 0.1365. The sum of W will be 1.5748. Using formula W ′ = 1/S ∗W can

get W ′
1,W

′
2,W

′
3,W

′
4 and

∑
W ′ = 1. The new error Eij matrix will be

Eij =

1 2 3 4

1

2

3

4



1

1.03923

0.961948

1.000202

0.962251

1

0.999801

1.03956

1.03956

1.000199

1

0.962637

0.999798

0.961945

1.038813

1


In this new matrix, the biggest numbers are E42 = 1.03956 and E13 = 1.03956.

Which means that the inconsistent part comes from the original data not from com-

puted data. If the consistency ratio number is bigger than expected or above the

scale boundary, we can do three things: First, find the most inconsistent judgment

which is Eij = aij ∗ wj

wi
in the matrix. Second, determine the range of values. Third,

ask the judge to reconsider that the value in the matrix and fix that value.
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5 Conclusion

In this thesis, the Colley Matrix Method for rankings based on partial information

is generalized to allow for fuzzy comparisons based on score differences instead of

just wins and losses. This resulted in fuzzy rankings for NFL teams. The results

are similar to the crisp number result, but one part that are need be careful is the

boundaries for fuzzy number. By changing the ∆, a measure of precision in the

fuzzy comparisons, we found that it is possible that too much imprecision makes the

calculated rankings meaningless. Second, fuzzy numbers instead of crisp numbers

are used in the PageRank method as weights for links. The result was that the

initial fuzzy numbers can affect the results of the ranking. Random sampling of

the fuzzy weights with this method showed that the rankings are mostly, but not

completely, determined by the underlying graph. Third, a consistency criteria was

used to complete partial pairwise intangible comparisons in Saaty’s Priority Ranking.

The result was a criteria for being able to make this completion, connectedness of

the underlying graph. After completing the data, the new comparisons had less error

than for the original data.
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Appendix A

There are some operations of the fuzzy number. Suppose the fuzzy number A =
(a1, a2, a3) which a3 > a2 > a1 and B = (b1, b2, b3) which b3 > b2 > b1 be two positive
fuzzy numbers, then
Addition operation:

A+B = (a1, a2, a3) + (b1, b2, b3) = (a1 + b1, a2 + b2, a3 + b3) (13)

Symmetric operation:
−(A) = (−a3,−a2,−a1) (14)

Subtraction operation:

A−B = (a1, a2, a3)− (b1, b2, b3) = (a1 − b3, a2 − b2, a3 − b1) (15)

Multiplication operation [9]:

A ∗B = (min(a1b1, a1b3, a3b1, a3b3), a2b2,max(a1b1, a1b3, a3b1, a3b3)). (16)

Division:

A/B = (min(a1/b1, a1/b3, a3/b1, a3/b3), a2/b2,max(a1/b1, a1/b3, a3/b1, a3/b3)). (17)

Square root of fuzzy number [5]

√
A = [

√
a1,
√
a2,
√
a3] (18)

Operation of α - cut:
Fuzzy number A = (a1, a2, a3), and α ∈ [0, 1] then the membership functions will be

µA(x) =


0 x ≤ a1

x−a1
a2−a1 if a1 < x ≤ a2
a3−x
a3−a2 if a2 < x ≤ a3

0 x > a3

(19)

The inequality µA(x) = α has two solutions, found by solving

α =
aα1 − a1
a2 − a1

=
a3 − aα3
a3 − a2

(20)

The result is aα1 = (a2 − a1)α + a1 and aα3 = −(a3 − a2)α + a3. The interval
Aα = [aα1 , a

α
3 ] includes all numbers x with µA(x) ≥ α.

