
KNOWLEDGE TEMPLE: A COLLABORATIVE KNOWLEDGE SHARING

TECHNIQUE FOR AGILE SOFTWARE DEVELOPMENT

A Thesis

by

ILHAN BURAK ERSOY

Submitted in partial fulfillment of the requirements for the degree of

MASTER OF SCIENCE

Texas A&M University - Corpus Christi

Corpus Christi, Texas

August 2013

Major Subject: Computer Science

KNOWLEDGE TEMPLE: A COLLABORATIVE KNOWLEDGE SHARING

TECHNIQUE FOR AGILE SOFTWARE DEVELOPMENT

A Thesis

by

ILHAN BURAK ERSOY

Submitted in partial fulfillment of the requirements for the degree of

MASTER OF SCIENCE

Computer Science Graduate Program
School of Engineering & Computing Sciences

Texas A&M University - Corpus Christi

Approved by:

Ahmed M. Mahdy, Committee Chair John D. Fernandez, Committee Member

Scott A. King, Committee Member

August 2013

iii

ABSTRACT

Despite the productive, flexible, and adaptive nature of agile development, it

may suffer from knowledge sharing limitations. This includes knowledge loss due

to retirement or high turnover rates of skilled professionals and knowledge hoard-

ing due to interpersonal or organizational climate. The objective of this work is

to build a knowledge sharing culture and collaboration norm in the workplace for

small agile development teams with high turnover rates, where organizational suc-

cess is not only maintained but also enhanced. The Knowledge Temple, the proposed

approach, is hybrid, incorporating knowledge sharing and building models, such as

cognitive apprenticeship, on-the-job-training, solo programming, pair programming,

parallel peer programming, pair rotation, and knowledge repository creation. This

hierarchical approach is designed as an iterative and incremental solution to share

and create knowledge in a collaborative and cooperative fashion. A single-blind ex-

periment was performed with the Innovation in Computing Research (iCORE) at

Texas A&M University-Corpus Christi, where the Knowledge Temple technique was

administered in three different projects with ten varied Temples. To evaluate this

empirical experiment, Temple members’ development contributions, a Knowledge

Temple questionnaire, and observational outcomes were utilized. Consequently, the

results of the Knowledge Temple experiment showed great potential for an impactful

approach. The results indicate novice-novice inspiration to solve motivation issues.

They also show development flexibility for expert developers that may increase the

individual and collaborative productivity. Moreover, this new technique offers sched-

ule flexibility for all the team members, hands-on knowledge sharing for agile learners

both master and apprentice supported, and good use of new knowledge sharing tech-

nologies to allow cooperative knowledge transformation and development.

iv

This thesis is lovingly dedicated to my mother, Aysel Ersoy, and my father, Salih

Murat Ersoy. Their support, encouragement, and constant love have sustained me

throughout my life.

v

ACKNOWLEDGMENTS

This research was done at the Innovation in Computing Research (iCORE) at

the Texas A&M University-Corpus Christi during the SOAR SI, CCISD, and Mu-

seum projects.

I would like to thank professor Ahmed M. Mahdy and all the other members of

the iCORE team for their sincere support during this work.

I also wish to express my sincere thanks to professor John D. Fernandez and

professor Scott A. King for their unceasing guidance and encouragement.

vi

TABLE OF CONTENTS

CHAPTER Page

ABSTRACT . iii

DEDICATION . iv

ACKNOWLEDGMENTS . v

TABLE OF CONTENTS . vi

LIST OF TABLES . viii

LIST OF FIGURES . viii

1 INTRODUCTION . 1

1.1 Problem Description . 3

1.2 Proposed Technique . 4

1.3 Challenges . 7

1.4 Objective and Contributions . 8

1.5 Thesis Organization . 9

2 LITERATURE REVIEW . 10

2.1 Sociological Issues . 10

2.2 Documentation Issues . 14

2.3 Implementation Issues . 16

2.3.1 Implementation without Pair Programming 17

2.3.2 Implementation with Pair Programming 19

3 EXPERIMENT DESCRIPTION . 24

3.1 Experiment Context . 24

3.2 Experiment Population . 25

3.3 Experiment Projects . 27

3.4 Experiment Technologies . 28

3.5 Experiment Questionnaire . 30

vii

CHAPTER Page

4 KNOWLEDGE TEMPLE OVERVIEW 32

4.1 Evolution Knowledge Temple Practice 32

4.2 Knowledge Temple Technique . 34

4.3 Building the Temple . 37

4.4 Knowledge Temple vs. Jedi Temple 38

5 KNOWLEDGE TEMPLE EXPERIMENT 41

5.1 The Environment . 41

5.2 Projects and The Temples . 42

5.3 Alpha Stage . 43

5.4 Beta Stage . 47

5.5 Release Stage . 49

6 EXPERIMENT RESULTS . 54

6.1 Team Member Contribution . 54

6.2 Questionnaire Results . 56

6.3 Observational Results . 60

7 CONCLUSION AND FUTURE RESEARCH 64

REFERENCES . 67

APPENDIX A . 79

viii

LIST OF TABLES

TABLE Page

I Temples of Knowledge Temple Experiment. 42

II Submission Results. 55

ix

LIST OF FIGURES

FIGURE Page

1 Knowledge Temple Paradigm. 5

2 Knowledge Temple Technique. 34

3 A Zone 3 Meeting. 36

4 Knowledge Temple vs. Jedi Temple. 39

5 The Pairs of SOAR SI Version 0. 44

6 The SOAR SI Version 1 Knowledge Temple Meeting with All Temples. 45

7 The SOAR SI Version 1 Temples. 46

8 A SOAR SI Version 2 Temple Meeting. 47

9 A CCISD Project Temple Meeting. 48

10 A CCISD Project Temple Meeting through Team Viewer. 49

11 A Client Collaboration Meeting. 50

12 A Museum Project Temple Meeting. 51

13 Museum Project Temple. 52

14 Knowledge Sharing Sources. 56

15 Knowledge Creation and Accessibility. 57

16 Knowledge Hoarding Effects. 58

17 Knowledge Loss Effects. 59

18 Demographical Workplace Information. 60

1

CHAPTER 1

INTRODUCTION

Creating successful projects is the ultimate goal of software engineering. Thus, soft-

ware development methodologies are introduced to overcome software development

issues, such as late projects, budget issues, and bugs [14]. Traditional software devel-

opment methodologies, team software process (TSP) and personal software process

(PSP) from the Software Engineering Institute (SEI) [5], and Agile methodologies

[15] are very well known models of software engineering. All those methodologies

evolve around knowledge management; in fact, knowledge sharing is the major com-

ponent of each.

Tacit knowledge is the experience of development, training, and/or education,

which materializes in a person [2, 17, 32, 55, 65, 69]. Software development is based

on the tacit knowledge of the individuals. To sustain the quality permanence of

software development, it is essential to transform individuals’ tacit knowledge to

core organizational knowledge. To achieve this goal, every software development

process utilizes different knowledge sharing and creation approaches.

Traditional software development methodologies make use of extensive docu-

mentation to accomplish knowledge sharing [14, 20, 27, 64, 66]. The documentation

contains the project management plan, configuration management plan, quality as-

surance plan, validation and verification plans, requirements specification, design

description, application testing, and user documentation for the project. However,

creation of those comprehensive documents is time consuming because the documents

are excessively project-specific, thus, the reusability of the documents is nominal.

TSP and PSP offer self and team training through in-house and/or educational

2

partners [5, 60]. Moreover, TSP and PSP models are also performed in academia to

create industry-level software engineering for university students [26, 67]. Although

this training is influential, the cost of the training is high especially for small software

development teams. In addition, training lets the software development team get

sidetracked by gaining the knowledge because they are not able to continue project

development. Thus, the productivity of the development team becomes almost zero.

The cognitive apprenticeship model presents an active participation technique

between master and the apprentice. This approach is applied in-class and in virtual

studies in academia [25, 33, 46]. Its collaborative learning experience creates an

authentic setting for knowledge sharing. On the other hand, the success of cognitive

apprenticeship depends on the lead quality of the master. In addition, cognitive

apprenticeship requires time for profitable knowledge sharing [37].

Knowledge repository creation is an active learning and developing approach

[6, 57, 63, 77]. Creating process assets increase the tacit knowledge transformation

among developers. Moreover, this technique increases the reusability of external-

ized tacit knowledge. Yet, version management of created assets and generating

assets, which have high functionality and specificity, are the downside of knowledge

repository creation.

Agile methodologies introduce two knowledge sharing approaches, which create

strong enthusiasm in software engineering [19, 20, 35, 64, 66, 73]. Pair program-

ming not only allows successful knowledge sharing between pairs but also enhances

the development quality. Pair rotation builds a sincere software development envi-

ronment by breaking the ice between software development team members. Those

two approaches are also carried out in academia as a classroom technique to facil-

itate peer knowledge sharing and to increase intercommunication among students

3

[18, 41, 43, 71]. However, those two methods lead to unequal participation and pair

incompatibility.

Agile development offers a productive, flexible, and adaptive environment, where

knowledge sharing limitations may arise [1, 29, 47, 59]. The key concept of agile

methodologies is creating working software via customer satisfaction and develop-

ment pace [9, 15, 23, 47]. Therefore software development teams focus more on

applying the knowledge than sharing.

In this work, the main goal is to design a collaborative knowledge sharing ap-

proach for agile software engineering.

1.1 Problem Description

The problems of software development teams are:

1. knowledge loss via retirement or high turnover rates and

2. knowledge hoarding for interpersonal reasons or organizational climate.

If the organization suffers from knowledge loss and knowledge hoarding, it means the

organization is staff-dependent. For organizational success and continuity, organiza-

tions have to be staff-independent. Being staff-independent means both knowledge

loss and knowledge hoarding protected.

In order to be staff-independent, organizations should share the knowledge

among the development team. Pair programming is one of the promising and no-

ticed knowledge sharing techniques for agile development pairs. However, the nature

of agile development does not allow a successful knowledge sharing environment for

team members. Law and Charron [39] reported:

4

• ”Pair programming can blend expertise of programmers. However, passive pro-

grammers tend to lose their motivation in the pairing activities, as the dominant

programmer tends to dictate the path for the development. ”

• ”Time-sharing penalties arose, while attempting to perform a number of tasks

concurrently. ”

• ”The programmers need to respond and resolve the issue before the deadline. If

the solution did not come on a timely fashion, the team performance evaluation

would be impacted according to the service level agreement. As a result, the

paired programmers tended to focus of separate tasks, which addressed their own

individual deadlines. Since both parties were not dedicating themselves to the

common goal related to the original pair programming project, the productivity

and schedule would suffer, as a result. ”

In addition to motivational, scheduling, and separating task issues, Chau, Maurer,

and Melnik [14] noted:

• ”Assigning two people to work cooperatively as a pair is also an extremely tricky

task. One may argue that pair programming constantly reduces the productivity

of the experts as they need to train novice all the time and formal training is

therefore less expensive. ”

Similar pair programming issues, while performing knowledge sharing, have also been

observed [42, 64, 70].

1.2 Proposed Technique

The proposed knowledge sharing technique, Knowledge Temple, is a feasible im-

provement to bridge the gap between the well-known pair programming issues. It is

5

a hybrid technique, incorporating knowledge sharing and building models, such as

cognitive apprenticeship, on-the-job-training, solo programming, pair programming,

parallel peer programming, pair rotation, and knowledge repository creation. This

hierarchical approach provides an iterative and incremental solution to share and

create knowledge in a collaborative and cooperative fashion.

In Knowledge Temple, individuals work as a small team, a Temple, which has

three members with different levels of experience (Figure 1). Every Temple has its

own master and two apprentices. In order to achieve an active learning and devel-

opment environment, every Temple has its own rules and procedures to share the

knowledge and increase productivity. This flexible environment creates a collabora-

tive team culture along with cooperative and self-responsible individuals.

Figure 1. Knowledge Temple Paradigm.

The Temple Master leads development and utilizes two apprentices to enhance

productiveness. S/he is in charge of communication, revision control, and documen-

6

tation tools, tracks the collaborative development and progress of apprentices, and

ensures the knowledge sharing process. Moreover, the Temple Master reports to

the project manager the progress of work on a weekly basis and discusses potential

problems.

Temple Apprentices are free with their internal affairs; however, they are master-

dependent on foreign affairs. In other words, the apprentices are responsible for

accomplishing determined duties from their Temple master. These duties can be

documentation, programming, testing, learning required information, or attending

on-the-job training sessions. Yet, they decide their individual duties and the manner

of operation.