Arithmetic operation of fuzzy numbers using α-cut method [6]: Suppose the fuzzy
number A = a1, a2, a3 which a3 > a2 > a1 and B = b1, b2, b3 which b3 > b2 > b1
Aα = [(a2 − a1)α + a1, a3 − (a3 − a2)α]; Bα = [(b2 − b1)α + b1, b3 − (b3 − b2)α]
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Addition:

Aα+Bα = [((a2−a1)α+a1)+((b2−b1)α+b1), (a3−(a3−a2)α)+(b3−(b3−b2)α)] (21)

Subtraction:

Aα−Bα = [((a2−a1)α+a1)−((b2−b1)α+b1), (a3−(a3−a2)α)−(b3−(b3−b2)α)] (22)

Multiplication:

Aα ∗Bα = [((a2−a1)+a1)∗ ((b2−b1)α+b1), (a3− (a3−a2)α)∗ (b3− (b3−b2)α)] (23)

Division:

Aα/Bα = [((a2− a1)α+ a1)/(b3− (b3− b2)α), (a3− (a3− a2)α)/(b2− b1)α+ b1] (24)

Square root: √
Aα = [

√
(a2 − a1)α + a1, a3 − (a3 − a2)α)] (25)
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Appendix B

PageRank Code

%PaggRank Crisp Code
maxcount=10000;n=6;
Y=zeros (n , maxcount ) ;
edge =[1 3 6 4 1 5 5 3 3 4 ;3 2 4 6 2 4 6 1 5 5 ] ;
p=0.85;
for k = 1 : maxcount

x2=ones (n , 1 ) ;
Gnew=zeros (n , n) ;

for i = 1 :10
Gnew( edge (1 , i ) , edge (2 , i ) ) =1;

end
degree=Gnew∗x2 ;
Gnew=Gnew. / repmat ( degree , 1 , n ) ;
Gnew ( 2 , : ) =1/n ;
Gnew=p∗Gnew+(1−p)∗x2 ∗( x2 . / n) ’ ;
G=Gnew ’ ;

% Power method
xold = zeros (n , 1 ) ;
while max(abs ( xold−x2 ) ) > . 0001

xold = x2 ;
x2= G∗x2 ;

end
% Gnew
%x
Y( : , k )=x2 ;
end
Z=Y;
for j =1:n

[ maxVal maxInd]=max(Z) ;
for i =1:maxcount

Z( maxInd ( i ) , i )=−j ;
end

end
Z=−Z ;
mean(Z , 2 )

% PaggRank Fuzzy 10 ,000 Tra i l s Code
maxcount=10000;n=6;
Y=zeros (n , maxcount ) ;
edge =[1 3 6 4 1 5 5 3 3 4 ;3 2 4 6 2 4 6 1 5 5 ] ;
p=0.85;
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for k = 1 : maxcount
x2=ones (n , 1 ) ;
Gnew=zeros (n , n) ;

for i = 1 :10
Gnew( edge (1 , i ) , edge (2 , i ) )=randi ( [ 1 , 4 ] ) /4 ;

end
degree=Gnew∗x2 ;
Gnew=Gnew. / repmat ( degree , 1 , n ) ;
Gnew ( 2 , : ) =1/n ;
Gnew=p∗Gnew+(1−p)∗x2 ∗( x2 . / n) ’ ;
G=Gnew ’ ;

% Power method
xold = zeros (n , 1 ) ;
while max(abs ( xold−x2 ) ) > . 0001

xold = x2 ;
x2= G∗x2 ;

end
% Gnew
%x
Y( : , k )=x2 ;
end
Z=Y;
for j =1:n

[ maxVal maxInd]=max(Z) ;
for i =1:maxcount

Z( maxInd ( i ) , i )=−j ;
end

end
Z=−Z ;
mean(Z , 2 )
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Appendix C

Completing Ranking Matrix

%Diagonal
A=[1 1 0 0 0 0 0 0 0 0 ; 1 1 3 0 0 0 0 0 0 0 ; 0 1/3 1 1/5 0 0

0 0 0 0 ; 0 0 5 1 9 0 0 0 0 0 ; 0 0 0 1/9 1 1/6 0 0 0 0 ; 0 0
0 0 6 1 3 0 0 0 ; 0 0 0 0 0 1/3 1 6 0 0 ; 0 0 0 0 0 0 1/6
1 1 0 ; 0 0 0 0 0 0 0 1 1 1/5 ; 0 0 0 0 0 0 0 0 5 1 ; ] ;

A(1 , 3 )=f i nd mi s s i ng (A, 1 , 3 ) ;
A(1 , 4 )=f i nd mi s s i ng (A, 1 , 4 ) ;
A(1 , 5 )=f i nd mi s s i ng (A, 1 , 5 ) ;
A(1 , 6 )=f i nd mi s s i ng (A, 1 , 6 ) ;
A(1 , 7 )=f i nd mi s s i ng (A, 1 , 7 ) ;
A(1 , 8 )=f i nd mi s s i ng (A, 1 , 8 ) ;
A(1 , 9 )=f i nd mi s s i ng (A, 1 , 9 ) ;
A(1 ,10 )=f i ndm i s s i ng (A, 1 , 1 0 ) ;
A(2 , 4 )=f i nd mi s s i ng (A, 2 , 4 ) ;
A(2 , 5 )=f i nd mi s s i ng (A, 2 , 5 ) ;
A(2 , 6 )=f i nd mi s s i ng (A, 2 , 6 ) ;
A(2 , 7 )=f i nd mi s s i ng (A, 2 , 7 ) ;
A(2 , 8 )=f i nd mi s s i ng (A, 2 , 8 ) ;
A(2 , 9 )=f i nd mi s s i ng (A, 2 , 9 ) ;
A(2 ,10 )=f i ndm i s s i ng (A, 2 , 1 0 ) ;
A(3 , 5 )=f i nd mi s s i ng (A, 3 , 5 ) ;
A(3 , 6 )=f i nd mi s s i ng (A, 3 , 6 ) ;
A(3 , 7 )=f i nd mi s s i ng (A, 3 , 7 ) ;
A(3 , 8 )=f i nd mi s s i ng (A, 3 , 8 ) ;
A(3 , 9 )=f i nd mi s s i ng (A, 3 , 9 ) ;
A(3 ,10 )=f i ndm i s s i ng (A, 3 , 1 0 ) ;
A(4 , 6 )=f i nd mi s s i ng (A, 4 , 6 ) ;
A(4 , 7 )=f i nd mi s s i ng (A, 4 , 7 ) ;
A(4 , 8 )=f i nd mi s s i ng (A, 4 , 8 ) ;
A(4 , 9 )=f i nd mi s s i ng (A, 4 , 9 ) ;
A(4 ,10 )=f i ndm i s s i ng (A, 4 , 1 0 ) ;
A(5 , 7 )=f i nd mi s s i ng (A, 5 , 7 ) ;
A(5 , 8 )=f i nd mi s s i ng (A, 5 , 8 ) ;
A(5 , 9 )=f i nd mi s s i ng (A, 5 , 9 ) ;
A(5 ,10 )=f i ndm i s s i ng (A, 5 , 1 0 ) ;
A(6 , 8 )=f i nd mi s s i ng (A, 6 , 8 ) ;
A(6 , 9 )=f i nd mi s s i ng (A, 6 , 9 ) ;
A(6 ,10 )=f i ndm i s s i ng (A, 6 , 1 0 ) ;
A(7 , 9 )=f i nd mi s s i ng (A, 7 , 9 ) ;
A(7 ,10 )=f i ndm i s s i ng (A, 7 , 1 0 ) ;
A(8 ,10 )=f i ndm i s s i ng (A, 8 , 1 0 ) ;
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A(3 ,1 ) =1/A(1 , 3 ) ;
A(4 , 1 ) =1/A(1 , 4 ) ;
A(5 , 1 ) =1/A(1 , 5 ) ;
A(6 , 1 ) =1/A(1 , 6 ) ;
A(7 , 1 ) =1/A(1 , 7 ) ;
A(8 , 1 ) =1/A(1 , 8 ) ;
A(9 , 1 ) =1/A(1 , 9 ) ;
A(10 ,1 )=1/A(1 ,10 ) ;
A(4 , 2 ) =1/A(2 , 4 ) ;
A(5 , 2 ) =1/A(2 , 5 ) ;
A(6 , 2 ) =1/A(2 , 6 ) ;
A(7 , 2 ) =1/A(2 , 7 ) ;
A(8 , 2 ) =1/A(2 , 8 ) ;
A(9 , 2 ) =1/A(2 , 9 ) ;
A(10 ,2 )=1/A(2 ,10 ) ;
A(5 , 3 ) =1/A(3 , 5 ) ;
A(6 , 3 ) =1/A(3 , 6 ) ;
A(7 , 3 ) =1/A(3 , 7 ) ;
A(8 , 3 ) =1/A(3 , 8 ) ;
A(9 , 3 ) =1/A(3 , 9 ) ;
A(10 ,3 )=1/A(3 ,10 ) ;
A(6 , 4 ) =1/A(4 , 6 ) ;
A(7 , 4 ) =1/A(4 , 7 ) ;
A(8 , 4 ) =1/A(4 , 8 ) ;
A(9 , 4 ) =1/A(4 , 9 ) ;
A(10 ,4 )=1/A(4 ,10 ) ;
A(7 , 5 ) =1/A(5 , 7 ) ;
A(8 , 5 ) =1/A(5 , 8 ) ;
A(9 , 5 ) =1/A(5 , 9 ) ;
A(10 ,5 )=1/A(5 ,10 ) ;
A(8 , 6 ) =1/A(6 , 8 ) ;
A(9 , 6 ) =1/A(6 , 9 ) ;
A(10 ,6 )=1/A(6 ,10 ) ;
A(9 , 7 ) =1/A(7 , 9 ) ;
A(10 ,7 )=1/A(7 ,10 ) ;
A(10 ,8 )=1/A(8 ,10 ) ;
[V,D]=eig (A)
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Appendix D