Knowledge Temple offers:

• novice-novice inspiration to solve motivation issues,

• development flexibility for expert developers to increase the individual and

collaborative productivity,

• schedule flexibility for all the team members to answer the development progress

needs,

• hands-on knowledge sharing for agile learners both master and apprentice sup-

ported, and

• good use of new knowledge sharing technologies to allow cooperative knowledge

transformation and development.

Consequently, the Temple assures high productivity from the Temple Master and

collaborative knowledge sharing among the Temple Apprentices.

7

1.3 Challenges

Knowledge is considered a principal component in developing software because soft-

ware development is a people-based activity where developers’ knowledge impacts

the process. To achieve software complexity and quality demands, organizations

need successful programmers [8, 37, 45, 54]. However, finding good programmers is

a challenge for many small-level organizations and research institutes. The reason

can be either the cost of a good programmer or the lack of desire of the programmer

to become a part of a small development team [28].

Knowledge loss is a serious issue for every level of the software development

team [11, 30, 53, 74]. However, the effects on small development teams are more

catastrophic than mid-level or large development teams. Most small development

teams have a strong dependency on their productive developers. Therefore, los-

ing the knowledge of productive developers means losing the development quality.

Knowledge loss can be caused through retirement or high turnover rates. In particu-

lar, external turnover of skilled developers is a rising dilemma for small development

teams [11, 30].

Knowledge hoarding is another serious issue for software development teams

[10, 11, 31, 44, 68]. Individuals want to keep their knowledge hidden for interpersonal

reasons. Another reason for knowledge hoarding is the lack of organizational culture.

Building a knowledge sharing climate in the workplace is a demanding business

activity.

The pace of technology change is another challenge for knowledge sharing [13,

50]. Developers may not find time to update their knowledge while trying to meet

deadlines. They may not even get around to sharing knowledge with colleagues

[4, 7, 16, 51, 76]. It also brings the knowledge creation standards to action because

8

fast-paced technology compels explicit knowledge creation. Still, applying version

control to avoid garbage knowledge creation is required [75, 78].

Agile development speeds up the software development process and has high re-

sponse to customer requirements and changes [3, 21, 39, 40, 56]. It provides an itera-

tive and incremental development fashion among self-organizing and cross-functional

teams. Nonetheless, agile approaches have a unique development through the means

of the Agile Manifesto [22]. Accordingly, adapting to agile development is an arduous

process for both developers and organizations [58].

Although pair programming is a knowledge sharing fashion for agile methodolo-

gies, expecting programmers in a small development team to have the same level of

knowledge is unrealistic [35]. There is always different levels of developers in software

organizations along with their different expertise. Therefore, handling different types

of developers is another challenge of knowledge sharing [14, 39, 70].

1.4 Objective and Contributions

The objective of the thesis is to design a knowledge sharing method, where individ-

uals’ tacit knowledge transforms into core organizational knowledge and the devel-

opment productivity concurrently increases through a collaborative and cooperative

development pattern. The contributions are:

• designing a new knowledge sharing technique for small agile development teams

based on well-known pair programming issues,

• building a knowledge sharing culture encourages the professional development

and success of organizations, and

• creating a collaboration norm through knowledge sharing lower the instances

9

of knowledge hoarding.

1.5 Thesis Organization

The remaining chapters of this thesis will be organized as follows:

• Chapter 2. LITERATURE REVIEW provides an overview of the sociological,

documentation, and implementation issues of knowledge sharing.

• Chapter 3. EXPERIMENT DESCRIPTION explains the empirical study en-

vironment of the Knowledge Temple experiment.

• Chapter 4. PROPOSED TECHNIQUE: KNOWLEDGE TEMPLE OVERVIEW

discusses the general characteristics and operations of the proposed technique.

• Chapter 5. KNOWLEDGE TEMPLE EXPERIMENT presents the develop-

ment details of the Knowledge Temple experiment.

• Chapter 6. EXPERIMENT RESULTS summarizes the team results through

development contributions, the data produced by the Knowledge Temple ques-

tionnaire, and observational results.

• Chapter 7. CONCLUSION AND FUTURE RESEARCH provides a summary

of findings and presents recommendations for future work.

10

CHAPTER 2

LITERATURE REVIEW

In today’s economy, enterprises require knowledge more than ever before. Employees

are being classified through their skill set and experience, where the tacit knowledge

of individuals is the key factor [8]. The effect of knowledge hunger can be seen much

more easily in agile software development teams. Biawo-wen [10] claims that we are

in the ”knowledge economy era” and states the knowledge necessity for agile software

development teams in three steps:

1. knowledge is the only meaningful resource,

2. companies products and services are based on the transformation of the knowl-

edge, and

3. software employees require more knowledge management than any other busi-

ness sectors.

However, implementing knowledge sharing is not an easy task for agile devel-

opment teams compared to its increasing demand. We classified knowledge sharing

implementation issues under three perspectives: sociological, documentation, and

implementation.

2.1 Sociological Issues

Sociological perspective covers a hidden factor of knowledge sharing. In comparison

with the technical side, the human side of agile development teams has been ignored

for a long time. It is important to reveal the value of social structure in an agile

development team in order to comprehend the development process.

11

Occupational stress is one of the most important problems of knowledge sharing

implementation [7]. The connection between software development and agile devel-

opers relies on tacit knowledge and human creativity. Occupational stress keeps tacit

knowledge and human creativity isolated in the body of an individual. Thus, the

productivity and the desire of sharing knowledge decrease very dramatically. In ad-

dition, Amin, Basri, Hassan, and Rehman [7] provide the key factors of occupational

stress as fear of obsolescence, individual team interactions, client interactions, work

family interface, role overload, work culture, technical constraints, family support

towards career, workload, and technical risk propensity.

Chau, Maurer, and Melnik [14] explore the theoretical link between agile team

members as ”Trust and Care.” Developing the organizational and individual trust

in the teams and between the teams is indispensable. Trusting increases knowledge

generation, and sharing between the colleagues where caring for teammates is also

created. Agile methods, such as collective code ownership, stand-up meetings, onsite

customer, and pair programming, build the mutual trust and care among collabora-

tors. Moreover, Crawford, Castro, and Monfroy [17] discuss the importance of not

only trust but also freedom in order to accomplish knowledge sharing. Interactions

among the members of a team can become a fact voluntarily not by an order from

executives [14, 17]. On the other hand, Mathew, Joseph, and Renganathan [44] sug-

gest that financial incentive fosters the team members to share knowledge. Even

more importantly, they claim all type of personalities can be influenced financially.

However, the research indicates negative results.

Chua, Eze, and Goh [16] have recently developed a conceptual framework for

knowledge sharing. This framework contains six hypotheses: kiasuism, subjective

norm, affiliation, worker empowerment, knowledge technology, and intention to share

12

knowledge. Kiasuism is defined as ”getting the most out of every transaction and

a desire to be ahead of others.” Subjective norm is described as a social pressure

for high performance, and affiliation is explained as the fellowship among the team

members. Thus, conceptual framework recommends high level of subjective norm,

affiliation, worker empowerment, use of knowledge sharing technologies, supportive

attitude towards knowledge sharing, and low level of kiasuism for positive influence

on knowledge sharing.

The study by Jabar, Cheah, and Sidi [31] is noteworthy in that it combines

organizational factors, which are distributive, procedural and interactional justice,

and individual factors, which are perceived goal and perceived reward interdepen-

dence, to build the knowledge sharing attitude in software development teams. They

also argue that positive knowledge sharing attitude and subjective norm evolve the

knowledge sharing behavior in organizations.

In addition to using agile methods, such as pair programming and stand-up

meetings [14] and giving autonomy to software development teams [16], Law and

Charron [39] introduces ”Co-location” and organizing social activities with asso-

ciates. Two different Co-location techniques are applied through the study, open

environment and common cubicle zone. While open environment offers face-to-face

interaction, common cubicle zone boosts express communication along with personal

space and privacy. Birthday luncheons, game and tea parties in afternoon, and toys

that break the ice between team members are available as social activities. They

encourage the affinity and alliance among the team members with great synergy.

For managing one of the most popular social agile development issues, developer

turnover, Rong et al. [53] present a model based on information entropy to measure

the turnover risk on a software project. Information entropy theory helps to assess

13

the uncertainty and uniformity of the turnover risk. This argument quantitatively

states the catastrophe of losing the key contributor of the software team. It foresees

the future turnover risk for managers to perform a precautionary knowledge sharing

approach. Furthermore, Whitworth and Biddle [73] define a qualitative grounded

theory based model to determine socio-psychological experiences in agile development

teams. They define the agile teams as ”complex adaptive socio-technical systems,”

which contains strong social forces. Their approach stresses the importance of agile

methods to activate the knowledge sharing process.

In addition, Izquierdo-Cortazar, Robles, Ortega, and Gonzalez-Barahona [30]

demonstrate a methodology to measure the quantitative impact of knowledge loss due

to developer turnover. In order to quantify the knowledge loss, this study introduces

”orphaned” lines of code. When a member of the agile development team leaves the

software development team, his/her code becomes orphaned. Thus, the knowledge

sharing process becomes insecure by the amount of orphaned lines and the project

requires greater focus on software archaeology. The results of the study indicate that

the use of orphaned lines evaluates the ”health” of the software project and clues in

managers before it is too late.

Yang and Wu [76] propose an agent-based modeling (ABM) concept to explore

the knowledge sharing motivation in the agile development team. ABM is a sim-

ulation system where researcher can create, observe, and analyze the experimental

personal behavior and motivation of sharing knowledge within the development team.

It uncovers the team members with high knowledge and sharing behavior along with

the organizational knowledge sharing climate and culture [76].

14

2.2 Documentation Issues

Another substantial perspective of knowledge sharing is the knowledge storing pro-

cess. It is clearly stated in the Agile Manifesto that agile developers should value

working software over comprehensive documentation [22]. However, knowledge trans-

fer without documentation is a challenging practice. Consequently, agile teams feel

documentation is necessary through varied approaches.

Analyzing the documentation approaches for different methodologies is essential

for this reason. Chau, Maurer, and Melnik [14] discuss the varied documenting tech-

niques for both Tayloristic and agile methods. Tayloristic methods require a large

number of documents, which comprise all possible requirements, design, develop-

ment, and management issues. On the other hand, agile methods argue ”lean, mean,

and just enough” documentation techniques. Additionally, agile methods introduce

collective ownership that any team member can participate and alter the knowl-

edge repository to keep it up-to-date [14]. Law and Charron [39] stress keeping the

documentation updated and define the issue as ”one webmaster syndrome.” Using

social software development tools is a best practice to accomplish collaborative re-

vising responsibility. Therefore, agile development teams enable ”work-in-progress”

documentation fashion along with collaborative authority.

Abbattista, Calefato, Gendarmi, and Lanubile [1] survey the literature on social

software development tools. They group the tools into seven categories via their main

functionality, which are software configuration management, bug and issue tracking,

build and release management, product and process modeling, knowledge center,

communication tools, and collaborative development environments. Moreover, they

argue that adequate technology support is a fundamental for active knowledge shar-

ing. Finally, their results show that collaboration is a side effect of social software

15

development teams [1].

Among the social software development tools, Wiki is the most revised tool

in consequence of usage and features. It is a practical tool for not only small de-

velopment teams but also large enterprises [23]. Sousa, Aparicio, and Costa [63]

remark using Wikis is essential as an organizational knowledge sharing tool. Organi-

zational Wiki facilitates sharing through knowledge map of the individuals, conveys

tacit knowledge between team members, transforms tacit to explicit knowledge, and

commutes explicit to tacit knowledge in order to sustain the sharing process.

Another documentation model assumes that utilizing an appropriate ontology

to index Wikis improves the knowledge sharing process. Tang, de Boer, and van

Vliet [68] introduce Semantic Wiki with a lightweight and adaptable ontology, which

classifies concepts and supports knowledge retrieval. A semantic Wiki allows custom-

defined indexing and acknowledges agile team members through an event-based no-

tification system for their asynchronous knowledge request.

The study by Amescua, Bermon, Garcia, and Sanchez-Segura [6] is noteworthy

in that it combines creating process asset libraries (PALs) and Wikis. Their study

provides a set of guidelines to create a PAL-Wiki. The PAL-Wiki captures, codifies,

and disseminates the knowledge about software agile processes and facilitates an ac-

tive learning environment. The results of the study report that the PAL-Wiki is easy

to learn, use, and operate in order to provide a knowledge sharing mechanism. This

approach also motivates the agile software development team to explore concepts in-

dependently. Furthermore, Law and Charron [39] present using mockups as a Wiki

documentation technique. They believe ”a picture is worth a thousand words” and

keep the Wiki web site as visual as possible.