Matlab Code: Calculating Error Matrix Eij

[V,D]=eig (A)

W=V( : , 1)

for i = 1 :10
for j = 1 :10

E( i , j ) = A( i , j )∗ W( j ) / W( i ) ;
end

end

E
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Appendix E

Matlab Code: Fuzzy Operation

Fuzzy opera t i on with Matlab Code
% Addit ion wi th two v a r i a b l e :
function z = fuzadd (x , y ) ;
z =[x ( : ) + y ( : ) ] ;
fuzadd=z ;

% Three v a r i a b l e
function z = fuzadd (x , y , z ) ;
z =[x ( : ) + y ( : )+ z ( : ) ] ;
fuzadd=z ;

% Four v a r i a b l e
function z = fuzadd (x , y , z , a ) ;
z =[x ( : ) + y ( : )+ z ( : )+ a ( : ) ] ;
fuzadd=z ;

% Negat ive opera t ion :
function z = fuzneg ( x ) ;

z = f l i p l r (−x ) ;
fuzneg =z ;

% Sub t rac t i on opera t ion :
function z = fuzsub (x , y ) ;
z =[x ( : ) − y ( : ) ] ;
fuzsub=z ;

% Constant Mu l t i p l i c a t i o n opera t ion :
function z = f sprod ( c , x ) ;
i f c>0

z = c∗x ;
e l s e i f c < 0

z = c∗ f l i p l r ( x ) ;
end
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Appendix F