An alternative visual technique proposes Unified Modeling Language (UML)

16

usage to create minimal the documentation for agile development teams [65]. Stet-

tina, Heijstek, and Faegri [65] divide documentation process into two perspectives:

documentation as a product and documentation as a medium. The first perspective,

documentation as a product, requires more textual and formal documents through

the iterative development process. At the end of the development, agile development

teams possess the documentation as a valued product, but team members identify the

progress as ”a task that needs to be done.” Although it increases the quality of the

product, it decreases the motivation to participate. On the contrary, the documen-

tation as a medium perspective requires UML-based documentation artifact creation

during the agile development progress. It derives team motivation, easy updates, and

generalist team roles; however, it drops the sustainability of the knowledge sharing

documentation in the long run.

Prause and Durdik [50] inquire about the results of a reputation mechanism

to answer the documentation argument of agile development teams. According to

their research, reputation is considered the driving force to make selfish individuals

cooperate and participate. Moreover, reputation systems, which compute reputation

scores of participants, encourage rating the available documentation. Survey results

of the study show 85% of experts believe the reputation system is promising and will

have a positive effect on agile documentation via ”pro-social” behavior of the agile

development team members [50].

2.3 Implementation Issues

Implementing knowledge sharing for agile development teams is more troublesome

due to the nature of agile development. Pair programming is one of the most re-

spected agile development techniques, with influential knowledge sharing as a side

17

effect. We surveyed knowledge sharing implementation methods with and without

pair programming perspectives.

2.3.1 Implementation without Pair Programming

Chatti, Schroeder, and Jarke [13] examine the relation between knowledge man-

agement and technology-enhanced learning to propose the Learning as a Network

(LaaN) theory. The knowledge vision of the system is a personal network and the

learning concept is a knowledge ecological approach. LaaN allows learning through

the continuous creation of a personal knowledge network [13].

Huang and Sun [27] introduce a mobile agent system to accomplish establish-

ing, operating, and disassembling management of the virtual enterprise. The virtual

alliance of the knowledge management system relies on communication control, life-

cycle management, knowledge processing, establishing management, operation man-

agement, and disassembling management agents. The agents analyze, process, store,

and share the knowledge among the whole enterprise with an automated fashion [27].

Zhang, Tang, Liu, and You [78] declare another multi agent knowledge shar-

ing architecture based on the Internet and varied knowledge inventories. Domain

knowledge, organization knowledge, process knowledge, distributed case base, ontol-

ogy, user interface, workflow, and toolset agents are utilized to build a cooperative

design. Share Knowledge Space and Communication Control Center operate the

knowledge exchange and interaction during the whole development time. Moreover,

agents have a knowledge sharing mechanism through application, mind, message,

and communication layers [78].

Jiang, Liu, and Cui [32] consider a five layered knowledge sharing framework in

the interest of organizational knowledge management. The system combines knowl-

18

edge management strategy, organizational learning, and business process reengineer-

ing theories. Basic construction, system management, content management, knowl-

edge management, and theory layers originate the framework of the knowledge man-

agement system [32].

Tang, de Boer, and van Vliet [68] present a knowledge sharing perspective with

roadmapping process in order to succeed in timely knowledge traffic. Their research

indicates that the inadequacy of knowledge sharing is not the knowledge creation

but the effective knowledge transferring between the team members. A collaborative

knowledge inventory, Semantic Wiki, unties the communication capability. This

roadmapping process, with an indexed pattern, provides a direct knowledge search

ability and notification system for formerly-demanded knowledge [68].

Some discussions of the role of applying agile methodologies can be found in Lan-

daeta, Viscardi, and Tolk [38]. Through the strategic management of agile projects,

software development teams can share knowledge across the projects and create an

organizational learning culture among the agile team members. The extended agile

methodology offers mentoring, coaching, and staffing project teams with members

of other projects and participation in both multi-project reviews and retrospectives.

Therefore, team members can share knowledge in crossed fashion via parallel projects

and active team members [38].

Kavitha and Ahmed [35] propose another knowledge sharing framework through

a collaborative environment connected by internet and intranet. The approach facil-

itates an incremental organizational learning using knowledge enablers. Communi-

ties of practice (CoPs), questionnaire responses, email archives, work notes, informal

knowledge sharing sessions, voluntary contributions, project learnings, and discussion

forums are the knowledge enablers for the informal knowledge sharing framework.

19

The experience recorder, idea map, and forums capture the tacit knowledge from

knowledge enablers and structure the knowledge repository using frequently asked

questions and lessons learned retrieval mechanisms [35].

2.3.2 Implementation with Pair Programming

Pair programming is an agile software development technique that allows two pro-

grammers to collaboratively design, code, and test side-by-side [17, 40, 70]. Each

pair has a particular role, which is either driver or navigator. The driver is the one

that produces the code or design and performs test cases. The navigator actively

determines the tactical and strategic weaknesses and continuously helps the pair to

improve development. Through the pairs’ determination, the driver and navigator

switch roles and carry forward the development routine [48]. Moreover, changing

partners between other pairs, pair rotation, is highly recommended to achieve an

efficient knowledge sharing [35].

Sanders [56] provides pair programming adaptation experiences and pairing is-

sues as an Agile Coach. There are two essential concerns to switch the organizational

development technique from solo to pair programming. First, some agile leads be-

lieve pair programming doubles the person hours to complete a task. Second, agile

development team members are not interested in pairing with others. According to

Sanders [56] small changes, such as buying big monitors for pairs and arranging des-

ignated area for pair programming, can effect the motivation of agile team members.

However, the privileges for pair programming teams should be influential, efficient,

and easy to implement. Increased programming motivation and code coverage in

every sprint are the results of pair programming migration [56].

Chau, Maurer, and Melnik [14] describe pair programming as an informal train-

20

ing. Compared to Tayloristic methods with formal training, agile methodologies have

informal approaches, such as pair programming and pair rotation. System knowl-

edge, coding convention, design practices, and tool usage tricks are tacit knowledge

instances that participants can easily share through pair programming. More of-

ten then not, the tacit knowledge instances are neither documented nor a part of

the formal training. Chau, Maurer, and Melnik [14] also present the pair program-

ming drawbacks, such as pair incompatibility and increased training cost through

particular circumstances compared to formal training options.

Ganis, Maximilien, and Rivera [23] report an ”Agile@IBM” survey from 2008

and 2009 across all of IBM. Agile@IBM covers the key agile practices, such as sus-

tainable pace, whole team planning, continuous integration, daily scrums, and pair

programming. The results of the survey indicate significant improvements in cred-

ibility of blooming agile practices, which are sustainable pace (55.1%), whole team

planning (44.8%), continuous integration (34.5%), and daily scrums (26.2%). Nev-

ertheless, there is a huge amount of credibility decrease (37.9%) in usage of pair

programming [23].

Law and Charron [39] demonstrate a knowledge sharing approach, which unites

pair programming, co-location, daily status meetings, and minimal documentation.

To solve the pair scheduling issue of pair programming, team members do code

inspection in addition to pair programming. Examining the source code for code al-

terations and error discovery are the core part of the code inspection. Pair program-

ming and code inspection mixture make both knowledge sharing and cross knowledge

training possible for agile team members. Yet, the experiment results denote time-

sharing penalties, motivation loss for novice team members, and a shift in focus from

pair programming to deadline-driven task development [39].

21

Srikanth, Williams, Wiebe, Miller, and Balik [64] examine the advantages and

disadvantages of pair programming and pair rotation on undergraduate level stu-

dents. Their results are vital for software development teams, which have junior

level team members. Enhanced quality, teamwork, communication, retention, confi-

dence, comprehension, and learning are the pair programming advantages for agile

development pairs. However, pair programming presents schedule issues, pair incom-

patibility and unequal participation. The bottom-line concern of pair programming

implementation is the skill level of pairs. A higher skill level gap produces a lower

level job satisfaction and productivity both for knowledge sharing and development

processes. Furthermore, researchers report the pair rotation advantages as gained

knowledge of team members and elevated desire to pair with new team members.

On the other hand, pair rotation kindles partner compatibility, motivation decrease

due to good partner loss, and programming fashion re-adjustment in consequence of

new partner [64].

Poff [49] observes the organizational learning effect of pair programming on

newly-hired team members in an industrial setting. The study pairs the junior

level team members, requires voluntary mentoring from experienced team members,

and aims to facilitate the technical and environmental training of the newcomers.

The experiment shows the new-hired pairs require more man-hour and more men-

toring than new-hired solo programmers. However, the novice-novice collaboration

increases overall productivity, allows more accurate project planning, partially has-

tens technical and environmental knowledge sharing, and decreases programming

defects compared to newly-hired solo programmers [49].

Giri and Dewangan [24] introduce an improved version of IBM’s programming

aptitude tests (PATs) for pair programers. Through PAT scores, organizations can

22

determine programming abilities and potential of newly hired programmers. Re-

searchers take advantage of the PAT scores for team building and pairing agile de-

velopment team members. Using total effort/time measurement with PAT scores,

Giri and Dewangan [24] calculate the ”Relative Effort Afforded by Pairs (REAP)”

value as well. REAP values indicate one of the five different conditions: total de-

velopment time of pairs is less than individual, pairs and individuals have the same

total development time, pairs require more total man-hours but develop faster than

individual, elapsed development time for pairs and individuals is almost the same,

or elapsed development time for pairs is longer than individuals.

Lui and Chan [42] present a Software Process Fusion (SPF), which combines

both solo and pair programming. The approach divides the software processes as

”Recipient” and ”Donor.” Agile team members pair for Recipient Processes and

work individually for Donor Processes. Thus, pairing motivation never decrease via

repeating the same task again. Team members decide the transfer conditions for

pairing or splitting. Researchers use the transfer conditions value to calculate a

Software Fusion Ratio (SFR). SFR shows the efficiency and productivity of SPF

[42].

Another study considers the effects of pair programming at the development

team level based on productivity, defects, design quality, knowledge transfer, and

enjoyment of work. Vanhanen and Lassenius [42] report a productivity difference

between pair and solo programming. The productivity decreases while pairs are

under the learning curve. However, the productivity level is almost the same for

both pair and solo programming practices after the learning period. Although pair

programmers code with less defects, their final product contains more issues because

of the system testing oversight. Pairs excessively depend on the peer review process of

23

pair programming, which causes over-reliance in the testing phase. Pair programming

enables knowledge transfer between peers and team; however, the pair programming

abates development teams’ working enthusiasm. Moreover, Vanhanen and Lassenius

[42] emphasize that the task complexity does not affect the effort differences between

solo and pair programming.

Sillitti, Succi, and Vlasenko [62] examine the impact of pair programming via

the developer’s focus. This study tracks the usage of nine popular applications:

Microsoft Visual Studio, Browser, Microsoft Outlook, Microsoft Office Word, Mi-

crosoft Office Excel, Microsoft Management Console, Microsoft Windows Explorer,

Microsoft Messenger, and Remote Desktop. Solo programmers constantly utilize the

Internet for information retrieval. Browser usage decreases from 9% to 6% with pair

programming. Microsoft Outlook, Microsoft Messenger and Remote Desktop usage

also decreases because pairs create a robust communication between each other. In

addition, programming motivation increase via pairing pressure. Microsoft Visual

Studio utilization increases from 34% to 64% with pair programming [42].

24

CHAPTER 3

EXPERIMENT DESCRIPTION

Software engineering is a developing practice compared to other engineering fields or

science disciplines. Even if software engineering is still an immature regimen, it has

progressed very far in a short amount of time along with new software engineering

branches. Agile software engineering is one of the most challenging and promising

areas for empirical software engineering research. The nature of agile methodologies

require informal, observational, and on-the-job research. Therefore, empirical studies

offer an essential way to evaluate new agile approaches. However, researchers argue

about the contributions of empirical software engineering research [72] and offer

ground rules to improve the results of empirical studies [36, 61].

In order to improve the research and reporting processes, the Empirical Re-

search in Software Engineering Guideline designed by Kitchenham et al. [36] was

followed. The researched characterization framework introduced by Shaw [61] and

the empirical software engineering research best practices from Weyuker [72] were

also considered and utilized. In addition, the Knowledge Survey, which was devel-

oped by Palmieri [48], was put into practice as a research and evaluation method.

3.1 Experiment Context

Pair programming is a successful knowledge sharing technique if its requirements are

all fulfilled. For a small agile development team, however, applying pair programming

causes utter confusion between productivity and knowledge sharing for the pairs. The

tight schedule of application development does not allow lead contributors to share

their tacit knowledge with newcomers. Moreover, knowledge hoarding issues increase

25

if the small development team has a high turnover rate. As a result, the small agile

development teams may not create harmony for a collaborative and cooperative

working environment through pair programming.

In this work, the possibility of a new knowledge sharing technique is discussed,

considering the well-known pair programming issues. To enable a collaborative pro-

duction, the experience gap between the pairs was focused on. Augmenting the

knowledge transfer potential was sought, while development productivity was en-

sured. The issue of scheduling was delved into through development deadline and

knowledge sharing burden. Finally, the team determined to create a knowledge shar-

ing culture, which constantly increases team motivation in an agile environment.

3.2 Experiment Population

The Knowledge Temple was applied in the Innovation in Computing Research (iCORE)

at Texas A&M University-Corpus Christi. iCORE is a research, development, and

commercialization group, which comprises undergraduate and graduate level stu-

dents. The agile development team of iCORE was formed from sophomore, junior,

and senior level undergraduate and Master’s level graduate students. The team did

not include freshman level undergraduate students due to their insufficient program-

ming abilities. All the students were part-time workers, who contributed ten or

twenty weekly work hours as a part of the agile development team.

The varied levels of computer science students created an environment that

could be considered as a real world atmosphere:

• sophomore and junior level undergraduate students as newly-hired developers

or interns,

26

• senior level undergraduate students as junior developers, and

• master’s level graduate students as senior developers.

Therefore, iCORE offered a unique empirical research environment for an observa-

tional experiment. Moreover, it is essential to have a diverse group of team members

to effectively evaluate knowledge sharing results. It is assumed that the expert de-

velopers have more experience on project development requirements than apprentice

developers in Knowledge Temple experiment.This unique environment exposed a

mandatory employee turnover rate through the graduation of team members.

The cultural diversity of iCORE also offered an outstanding research environ-

ment. The experiment population contained team members from the United States,

Vietnam, India, and Turkey. It allowed for the creation of a melting pot of dif-

ferent cultures and work ethics. In addition, applying the proposed technique in a

university environment was promising because today’s students will be tomorrow’s

professionals; thus, it was important to get results from future generations.

The agile development team had fifteen members. Each team member named as

TMb# (Team Member #), where ”#” stands for both the sequence of recruitment

and ID number. For instance, TMb1 joined the development team first and TMb18

was last. The numbering system is important to comprehend the evolution of the

team members. Nonetheless, it does not show the experience difference between team

members because there is an opportunity that a Master’s level graduate student can

join the agile team after a sophomore level undergraduate student or vice versa.

27

3.3 Experiment Projects

The experiment environment had different levels of developers and different types and

levels of projects. The proposed knowledge sharing technique was applied to three

different projects. One of the projects was examined through version 0, version 1

and version 2 standings. Moreover, the proposed approach was applied not only to

programming but to every aspect of the project development process, such as client

collaboration, application publishing, and project presentation. SOAR SI, CCISD,

and Museum were the names of the projects.

The SOAR SI project was an informative mobile application for science, tech-

nology, engineering, and mathematics (STEM) undergraduate students. It offers

schedule, location, and orientation about supplemental instruction (SI) sessions of-

fered by the Title V-STEM Outreach, Access, and Retention (SOAR) Program at

Texas A&M University-Corpus Christi. The application contains six touch user in-

terfaces (TUI) and nine development modules. The development team utilized the

Appcelerator Platform and the Titanium SDK as the mobile application develop-

ment platform. The SOAR SI project was published for both iOS (iPhone and iPad)

and Android (smartphones and tablets) devices.

The CCISD project is a full educational guidance application for Corpus Christi

Independent School District (CCISD). It presents a school directory, CCISD school

calendar, CCISD lunch menu, CCISD news, CCISD athletics, reporting a bully func-

tionality, and more. The application contains twelve touch user interfaces (TUI) and

fourteen development modules. The development team utilized the Appcelerator

Platform and the Titanium SDK as the mobile application development platform.

The CCISD project was developed for both iOS (iPhone and iPad) and Android

(smartphones and tablets) devices.

28

The Museum project is a full body interactive wall with custom design exhibits

for the Corpus Christi Museum of Science and History. It introduces a dynamic

projected content on the museum wall for children through interactive science and

history education. Adobe Flash Professional and GroundFX Flash SDK from Ges-

tureTek were selected as the development platforms. The Museum project was under

prototyping process, which was designed for a special interactive wall projection sys-

tem.

3.4 Experiment Technologies

The use of technology is a driving force for software engineering methodologies.

Especially for agile development, there is a skyrocketing market for different meth-

ods, conditions, and settings. The Knowledge Temple presents a knowledge sharing

technique; however, building knowledge sharing culture within the organization and

beneficial technology solutions for the agile development team are the beginnings of

success. Therefore, any technological tool that works for the Temple was the point of

interest. It was also important to build a balance for the flexible operating manner

for the Temples.

In iCORE, it is a rule to use Bitbucket as a version control system. Bitbucket, a

web-based hosting service for projects, allows public and private project repositories,

team management, code reviews, and source code insight. Therefore, the Temple

development and sharing progress was tracked by the developer submissions, assigned

issues, Wiki, and comments through source code reviews. However, some Temples

also took advantage of Trello for their project management purposes.

For mobile development, the Appcelerator Platform was used. The Titanium

SDK employs only JavaScript language for creating native applications across dif-

29

ferent mobile devices. Using one development language for both iOS and Android

development accelerated the development iterations. Moreover, the modular de-

velopment design of Titanium allowed the team to build an on-the-job knowledge

sharing culture through code modules. Another script-based platform, Adobe Flash

Professional is also used in this experiment.

For documentation purposes, the development team suggested using the JSDoc

documentation tool. It is an inline API documentation tool for Javascript. Therefore,

the Temple members added documentation comments to source code to create Wikis

for knowledge sharing fashion.

To enhance communication and collaboration, the development team facilitated

different video conferencing tools. They made use of Skype and Google Hangouts

occasionally. However, TeamViewer was the widely used tool to establish a flexi-

ble time-sharing. The screen sharing and browser-based presentation features were

indispensable and formed a robust learning environment.

In addition to software products, the team employed Alienware 23-Inch Desk-

tops, 21-Inch iMacs, a projector, and a multi-touch smart board. The desktop

computers were put in practice for development, testing, and knowledge sharing.

The projector was used when Temples met in the brainstorming area at iCORE.

Nonetheless, the most engaging learning tool was the smart board, in the iCORE

conference room, because team members performed knowledge sharing, testing, in-

formative Temple meetings, and customer collaboration with the help of the smart

board. It increased the team motivation and empowered application interaction with

its multi-touch feature.

30

3.5 Experiment Questionnaire

In addition to observational research, a survey was utilized as one of the research

methods because of the high developer turnover in iCORE. Most of the participants

had graduated and started to work in different parts of the United States while the

progress of the experiment was being observed.

Palmieri [48] developed the Knowledge Survey to assess the experiment of using

pair programming as a knowledge management technique. It was essential to use

a survey that had already proved reliable and valid. All the questions were closed-

ended to offer the same mental set while answering the questionnaire. The questions

were kept as similar as possible to perform a similar questionnaire concept to the

proposed solution. The survey was divided into 3 sections:

• Section 1: Knowledge Sources

• Section 2: Knowledge Acquisition, Dissemination, and Maintenance

• Section 3: Demographical Background Information

In Section 1, the questions were designed to investigate the sources utilized instead

of emphasizing knowledge sharing terminology. In addition, Section 1 questioned the

tools and knowledge sharing procedures that the proposed technique should evaluate.

Section 2 investigated the organizational strategy on knowledge sharing. Addition-

ally, Section 2 inquired about the effect of the proposed technique on knowledge

hoarding and employee turnover. Finally, Section 3 had questions to capture the

demographical background information of the team members.

Required sections were modified in order to fulfill the experiment context. In

Section 1 and Section 2, some questions were deleted due to the Knowledge Temple

31

technique progress and experiment resources. In Section 3, the question that directly

related with pair programming was deleted and two questions were added instead:

• How satisfied are you working in a small team with 2 peers?

• How satisfied are you working in a small team with a peer?

The newly added questions investigated the receptiveness of team members, who

worked in a small group of three people, to each other and the method. Participants

were asked to reply through their satisfaction level. Their feedback formed the

fundamental results of our research and the foundational theory for future studies.

32

CHAPTER 4

KNOWLEDGE TEMPLE OVERVIEW

The paradigm shift from knowledge ’management’ to knowledge ’sharing’ has allowed

software development teams to focus on the team members and their culture as much

as their productivity. Maintaining productivity requires sustaining team member mo-

tivation, especially, for agile development teams. In addition, a good organizational

culture transforms team development motivation to a successful knowledge sharing

environment.

4.1 Evolution Knowledge Temple Practice

In order to create a knowledge sharing culture, pair programming was implemented

with a small agile development team at iCORE. Three different types of progress

was observed in every iteration cycle:

• Beginning of the iteration: low productivity and high knowledge sharing

• Middle of the iteration: medium productivity and low knowledge sharing

• Near the end of the iteration: high productivity and very low knowledge sharing

There was an inverse relationship between production level and knowledge sharing

level. In every sprint, because of tight project deadlines and high turnover rate, high

productivity and at least medium knowledge sharing was required. This requirement

increased the responsibility burden of the expert developers. Both application devel-

opment and knowledge exchange were fulfilled by the agency of expert developers,

and it was the cause of their responsibility burden. To accomplish high levels of

33

knowledge sharing, expert developers were paired with novice developers. It was the

only way of growing the agile team because of the iCORE’s developer resources.

The outcome of applying pair programming was not successful. It was either

inadequate productivity and good knowledge exchange or good productivity and

inadequate knowledge exchange. The novice programmers made lots of complaints

about expert developers’ availability. On the contrary, expert developers reported

novice developers’ motivation level as ’ground-level intentness.’

Even if pair programming was not the optimum choice, a natural apprentice-

ship instance between expert and novice developers occurred. The cognitive appren-

ticeship theory proceeded through expert mentoring rather than pair programming.

However, it was not enough for carrying out the novice developers’ contribution and

sharing.

A middle-man was utilized between the expert and novice developers, creating

the Knowledge Temple. The middle-man should:

• free the expert developer to increase the productivity,

• support the novice developer to stimulate learning curve,

• contribute toward the development progress, and

• hold up the development and knowledge sharing structure.

Consequently, small teams of three were formed and named as ’Temple.’ Every

Temple had a mandatory expert developer and two apprentices, entitled Temple

Master and Temple Apprentices.

34

4.2 Knowledge Temple Technique

Having two apprentices under the influence of a lead created a core team culture.

Cognitive apprenticeship theory is the dominant characteristic of the Knowledge

Temple, as it is in human nature. The leadership of the Temple Master is as im-

portant as the will and autonomy of Temple Apprentices. However, the Temple

Master has a high responsibility to sustain the Knowledge Temple mechanism. As

shown in Figure 2, the Knowledge Temple contains three different zones addressing

development and knowledge sharing.

Figure 2. Knowledge Temple Technique.

35

Zone 1 is the Temple phase where the Temple Master and Apprentices perform

solo programming. Zone 1 is extremely important for productivity when there is tight

deadlines. The Temple Master should reserve development time, particularly when

the development contribution of the Temple Apprentices is low. Moreover, project

management meetings can be performed between the Temple Master and project

manager as a zone 1 activity. While the Temple Master is in zone 1, the Temple

Apprentices can stay in the phase of zone 1 or they can call for zone 2 between

them. Being in the phase of zone 1 for the Temple Apprentices is essential both for

development and knowledge building. The Temple Master has the privilege to assign

duties, which can be a contribution for productivity, hands-on learning tasks, or a

knowledge repository creation.

Zone 2 is the phase where the Temple works as pairs. There are two ways of

pairing: Master - Apprentice or Apprentice - Apprentice. The Master - Apprentice

pairing allows higher productivity than knowledge sharing. On the other hand, the

Apprentice - Apprentice pairing enables knowledge sharing more than productivity.

In zone 2, pairs can perform on-the-job-training, pair programming, parallel peer

programming, and knowledge repository creation. In addition, the nature of the

Knowledge Temple technique facilitates pair rotation. Pair rotation can be performed

in the Temple and among the Temples because an apprentice for Temple 1 can be an

apprentice for Temple 2. For this reason, knowledge spreads in the agile development

team like a social network.

In zone 3, both Temple Master and Apprentices come together and carry out

activities as a team. Zone 3 is the core of the Knowledge Temple technique. It is the

phase that lowers Temple member production, but highly increases the knowledge

sharing and team building activities. The Temple Master creates the meeting agenda

36

Figure 3. A Zone 3 Meeting.

for the zone 3 phase through the progress of development. Temple members may

engage in brainstorming, on-the-job-training, formal training, code revision, code in-

spection, Q&A sessions, or enhancing the communication between Temple members.

Figure 3 is an example of a Q&A session for a zone 3 meeting. The Temple forms

a team structure in zone 3 to overcome the sociological issues of knowledge sharing.

Furthermore, the project managers can be a part of the zone 3 meetings in order to

monitor the Temple efficiency.