Completing Missing Data

% Main Function Code
function p = f ind mi s s i ng ( adj , s rc , snk )

temp=pathbetweennodes ( adj , s rc , snk ) ;
D=zeros ( s ize ( temp , 1 ) ,8 ) ;

for i = 1 : s ize (D, 1 )
t = ce l l 2mat ( temp ( i ) ) ;
n=s ize ( t , 2 ) ;
for j = 1 : n
D( i , j )=t ( j ) ;
end
end

p=1; r = s ize (D, 1 ) ; root = 1/ r ;
for i = 1 : r
n = s ize ( find (D( i , : ) ) , 2 )−1;
for j =1:n
p=p∗( adj (D( i , j ) ,D( i , j +1) ) ) ˆ root ;
end
end

% Pathbetweennodes
function pth = pathbetweennodes ( adj , s rc , snk , verbose )
% PATHBETWEENNODES Return a l l pa ths between two nodes o f a

graph
% pth = pathbetweennodes ( adj , src , snk )
% pth = pathbetweennodes ( adj , src , snk , v f l a g )
% This f unc t i on re turns a l l s imple paths ( i . e . no c y c l e s )

between two nodes in a graph . Not sure t h i s i s the most
e f f i c i e n t a lgor i thm , but i t seems to work q u i c k l y f o r
sma l l graphs , and isn ’ t too t e r r i b l e f o r graphs wi th 50
nodes .

% Input v a r i a b l e s :
% adj : adjacency matrix
% src : index o f s t a r t i n g node
% snk : index o f t a r g e t node
% v f l a g : l o g i c a l s c a l a r f o r verbose mode . I f true , p r i n t s

paths to screen as i t t r a v e r s e s them ( can be u s e f u l f o r
l a r ge r , time−consuming graphs ) . [ f a l s e ]

% Output v a r i a b l e s :
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% pth : c e l l array , wi th each c e l l ho l d ing the i n d i c e s o f a
unique path o f nodes from src to snk .

% Copyright 2014 Ke l l y Kearney

i f nargin < 4
verbose = f a l s e ;

end
n = s ize ( adj , 1 ) ;
s tack = s r c ;
stop = f a l s e ;
pth = c e l l ( 0 ) ;
c y c l e s = c e l l ( 0 ) ;

next = c e l l (n , 1 ) ;
for in = 1 : n

next{ in } = find ( adj ( in , : ) ) ;
end

v i s i t e d = c e l l ( 0 ) ;

pred = s r c ;
while 1

v i s i t e d = [ v i s i t e d ; sprintf ( ’%d , ’ , s tack ) ] ;
[ stack , pred ] = addnode ( stack , next , v i s i t e d , pred ) ;
i f verbose

fpr intf ( ’%2d ’ , s tack ) ;
fpr intf ( ’\n ’ ) ;

end

i f isempty ( s tack )
break ;

end

i f s tack (end) == snk
pth = [ pth ; { s tack } ] ;
v i s i t e d = [ v i s i t e d ; sprintf ( ’%d , ’ , s tack ) ] ;
s tack = popnode ( s tack ) ;

e l s e i f length ( unique ( s tack ) ) < length ( s tack )
c y c l e s = [ c y c l e s ; { s tack } ] ;
v i s i t e d = [ v i s i t e d ; sprintf ( ’%d , ’ , s tack ) ] ;
s tack = popnode ( s tack ) ;

end
end

function [ stack , pred ] = addnode ( stack , next , v i s i t e d , pred )
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newnode = s e t d i f f ( next{ s tack (end) } , pred ) ;
p o s s i b l e = arrayfun (@( x ) sprintf ( ’%d , ’ , [ s tack x ] ) , newnode ,

’ uni ’ , 0) ;
isnew = ˜ismember ( p o s s i b l e , v i s i t e d ) ;

i f any( isnew )
idx = find ( isnew , 1) ;
s tack = str2num( p o s s i b l e { idx }) ;
pred = stack (end−1) ;

else
[ stack , pred ] = popnode ( s tack ) ;

end

function [ stack , pred ] = popnode ( s tack )
s tack = stack ( 1 : end−1) ;
i f length ( s tack ) > 1

pred = stack (end−1) ;
else

pred = [ ] ;
end
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