37

4.3 Building the Temple

The Temple initiation is an essential period in the life of the Knowledge Temple.

Assigning the Temple Master among the agile development team is a simple but not

easy task. It is simple because the selection process is related to the project and

required development talents. Therefore, the number of available Temple Masters

decreases through their required development experience. It is not easy because the

Temple Master should have leadership and tutoring abilities to enhance knowledge

sharing and team management. However, the team environment of Temples help the

Temple Master for both managing the team and maintain the development quality.

After deciding the Temple Master, it is time to select the apprentices. The apprentice

selection depends on the project requirements, which may demand:

• High productivity,

• A balance between productivity and knowledge sharing, or

• High knowledge sharing.

However, it is essential to keep the knowledge sharing level no less than medium

because the high turnover rate is a concerning issue for all small agile development

teams. Furthermore, a master may serve as an apprentice depending on the project

requirements and expert skills.

The Temple, containing three expert team members, empowers high productiv-

ity. In this setting, the Temple Apprentices take more responsibility for application

development. At the same time, they obtain more information about the project,

the status of the project, and the development method of the project. They adapt

faster for both the development and knowledge sharing phases. In addition, using

three expert team members is a good way of growing new Temple Masters.

38

To create a balance between productivity and knowledge sharing, the Temple

should contain one expert, one average, and one novice level developers. This is the

best setting for the Knowledge Temple technique because it completely fulfills the

middle-man approach. The Temple apprentice, who has an average level of expe-

rience, supports the other Temple apprentice for both development and knowledge

sharing needs. Moreover, an average apprentice contributes to application develop-

ment much more than a novice apprentice, which makes The Temple Master’s job

easier. At the same time, he learns from the Temple Master quicker than a novice

apprentice, and shares the knowledge with the novice apprentice efficiently.

An expert and two novice developers form the Temple for high knowledge shar-

ing. Two Temple Apprentices, who have almost the same level of experience, enables

a strong learning environment. Even if their contribution to development is minor

compared to other Temple alternatives, the Temple Apprentices have a strong moti-

vation to exchange knowledge. This ambitious impulse provides a big potential for

future projects. In addition, two novice Temple Apprentices may affect the Temple

Master’s productivity. However, the Temple develops more innovative approaches

due to an increased number of Temple meetings.

4.4 Knowledge Temple vs. Jedi Temple

The fun factor of agile development is also indispensable. It encourages team building

and team unity. Star WarsTM was selected as the theme of the Knowledge Temple

technique (Figure 4).

There are two reasons behind the Star WarsTM theme. First, Star WarsTM is

a very popular movie among people in science and technology [12, 34, 52]. There-

fore, introducing a new technique with a well-known and beloved theme allows an

39

Figure 4. Knowledge Temple vs. Jedi Temple.

immediate adaption. Second, the nature of the selected Star WarsTM characters are

self-descriptive for both the Temple roles and the Knowledge Temple mechanism.

The Yoda character in the Star WarsTM universe is selected as the Temple

Master in the Knowledge Temple technique, due to his leadership, mentorship, and

high talents. The Obi-Wan and the Anakin characters are the Temple Apprentices in

the proposed technique because of their cooperative and collaborative efforts in the

Star WarsTM universe. Through the selected characters, the agile development team

conceptualizes the roles and the role hierarchy in the Knowledge Temple technique.

Moreover, the interaction between the selected Star WarsTM characters describes the

40

the Knowledge Temple mechanism. Yoda, Obi-Wan, and Anakin may accomplish

quests as a tightly-coupled team, loosely-coupled teams, or solo heroes. They have

their individual and team responsibilities and report to each other through their

hierarchy. They are always determined in their quests, eager to learn the power of

the Force, and respectful to each other. As a result, the ambiance of the Jedi Temple

in the Star WarsTM universe is the ideal scene for the Knowledge Temple technique.

41

CHAPTER 5

KNOWLEDGE TEMPLE EXPERIMENT

Observing the effects of the proposed technique in a small agile development team

was crucial. The Knowledge Temple experiment was performed on iCORE agile

development team members. However, the team members were not informed about

the experiment. The proposed technique was introduced as iCORE’s development

and knowledge sharing culture. Therefore, iCORE members did not feel the pressure

for experiment results. This single-blind process allowed us to collect genuine and

autonomous behavior. In addition, the Star WarsTM theme was put into practice for

both describing the technique and augmenting the eagerness of the team members.

5.1 The Environment

iCORE was an enthusiastic experiment environment through its:

• team members’ cultural and experience diversity,

• projects’ difficulty level and variety, and

• availability of technological tools.

However, iCORE offered a high employee turnover rate and spontaneous knowledge

hoarding between the team members. Although the total number of participants

was fifteen, the active development members decreased or increased gradually due to

students’s graduation. iCORE lost nine team members during the experiment, which

occurred in the Fall 2012, Spring 2013, and Summer 2013 semesters. This situation

created a great opportunity for evaluating the Knowledge Temple technique through

the knowledge sharing progress. However, it was also a great challenge for both

42

experiment management and development continuity. Moreover, iCORE behaved as

a real workplace culture with students functioning in a competitive job environment.

As a result, a more preservative behavior with knowledge sharing appeared through

the experiment.

5.2 Projects and The Temples

The Knowledge Temple technique applied to the SOAR SI version 0, SOAR SI version

1, SOAR SI version 2, CCISD, and Museum projects. Every project’s progress and

development results contributed to the evolution of the proposed technique. The

Temple# Temple Master Temple Apprentice Temple Apprentice

1 TMb2 TMb1 TMb11

2 TMb13 TMb3 TMb6

3 TMb12 TMb9 TMb10

4 TMb6 TMb13 TMb14

5 TMb12 TMb10 TMb8

6 TMb2 TMb13 TMb3

7 TMb9 TMb13 TMb6

8 TMb9 TMb13 TMb3

9 TMb12 TMb14 TMb15

10 TMb2 TMb3 TMb15

Table I. Temples of Knowledge Temple Experiment.

Knowledge Temple life cycle was divided into three stages: alpha, beta, and release.

The alpha stage covered the growth, the beta stage included the maturing, and the

43

release stage contained the diversification phases of the Knowledge Temple technique.

As shown in Table I, every Temple has three TMbs appointed as Temple Master and

two Temple Apprentices. Ten Temples was formed during the Knowledge Temple

experiment.

In addition, the development team performed pair programming with three dif-

ferent pairs in the early phases of iCORE’s knowledge sharing culture. However,

the need for more efficient alternatives oriented the research towards creating a new

hybrid knowledge sharing technique.

5.3 Alpha Stage

At the beginning of the alpha stage of the Knowledge Temple experiment, the team

experienced the pair programming dilemma due to sociologic and implemental man-

ners. For SOAR SI version 0, the team applied pair programming with two different

pairs. The development process was divided into two parts: method and database

development. Pair 1 was in charge of the method development part and Pair 2 was

in charge of database development. As shown in Figure 5, TMb4 and TMb7 were the

members of Pair 1, and TMb5 and TMb6 formed Pair 2. Due to agile development

team resources, an expert developer was paired with a novice one.

At the beginning of the development cycles, pairs did not face any difficulty

in developing and sharing knowledge. The team recognized that the development

pace was not sufficient; however, they were regardful about the knowledge sharing

progress. Meanwhile, the client was excited about iCORE’s client collaboration

process; thus, they were expecting an incremental outcome from the development

team. Although the development cycles were not changed, the productivity decreased

through method development, which required more experience. In addition, TMb7

44

Figure 5. The Pairs of SOAR SI Version 0.

graduated, and consequently, Pair 1 was formed as TMb4 and TMb8. After the

necessary change, Pair 1 suffered through the knowledge sharing process. Along with

the tight deadlines, expert peers started to focus on development more than sharing.

They stopped applying pair programming because the level difference did not allow

them to continue developing as pairs. On the other hand, novice peers complained

that expert peers were not available and did not associate with the novice peers.

At the end of Fall 2012, one of the lead developers of the iCORE agile develop-

ment team, TMb4, graduated. The assumption was that the other member of Pair

1 would step up and continue working on SOAR SI version 0. However, TMb8 was

not ready, and the team failed development sustainability. The experiment benefit

45

Figure 6. The SOAR SI Version 1 Knowledge Temple Meeting with All Temples.

extracted from SOAR SI version 0 was the cognitive apprentice behavior of our agile

developers. Even if pairs had tried to apply pair programming, expert developers

treated novice developers as apprentices because of the experience difference.

At the beginning of Spring 2013, the proposed technique, the Knowledge Tem-

ple, was instigated in iCORE. As the result of the previous semester’s failure and

insufficient developer talents, the application environment was changed to Appcel-

erator for SOAR SI version 1. The Knowledge Temple technique and appropriate

tools to iCORE’s agile development team was introduced through a meeting (Fig-

ure 6). All the Temples utilized a version control system, Bitbucket, to enhance the

collaborative and cooperative work.

46

At the end of the meeting, the assigned three Temples performed project-wise

and Temple-wise meetings. The Temple Masters of Temple 1, Temple 2 and Temple

3 determined the schedule for both development and knowledge sharing (Figure 7).

Figure 7. The SOAR SI Version 1 Temples.

Every Temple created its own internal schedule and development style sepa-

rately; however, all Temples obeyed the project deadlines. The progress of the Tem-

ples was followed through consecutive meetings. The Temples met the development

demands, but the knowledge sharing progress also needed to be examined. There-

fore, Temple 4 and Temple 5 were altered from Temple 2 and Temple 3. The new

developers, who joined Temple 4 and Temple 5, did not slow down the productivity

of the project. However, more Zone 3 and Zone 2 meetings were reported by Tem-

47

ple Apprentices through the production process. Moreover, the Temple Masters of

Temple 4 and Temple 5 denoted more Zone 1 study for the production while the

Temple Apprentices performed Zone 2 meetings. Consequently, Temple 1, Temple

4, and Temple 5 finished the application development by the deadlines.

5.4 Beta Stage

The development sustainability was tested through the beta stage of the Knowledge

Temple experiment. After the project development of SOAR SI version 1, Temple 6

was formed for the application distribution and Temple 7 was formed for SOAR SI

version 2. All the Temple members of Temple 6 and Temple 7 were former Temple

Figure 8. A SOAR SI Version 2 Temple Meeting.

48

members of SOAR SI version 1. Thus, there was a chance to observe not only

productivity rates but also knowledge transfer between the Temple members.

Temple 6 was responsible for both iOS and Android distribution. They created

the required accounts and followed the distribution progress. SOAR SI version 1

was published successfully by Temple 6 in the Summer semester of 2013. Moreover,

Temple 6 was tasked to fix the reported issues after application distribution. They

also worked coordinately with Temple 7 for SOAR SI version 2. As shown in Figure 8,

Temple 7 started SOAR SI version 2 development simultaneously. They designed

the new features for the SOAR SI application. One of the Temple members also

graduated; thus, Temple 8 was assembled. Again, the new member of Temple 8

Figure 9. A CCISD Project Temple Meeting.

49

was selected from the development members of SOAR SI version 1. Therefore, the

team took advantage of former experienced members by means of productivity, and

the consequences of knowledge lost through employee turnover was hypothesized to

decrease.

5.5 Release Stage

In the release stage, the shared knowledge was put into practice for new projects.

Temple 9 was created for the CCISD project (Figure 9). The Temple Master and one

of the Temple Apprentices experienced the Knowledge Temple technique in SOAR

SI version 1. The other Temple Apprentice was new to the mechanism of the Knowl-

Figure 10. A CCISD Project Temple Meeting through Team Viewer.

50

edge Temple. The technique was not introduced to the newcomer. Experienced

members of Temple 9 welcomed him, and they naturally started the development

process. The team also utilized Bitbucket for the CCISD project. Bitbucket helped

knowledge sharing studies through code insight and code review. Moreover, Temple

9 followed the development progress in Bitbucket. The CCISD Temple Apprentices

were more prepared than the SOAR SI Temple Apprentices because the CCISD Tem-

ple Apprentices made use of the SOAR SI outcomes, which were stored in Bitbucket,

for both development and knowledge sharing.

Figure 11. A Client Collaboration Meeting.

The Knowledge Temple technique allowed Temple 9 to continue their team stud-

ies in a distributed environment. For the Summer 2013 semester, the Temple Master

51

of Temple 9 had to leave Corpus Christi for another job. However, the Temple stayed

together because of the flexible behavior of the proposed technique. Temple 9 con-

tinued their development both in the Zone 2 and Zone 1 phases of the Knowledge

Temple technique. As shown in Figure 10, they performed Zone 3 meetings through

Team Viewer. Hence, a knowledge sharing environment was established through

collaborative development. The Temple 9 Apprentices also performed peer parallel

programming. They worked on the same subject simultaneously to create, capture,

and learn the tacit knowledge of the Temple Master.

Figure 12. A Museum Project Temple Meeting.

In addition, Temple 9 arranged client collaboration meetings. All the Temple

members attended client meetings (Figure 11). The Temple Master was the one

52

who led the informative, project status update, and future plan conversations. At

the same time, the Temple Apprentices worked as note takers, experiencing meeting

customs, and each of them had the chance to meet with client for future necessities.

Figure 13. Museum Project Temple.

The initiative of using the Knowledge Temple technique rather than the ap-

plication development fashion continued also in Temple 10 studies. Temple 10 was

responsible for the Museum project, for which there was not a former knowledge

repository. Therefore, they started Zone 3 and Zone 2 sessions for knowledge shar-

ing and project design workshops(Figure 12). They utilized the proposed technique

not only as software development training but also in other job requirements of the

project. For instance, Temple 10 utilized the Knowledge Temple technique for as-

53

sembling the portable interactive projection system (Figure 13). As a result, the

Temple members became a part of every aspect of the project.

54

CHAPTER 6

EXPERIMENT RESULTS

Evaluating empirical software engineering research was a complicated process. To ac-

quire reliable results, the contribution of Temple members was analyzed through the

Bitbucket platform and a questionnaire was administered after the Knowledge Tem-

ple experiment. Moreover, observational experiences from applying the Knowledge

Temple technique in a small agile development team was shared. The Knowledge

Temple questionnaire was a variation of a questionnaire by Palmieri [48], which was

a main instrument used to evaluate the effect of pair programming as a knowledge

management approach. Some questions were altered to best fit the proposed Knowl-

edge Temple technique. Moreover, preliminary analysis was performed on the data

to ensure integrity.

6.1 Team Member Contribution

Bitbucket is a web-based hosting service, which offers revision control, code insight

and code review. Therefore, Bitbucket was utilized for development, knowledge shar-

ing, and evaluating the development progress. All the team members had their indi-

vidual accounts on the Bitbucket system. Through this account, they accessed the

code of the project and contributed to the project by module development. When-

ever a team member accomplished a working copy of the module, s/he submitted

this version through the version control system. As shown in Table II, the number of

submissions from Temple Masters and Temple Apprentices was evaluated. In addi-

tion, the production modules were designed with as comparable size and complexity

as possible. This was largely feasible due to the nature and type of the projects that

55

the experiment was conducted on.

For SOAR SI version 1, 256 submissions were recorded in Bitbucket. The

three Temple Masters completed 141 submissions and the eight Temple Appren-

tices achieved 115 submissions. As a result, the Temple Masters developed 55% of

SOAR SI version 1. It was expected that the three Temple Masters lead productiv-

ity; however, the contribution from the eight Temple Apprentices was higher than

expected. The reason for this was the on-the-job learning culture of the Knowledge

Temple technique.

Project Name Total Submissions Temple Masters Temple Apprentices

SOAR SI Version 1 256 141 (55%) 115 (45%)

CCISD 115 65 (56.5%) 50 (43.5%)

Table II. Submission Results.

In the CCISD Project, 115 submissions have been archived at the time of this

research. The CCISD project is still under development. The Temple Master com-

pleted 65 submissions and the two Temple Apprentices achieved 50 submissions. Con-

sequently, the productivity contribution of the Temple Master was higher (56.5%)

than the two Temple Apprentices (43.5%) as expected. However, this result estab-

lished the fact that the Temple was exchanging and building knowledge through the

Knowledge Temple technique process while they were developing software. More-

over, the Temple Master acknowledged that the Temple Apprentices were able to

apply the gained knowledge from the former project into the CCISD project.

56

(a) The Internet (b) Databases or Groupwares

(c) Co-workers

Figure 14. Knowledge Sharing Sources.

6.2 Questionnaire Results

Fifteen responses for the Knowledge Temple Questionnaire were received, which was

the total number of experiment participants. Through the single-blind experiment

approach, the questions could not be asked directly regarding the Knowledge Temple

technique. The first section of the survey investigated the participants’ knowledge

source penetration for knowledge building behavior (Figure 14). Internal publica-

tions, design documents, external publications, the Internet, co-workers, classroom

or online courses, and databases or groupwares as a knowledge source were the foci.

The participants indicated almost equal usage of internal publications (77%), de-

sign documents (73%), external publications (66%), and classroom or online courses

(74%) for knowledge sharing and knowledge building purposes. However, the Inter-

net (100%), databases or groupwares (87%), and co-workers (84%) were voted as the

57

(a) Creating Knowledge through People and
Technological Resources

(b) Finding, Organizing, and Documenting
the Knowledge

(c) Acquiring Knowledge from Outside
Sources

(d) Making Knowledge Accessible for Any-
time, Anywhere

Figure 15. Knowledge Creation and Accessibility.

most widely used sources. Therefore, utilizing the Internet and web-based knowl-

edge sharing tools, such as Bitbucket, Dropbox, Google Drive, TeamViewer, Skype,

or Google Hangouts, was a very important research perspective for the Knowledge

Temple experiment. Moreover, combining the power of the web with the competence

of the participants’ co-workers created an influential knowledge sharing culture. The

participants also recommended workshops and hands-on studies for the open-ended

other beneficial knowledge sources question.

In Section 2, the survey targeted the participants’ knowledge sharing determi-

nation and knowledge lost perspective through the knowledge acquisition, dissemi-

nation, and maintenance processes.

As shown in Figure 15, most of the participants (73%) thought iCORE’s agile

development team was good at creating new knowledge through its people and tech-

58

(a) Improving the Quality and Productivity
due to Shared Knowledge

(b) Hoarding Knowledge because of Com-
petitive Advantage Over Team Members

(c) Willing to Share the Knowledge Among
the Team Members

(d) Rewarding based on Individual Techni-
cal Accomplishments vs. Team Success

Figure 16. Knowledge Hoarding Effects.

nical resources. However, they (47%) argued that the team was not adequate by

means of finding, organizing, and documenting the knowledge possessed through the

Knowledge Temple technique. Although 53% of the participants were satisfied with

the knowledge creation process, the percentage was expected to be closer to 80%;

therefore this is an area that requires more research. The analysis supports both

effective knowledge acquisition from outside sources and effective knowledge acces-

sibility. Utilizing web-based repositories and web-based communication allowed a

continually approachable environment.

Testing the effects of the Knowledge Temple technique on knowledge hoard-

ing problems was essential considering influential knowledge sharing. As shown in

Figure 16, the impact of knowledge sharing among the iCORE team members was

highly acknowledged. Analysis of development quality and productivity assessment

59

(a) Compensating the Knowledge Loss due
to Team Member Turnover

(b) Compensating the Knowledge Loss due
to Senior Technical Member Turnover

Figure 17. Knowledge Loss Effects.

question showed that 93% of the survey participants improved their development

abilities due to knowledge sharing. Although participants (79%) stressed that their

unique knowledge enhanced their competitive advantage over their peers, 66% of

the participants gladly agreed to share knowledge with the agile development team.

Moreover, the flexible productivity and knowledge sharing culture of the Knowledge

Temple technique created an extraordinary workplace where teams and individuals

worked simultaneously. The results of the question about the performance rewarding

process showed that 50% of the participants determined team success and individual

accomplishment are equally effective. Counterbalancing this, an equal amount of

participants argued the case considering ”primarily individual accomplishments, but

also some team success” (21%) or ”primarily team success, but also some individual

accomplishments” (21%).

Experiencing mandatory employee turnover was a challenge for the Knowledge

Temple experiment; however, the experiment participants presented courage and

confidence through compensation of knowledge loss due to team member turnover

(Figure 17). According to the results, team members can compensate for knowledge

loss of less than a month (46%) or between one month and three months (33%).

Moreover, the effect of losing an expert member did not change the trust of residual

60

(a) Enjoying the Current Position (b) Collaborating with Team Members

(c) Working in a Small Team with 2 Peers (d) Working in a Small Team with a Peer

Figure 18. Demographical Workplace Information.

agile development team members. The team members (47%) admitted to covering

the knowledge loss due to expert member turnover.

In Section 3, the sociological factors in the workplace were evaluated. The par-

ticipants (87%), who performed the Knowledge Temple technique, were satisfied with

their working environment. As shown in Figure 18, 66% of the participants presented

collaborative work between 10% and 50% of their daily working hours. Moreover,

the agile development team members felt confident in a working environment both

with a peer (93%) and with 2 peers (86%).

6.3 Observational Results

Experiencing the drawbacks of pair programming changed the development perspec-

tive. The programming level difference of the agile development team members did

not allow for the application of pair programming successfully. However, the power

61

of pair programming was not undervalued. The development team members required

a flexible working environment where they could accomplish both application devel-

opment and knowledge sharing. The iCORE environment empowered the Knowledge

Temple technique with its nature. Having different levels of programmers facilitated

a working environment as a team of three. Therefore, the expert developer could

continue development and share knowledge. At the same time, the average and

novice developers could build knowledge and contribute to application development.

Having three developers in a team, influenced by the expert developer, allowed much

more adaptable and responsive team work.

In the Knowledge Temple experiment, one of the most important decisions was

selecting the Temple Master. The Temple Master was responsible for the Temple and

controlled the Temple through guidance. Every Temple had its own rules and way of

accomplishing requested job duties. However, the Temple Master was the one who

ensured the productivity of the project and knowledge sharing progress among the

team. This management allowed the Temple Apprentices to contribute more while

they were learning through their own efforts, pair studies, or Temple unification.

The selected theme, Star WarsTM, notably increased the motivation of the Tem-

ple Apprentices. The idea of being Yoda was a big impulse compared to being a

leader or a master for a team. It is worth noting that Star WarsTM may not always

be the best theme for any development environment. Therefore, another theme could

be selected if required. However, it is important to choose a theme that can con-

ceptualize the hierarchy, the mechanism, and the communication of the Knowledge

Temple technique.

The unique environment of iCORE offered a high employee turnover through

graduation of the team members; therefore, it was difficult to observe the effects

62

of the Knowledge Temple technique for employee turnover. However, the graduated

members reported that they felt the loss of the team working environment at iCORE.

Another challenge in iCORE was the tight deadlines of the agile projects. There-

fore, the Temple of three experts or the Temple of one expert, one average, and one

novice were created for most of the projects. The Temple of three experts hastened

the development speed of the projects and assisted Temple Master growth for dif-

ferent Temples. On the other hand, the Temple of one expert, one average, and one

novice enhanced the productivity and knowledge sharing simultaneously. It was also

the best fit for the varied levels of iCORE developers. The Temple of one expert and

two novices was also utilized in the Knowledge Temple experiment. This Temple

style enabled the knowledge sharing and active learning for the novice developers;

however, productivity decrease was reported by Temple Masters. Therefore, build-

ing the Temple was an essential part of the Knowledge Temple technique requiring a

good knowledge level observation among the development team members. Moreover,

the project requirements influenced the Temple building process through appropriate

developer selection.

The Knowledge Temple technique built a working culture for iCORE. The hy-

brid setting of the Knowledge Temple technique streamlined the agile development

team members by the adaptation process. The amenity of the Knowledge Tem-

ple mechanism simplified the knowledge sharing process. Traditionally, newcomers

hoarded the knowledge that they possessed through application development; how-

ever, the iCORE culture oriented all the team members to team success rather than

individual accomplishments.

Finally, small agile development teams require internal growth from their de-

velopers in the areas of development continuity and quality, due to the difficulty in

63

hiring external competent developers. The Knowledge Temple technique facilitates

the team to share and build knowledge between team members. Having three differ-

ent zones to communicate, contemplate, and develop escalates the growth process of

successful developers for small agile development teams.

64

CHAPTER 7

CONCLUSION AND FUTURE RESEARCH

Despite the productive, flexible, and adaptive nature of agile development, it may

suffer from knowledge sharing limitations. This includes knowledge loss due to re-

tirement or high turnover rates of skilled professionals and knowledge hoarding due

to interpersonal or organizational climate. Thus, the internal growth of developers

is highly desirable for a small development team to maintain production quality.

The influence of pair programming for software development and knowledge sharing

is respected. However, this technique is confronted by time-sharing issues, due to

attempting to perform a number of tasks concurrently; motivational loss issues, due

to pair level difference; and focus shift to separated tasks instead of a common goal,

due to tight deadlines.

The Knowledge Temple was proposed as a knowledge sharing technique for small

agile software development teams that supports both software development produc-

tivity and knowledge exchange between team members. The Knowledge Temple is a

cognitive apprenticeship model, where every Temple has three members: one Temple

Master and two Temple Apprentices. There are three zones where Temple members

can perform software development and knowledge sharing methods, such as on-the-

job-training, solo programming, pair programming, parallel peer programming, pair

rotation, and knowledge repository creation.

A single-blind experiment was performed with The Innovation in Computing

Research (iCORE) at Texas A&M University-Corpus Christi. Almost all of the

development team members were part-time working university students either un-

dergraduate or graduate level. The Knowledge Temple technique was administered

65

in three different projects with ten varied Temples. To evaluate this empirical the-

sis study, Temple member’s development contributions, a Knowledge Temple ques-

tionnaire, and observational outcomes were utilized. The results of the Knowledge

Temple experiment illustrated:

• development priority for Temple Masters,

• knowledge sharing availability for Temple Masters,

• knowledge sharing priority for Temple Apprentices,

• development support opportunity for Temple Apprentices,

• flexible scheduling for both development and knowledge sharing processes,

• inspirational small team fashion, and

• motivation continuity through Temple member availability.

Consequently, team member contribution, questionnaire results, and observa-

tional results yielded significant evidence that the Knowledge Temple technique for

small agile development teams is an effective means of software development and

knowledge sharing simultaneously. Moreover, the iCORE team members noted that

they enjoyed the experience and declared that their technical skills had been in-

creased. However, this empirical study alone is insufficient to validate the reported

benefits of this knowledge sharing and development style. The Knowledge Temple

technique should be performed as a teaching technique in academia to evaluate the

influence on future generations. In addition, as mentioned previously, a higher num-

ber of participants were expected to be satisfied with the knowledge creation process;

however, only 53% were satisfied with this process. Therefore, this difference needs

66

further exploration. Finally, examining the proposed technique in the industry with

full-time workers is another way to comprehend the collaborative and cooperative

effects of the Knowledge Temple technique.

67

REFERENCES

[1] Abbattista, F., Calefato, F., Gendarmi, D., and Lanubile, F. In-

corporating social software into distributed agile development environments.

In Automated Software Engineering - Workshops, 2008. ASE Workshops 2008.

23rd IEEE/ACM International Conference on (2008), pp. 46–51.

[2] Abdullah, R., and Talib, A. Knowledge management system model in

enhancing knowledge facilitation of software process improvement for software

house organization. In Information Retrieval Knowledge Management (CAMP),

2012 International Conference on (2012), pp. 60–63.

[3] Akbar, R., and Hassan, M. A collaborative-interaction model of software

project development: An extension to agile based methodologies. In Information

Technology (ITSim), 2010 International Symposium in (2010), vol. 1, pp. 1–6.

[4] Allison, I. Organizational factors shaping software process improvement in

small-medium sized software teams: A multi-case analysis. In Quality of In-

formation and Communications Technology (QUATIC), 2010 Seventh Interna-

tional Conference on the (2010), pp. 418–423.

[5] Amaral, L., and Faria, J. A gap analysis methodology for the team software

process. In Quality of Information and Communications Technology (QUATIC),

2010 Seventh International Conference on the (2010), pp. 424–429.

[6] Amescua, A., Bermon, L., Garcia, J., and Sanchez-Segura, M.-I.

Knowledge repository to improve agile development processes learning. Soft-

ware, IET 4, 6 (2010), 434–444.

68

[7] Amin, A., Basri, S., Hassan, M., and Rehman, M. Software engineering

occupational stress and knowledge sharing in the context of global software

development. In National Postgraduate Conference (NPC), 2011 (2011), pp. 1–

4.

[8] Bergersen, G. R., and Sjoberg, D. I. K. Evaluating methods and tech-

nologies in software engineering with respect to developers’ skill level. In Eval-

uation Assessment in Software Engineering (EASE 2012), 16th International

Conference on (2012), pp. 101–110.

[9] Bessam, A., Kimour, M.-T., and Melit, A. Separating users’ views in a

development process for agile methods. In Dependability of Computer Systems,

2009. DepCos-RELCOMEX ’09. Fourth International Conference on (2009),

pp. 61–68.

[10] Biao-wen, L. The analysis of obstacles and solutions for software enterprises

to implement knowledge management. In Information Management and En-

gineering (ICIME), 2010 The 2nd IEEE International Conference on (2010),

pp. 211–214.

[11] Boehm, B., and Turner, R. People factors in software management: lessons

from comparing agile and plan-driven methods. Crosstalk-The Journal of De-

fense Software Engineering,(Dec (2003).

[12] Briggs, J. ”star wars”, model making, and cultural critique: A case for film

study in art classrooms. Art Education 62, 5 (2009), 39 – 45.

[13] Chatti, M., Schroeder, U., and Jarke, M. Laan: Convergence of knowl-

edge management and technology-enhanced learning. Learning Technologies,

69

IEEE Transactions on 5, 2 (2012), 177–189.

[14] Chau, T., Maurer, F., and Melnik, G. Knowledge sharing: agile methods

vs. tayloristic methods. In Enabling Technologies: Infrastructure for Collabo-

rative Enterprises, 2003. WET ICE 2003. Proceedings. Twelfth IEEE Interna-

tional Workshops on (2003), pp. 302–307.

[15] Chowdhury, A., and Huda, M. Comparison between adaptive software

development and feature driven development. In Computer Science and Net-

work Technology (ICCSNT), 2011 International Conference on (2011), vol. 1,

pp. 363–367.

[16] Chua, J. L. Y., Eze, U., and Goh, G. G. G. Knowledge sharing and

total quality management: A conceptual framework. In Industrial Engineering

and Engineering Management (IEEM), 2010 IEEE International Conference on

(2010), pp. 1107–1111.

[17] Crawford, B., Castro, C., and Monfroy, E. Knowledge management

in different software development approaches. In Advances in Information Sys-

tems, T. Yakhno and E. Neuhold, Eds., vol. 4243 of Lecture Notes in Computer

Science. Springer Berlin Heidelberg, 2006, pp. 304–313.

[18] Devedzic, V., and Milenkovic, S. Teaching agile software development: A

case study. Education, IEEE Transactions on 54, 2 (2011), 273–278.

[19] Dorairaj, S., Noble, J., and Malik, P. Knowledge management in

distributed agile software development. In Agile Conference (AGILE), 2012

(2012), pp. 64–73.

70

[20] Duka, D. Agile experiences in software development. In MIPRO, 2012 Pro-

ceedings of the 35th International Convention (2012), pp. 692–697.

[21] Dyba, T., and Dingsoyr, T. What do we know about agile software devel-

opment? Software, IEEE 26, 5 (2009), 6–9.

[22] Fowler, M., and Highsmith, J. The Agile Manifesto. Software Develop-

ment Magazine 9(8) (Aug. 2001). http://agilemanifesto.org.

[23] Ganis, M., Maximilien, E., and Rivera, T. A brief report on working

smarter with agile software development. IBM Journal of Research and Devel-

opment 54, 4 (2010), 1–10.

[24] Giri, M., and Dewangan, M. A study of pair programming in the context

of facilitating the team building. In Advanced Computing Communication Tech-

nologies (ACCT), 2012 Second International Conference on (2012), pp. 20–23.

[25] Hazeyama, A., Ogaxne, Y., and Miura, M. Cognitive apprenticeship-

based object-oriented software engineering education support environment. In

Advanced Learning Technologies, 2005. ICALT 2005. Fifth IEEE International

Conference on (2005), pp. 243–244.

[26] Honig, W. Teaching successful ”real-world” software engineering to the ”net”

generation: Process and quality win! In Software Engineering Education and

Training, 2008. CSEET ’08. IEEE 21st Conference on (2008), pp. 25–32.

[27] Huang, M., and Sun, B. Research on modeling and implementating of knowl-

edge management system in virture enterprise. In Machine Learning and Cy-

bernetics, 2009 International Conference on (2009), vol. 3, pp. 1424–1428.

71

[28] Hui, A., and Jing, Z. Evaluation on the cost and performance of knowledge

management. In Intelligent Computation Technology and Automation, 2009.

ICICTA ’09. Second International Conference on (2009), vol. 4, pp. 201–205.

[29] ISO/IEC/IEEE. Systems and software engineering – developing user docu-

mentation in an agile environment. ISO/IEC/IEEE 26515 First edition 2011-

12-01; Corrected version 2012-03-15 (2012), 1–36.

[30] Izquierdo-Cortazar, D., Robles, G., Ortega, F., and Gonzalez-

Barahona, J. Using software archaeology to measure knowledge loss in soft-

ware projects due to developer turnover. In System Sciences, 2009. HICSS ’09.

42nd Hawaii International Conference on (2009), pp. 1–10.

[31] Jabar, M., Cheah, C.-Y., and Sidi, F. The effect of organizational justice

and social interdependence on knowledge sharing. In Information Retrieval

Knowledge Management (CAMP), 2012 International Conference on (2012),

pp. 64–68.

[32] Jiang, H., Liu, C., and Cui, Z. Research on knowledge management system

in enterprise. In Computational Intelligence and Software Engineering, 2009.

CiSE 2009. International Conference on (2009), pp. 1–4.

[33] Jones, K., Kristof, D., Jenkins, L., Ramsey, J., Patrick, D., Burn-

ham, S., and Turner, I. Collaborative technologies: Cognitive apprentice-

ship, training, and education. In Collaborative Technologies and Systems, 2008.

CTS 2008. International Symposium on (2008), pp. 452–459.

[34] Kapell, M., and Lawrence, J. Finding the Force in the Star Wars Fran-

chise: Fans, Merchandise, and Critics. Popular culture and everyday life. Peter

72

Lang Pub Incorporated, 2006.

[35] Kavitha, R. K., and Irfan Ahmed, M. A knowledge management frame-

work for agile software development teams. In Process Automation, Control and

Computing (PACC), 2011 International Conference on (2011), pp. 1–5.

[36] Kitchenham, B., Pfleeger, S., Pickard, L., Jones, P., Hoaglin, D.,

El Emam, K., and Rosenberg, J. Preliminary guidelines for empirical

research in software engineering. Software Engineering, IEEE Transactions on

28, 8 (2002), 721–734.

[37] Kopczynska, S., Nawrocki, J., and Ochodek, M. Software development

studio - bringing industrial environment to a classroom. In Software Engineering

Education based on Real-World Experiences (EduRex), 2012 First International

Workshop on (2012), pp. 13–16.

[38] Landaeta, R., Viscardi, S., and Tolk, A. Strategic management of scrum

projects: An organizational learning perspective. In Technology Management

Conference (ITMC), 2011 IEEE International (2011), pp. 651–656.

[39] Law, A., and Charron, R. Effects of agile practices on social factors. In

Proceedings of the 2005 workshop on Human and social factors of software en-

gineering (New York, NY, USA, 2005), HSSE ’05, ACM, pp. 1–5.

[40] Levy, M., and Hazzan, O. Knowledge management in practice: The case

of agile software development. In Cooperative and Human Aspects on Software

Engineering, 2009. CHASE ’09. ICSE Workshop on (2009), pp. 60–65.

[41] Lingard, R., and Barkataki, S. Teaching teamwork in engineering and

73

computer science. In Frontiers in Education Conference (FIE), 2011 (2011),

pp. F1C–1–F1C–5.

[42] Lui, K., and Chan, K. Software process fusion by combining pair and solo

programming. Software, IET 2, 4 (2008), 379–390.

[43] Marrington, A., Hogan, J., and Thomas, R. Quality assurance in a

student-based agile software engineering process. In Software Engineering Con-

ference, 2005. Proceedings. 2005 Australian (2005), pp. 324–331.

[44] Mathew, C., Joseph, K., and Renganathan, R. Accelerating organisa-

tional learning in the backdrop of knowledge hoarding: A case study with refer-

ence to eco-tourism destinations. In Management Issues in Emerging Economies

(ICMIEE), Conference Proceedings of 2012 Intenrational Conference on (2012),

pp. 63–68.

[45] Ming, C. Research on knowledge management of software enterprises —with

lenovo for case study. In Computer Science and Information Technology, 2009.

ICCSIT 2009. 2nd IEEE International Conference on (2009), pp. 291–294.

[46] Murray, S., Ryan, J., and Pahl, C. A tool-mediated cognitive apprentice-

ship approach for a computer engineering course. In Advanced Learning Tech-

nologies, 2003. Proceedings. The 3rd IEEE International Conference on (2003),

pp. 2–6.

[47] Neves, F., Correia, A., Rosa, V., and de Castro Neto, M. Knowledge

creation and sharing in software development teams using agile methodologies:

Key insights affecting their adoption. In Information Systems and Technologies

(CISTI), 2011 6th Iberian Conference on (2011), pp. 1–6.

74

[48] Palmieri, D. W. Knowledge Management Through Pair Programming. PhD

thesis, North Carolina State University, 2200 Hillsborough, Raleigh, NC 27695,

2002.

[49] Poff, M. Pair Programming to Facilitate the Training of Newly-hired Pro-

grammers. Florida Institute of Technology, 2003.

[50] Prause, C., and Durdik, Z. Architectural design and documentation: Waste

in agile development? In Software and System Process (ICSSP), 2012 Interna-

tional Conference on (2012), pp. 130–134.

[51] Read, A., and Briggs, R. The many lives of an agile story: Design pro-

cesses, design products, and understandings in a large-scale agile development

project. In System Science (HICSS), 2012 45th Hawaii International Confer-

ence on (2012), pp. 5319–5328.

[52] Roberts, A. Culture, identities and technology in the star wars films: Essays

on the two trilogies. SCIENCE-FICTION STUDIES 35 (n.d.), 156 – 159.

[53] Rong, J., Hongzhi, L., Jiankun, Y., Tao, F., Chenggui, Z., and Jun-

lin, L. A model based on information entropy to measure developer turnover

risk on software project. In Computer Science and Information Technology,

2009. ICCSIT 2009. 2nd IEEE International Conference on (2009), pp. 419–

422.

[54] Rong-guang, Q., and Shi-jie, L. Research on comprehensive evaluation

of enterprises knowledge management capabilities. In Management Science and

Engineering (ICMSE), 2010 International Conference on (2010), pp. 1031–1036.

75

[55] Salleh, K. Tacit knowledge and accountants: Knowledge sharing model. In

Computer Engineering and Applications (ICCEA), 2010 Second International

Conference on (2010), vol. 2, pp. 393–397.

[56] Sanders, A. Ten tales of positive change. In Agile Conference (AGILE), 2011

(2011), pp. 181–186.

[57] Sauer, T. Using design rationales for agile documentation. In Enabling Tech-

nologies: Infrastructure for Collaborative Enterprises, 2003. WET ICE 2003.

Proceedings. Twelfth IEEE International Workshops on (2003), pp. 326–331.

[58] Savolainen, J., Kuusela, J., and Vilavaara, A. Transition to agile de-

velopment - rediscovery of important requirements engineering practices. In Re-

quirements Engineering Conference (RE), 2010 18th IEEE International (2010),

pp. 289–294.

[59] Selic, B. Agile documentation, anyone? Software, IEEE 26, 6 (2009), 11–12.

[60] Serrano, M., Montes de Oca, C., and Cedillo, K. An experience on

using the team software process for implementing the capability maturity model

for software in a small organization. In Quality Software, 2003. Proceedings.

Third International Conference on (2003), pp. 327–334.

[61] Shaw, M. What makes good research in software engineering? In Presented

at the European Joint Conference of Theory and Practice of Software (ETAPS

2002), Grenoble, France. To appear in the International Journal on Software

Tools for Technology Transfer. (2002).

[62] Sillitti, A., Succi, G., and Vlasenko, J. Understanding the impact

of pair programming on developers attention: A case study on a large indus-

76

trial experimentation. In Software Engineering (ICSE), 2012 34th International

Conference on (2012), pp. 1094–1101.

[63] Sousa, F., Aparicio, M., and Costa, C. J. Organizational wiki as a

knowledge management tool. In Proceedings of the 28th ACM International

Conference on Design of Communication (New York, NY, USA, 2010), SIGDOC

’10, ACM, pp. 33–39.

[64] Srikanth, H., Williams, L., Wiebe, E., Miller, C., and Balik, S. On

pair rotation in the computer science course. In Software Engineering Education

and Training, 2004. Proceedings. 17th Conference on (2004), pp. 144–149.

[65] Stettina, C., Heijstek, W., and Faegri, T. Documentation work in agile

teams: The role of documentation formalism in achieving a sustainable practice.

In Agile Conference (AGILE), 2012 (2012), pp. 31–40.

[66] Suganya, G., and Mary, S. Progression towards agility: A comprehensive

survey. In Computing Communication and Networking Technologies (ICCCNT),

2010 International Conference on (2010), pp. 1–5.

[67] Sussy, B., Calvo-Manzano, J., Gonzalo, C., and Tomas, S. Teaching

team software process in graduate courses to increase productivity and improve

software quality. In Computer Software and Applications, 2008. COMPSAC

’08. 32nd Annual IEEE International (2008), pp. 440–446.

[68] Tang, A., de Boer, T., and van Vliet, H. Building roadmaps: a knowl-

edge sharing perspective. In Proceedings of the 6th International Workshop

on Sharing and Reusing Architectural Knowledge (New York, NY, USA, 2011),

SHARK ’11, ACM, pp. 13–20.

77

[69] Tao, Y., Wang, J., Wang, X., He, D., and Yang, S. Knowledge-based

flexible business process management. In TENCON 2006. 2006 IEEE Region

10 Conference (2006), pp. 1–3.

[70] Vanhanen, J., and Lassenius, C. Effects of pair programming at the devel-

opment team level: an experiment. In Empirical Software Engineering, 2005.

2005 International Symposium on (2005), pp. 10 pp.–.

[71] Venkatagiri, S. Teach project management, pack an agile punch. In Software

Engineering Education and Training (CSEE T), 2011 24th IEEE-CS Conference

on (2011), pp. 351–360.

[72] Weyuker, E. Empirical software engineering research - the good, the bad,

the ugly. In Empirical Software Engineering and Measurement (ESEM), 2011

International Symposium on (2011), pp. 1–9.

[73] Whitworth, E., and Biddle, R. The social nature of agile teams. In Agile

Conference (AGILE), 2007 (2007), pp. 26–36.

[74] Williamson, J. Knowledge needed by an agile enterprise. In Engineering

Management Conference, 2003. IEMC ’03. Managing Technologically Driven

Organizations: The Human Side of Innovation and Change (2003), pp. 393–

395.

[75] Xie, X., Zhang, W., and Xu, L. A description model to support knowledge

management. In Computer and Computational Sciences, 2006. IMSCCS ’06.

First International Multi-Symposiums on (2006), vol. 2, pp. 433–436.

[76] Yang, H.-L., and Wu, T. Knowledge sharing in an organization - share or

78

not? In Computing Informatics, 2006. ICOCI ’06. International Conference on

(2006), pp. 1–7.

[77] Zanoni, J., Ramos, M., Tacla, C., Sato, G., and Paraiso, E. A semi-

automatic source code documentation method for small software development

teams. In Computer Supported Cooperative Work in Design (CSCWD), 2011

15th International Conference on (2011), pp. 113–119.

[78] Zhang, C., Tang, D., Liu, Y., and You, J. A multi-agent architecture for

knowledge management system. In Fuzzy Systems and Knowledge Discovery,

2008. FSKD ’08. Fifth International Conference on (2008), vol. 5, pp. 433–437.

79

APPENDIX A

KNOWLEDGE TEMPLE QUESTIONNAIRE

From: Ilhan Burak Ersoy - ilhan.ersoy@tamucc.edu

Introduction: I am a graduate student in Computer Science at Texas A&M University-

Corpus Christi. As part of my Master’s thesis research, I am gathering information

about the way knowledge is acquired, disseminated, and maintained by companies

and organizations in technology research, development, and service. I am interested

in obtaining your input on this subject through this survey. Your participation in

this survey will be anonymous, and no one will contact you for additional informa-

tion or solicitation. The survey takes approximately 15 minutes to complete.

Responses will be collected until Tuesday, July 3rd, 2013.

80

Section 1: Knowledge Sources

When a person requires some additional knowledge or information to get their

job done, they sometimes turn to various sources for the information they are seek-

ing. When you are faced with that situation, how often do you find the information

you are looking for in the following sources:

1) Internal publications (such as guidelines or ”How-To” documents, not design doc-

uments) produced by your software development team.

() My software development team does not produce internal publications of this

sort.

() Often.

() Sometimes.

() Rarely or never.

2) Design documents, from either the project at hand or a previous project, pro-

duced by your software development team.

() My software development team does not produce design documents.

() Often.

() Sometimes.

() Rarely or never.

81

3) External publications, such as books, manuals, journals, or magazines.

() My software development team does not permit the use of externalpublica-

tions.

() Often.

() Sometimes.

() Rarely or never.

4) The Internet.

() My software development team does not permit the use of the Internet.

() Often.

() Sometimes.

() Rarely or never.

5) Co-workers within my immediate team or organization.

() I do not work with others.

() Often.

() Sometimes.

() Rarely or never.

6) Courses, either classroom or online.

() My software development team does not provide a means for allowing itsem-

ployees to take courses.

() Often.

() Sometimes.

() Rarely or never.

82

7) A database or groupware, such as Bitbucket, Dropbox, Google Drive, TeamViewer,

Skype, or Google Hangouts.

() My software development team does not use databases or groupware torecord

knowledge or skills-related information.

() Often.

() Sometimes.

() Rarely or never.

8) Other (Please specify with rank as Often/Sometimes/Rarely or never):

..

..

..

..

..

Section 2: Knowledge Acquisition, Dissemination, and Maintenance

9) My software development team is good at creating new knowledge through its

people and technological resources.

() Strongly agree.

() Agree.

() Neither agree nor disagree.

() Disagree.

() Strongly disagree.

83

10) My software development team is good at finding, organizing, and documenting

the knowledge it already possesses.

() Strongly agree.

() Agree.

() Neither agree nor disagree.

() Disagree.

() Strongly disagree.

11) My software development team is effective at acquiring knowledge from outside

sources, such as consultants or products.

() Strongly agree.

() Agree.

() Neither agree nor disagree.

() Disagree.

() Strongly disagree.

12) My software development team is effective at making knowledge accessible to

those who need it, when they need it.

() Strongly agree.

() Agree.

() Neither agree nor disagree.

() Disagree.

() Strongly disagree.

84

13) Does your software development team have personnel in place specifically re-

sponsible for managing knowledge (e.g., Chief Knowledge Officer, Knowledge Project

Manager, Knowledge Management Specialist, Knowledge Team, etc,)?

() Strongly agree.

() Agree.

() Neither agree nor disagree.

() Disagree.

() Strongly disagree.

14) How much improvement in the quality and productivity of your work could

be gained by improvements to your software development team’s management of

knowledge?

() Strongly agree.

() Agree.

() Neither agree nor disagree.

() Disagree.

() Strongly disagree.

15) I feel/felt the unique knowledge I possess enhances my competitive advantage

over my peers when it comes to job promotions, leadership opportunities, and awards.

() Strongly agree.

() Agree.

() Neither agree nor disagree.

() Disagree.

() Strongly disagree.

85

16) I am/was willing to share all of the knowledge I possess relevant to my job

with my software development team.

() Strongly agree.

() Agree.

() Neither agree nor disagree.

() Disagree.

() Strongly disagree.

17) In your software development team, how much are rewards based on individ-

ual technical accomplishments, versus team success?

() Virtually all individual accomplishments.

() Primarily individual accomplishments, but also some team success.

() Equally individual accomplishments and team success.

() Primarily team success, but also some individual accomplishments.

() Virtually all team success.

86

18) If you were to leave your position tomorrow, how long would it take your soft-

ware development team to compensate for the loss of knowledge you possess? (Please

make your best guess)

() Less than one week.

() Between one week and one month.

() Between one month and three months.

() Between three months and six months.

() Between six months and one year.

() More than one year.

19) If the most senior technical member of your software development team were

to leave his/her position tomorrow, how long would it take your software develop-

ment team to compensate for the loss of knowledge he/she possesses? (Please make

your best guess)

() Less than one week.

() Between one week and one month.

() Between one month and three months.

() Between three months and six months.

() Between six months and one year.

() More than one year.

87

Section 3: Demographical Background Information

20) How long have you been developing software?

() I am not a programmer in industry or research.

() Less than one year.

() Between one year and two years.

() Between two years and five years.

() Between five years and ten years.

() More than ten years.

21) How long have you been with your software development team?

() Less than one year.

() Between one year and two years.

() Between two years and five years.

() Between five years and ten years.

() More than ten years.

22) How satisfied are you with your job?

() Very satisfied.

() Somewhat satisfied.

() Neither satisfied nor dissatisfied.

() Somewhat dissatisfied.

() Very dissatisfied.

88

23) Approximately how much of your day is spent collaborating with others?

() Less than 10%.

() Between 10% and 25%.

() Between 25% and 50%.

() Between 50% and 75%.

() More than 75%.

24) How satisfied are you working in a small team with 2 peers?

() Very satisfied.

() Somewhat satisfied.

() Neither satisfied nor dissatisfied.

() Somewhat dissatisfied.

() Very dissatisfied.

25) How satisfied are you working in a small team with a peer??

() Very satisfied.

() Somewhat satisfied.

() Neither satisfied nor dissatisfied.

() Somewhat dissatisfied.

() Very dissatisfied.

