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ABSTRACT

Several micro-organisms swim in heterogeneous fluid environments such as the porous media

(with pores, fibers or polymers). The past decade has seen an increasing interest in understand-

ing propulsion mechanisms of minute organisms on small scales, both theoretically and exper-

imentally. Interest to theoretical models on locomotion strategies with homogeneous fluids in

three-dimensions has a long record in applied mathematics (Lighthill, Commun. Pure and Appl.

Math., (1952); Blake, J. Austr. Math. Soc., (1971)). In this thesis, we have studied mathematical

models for the squirming motion of circular cylinders suspended in porous media governed by

the two-dimensional Brinkman partial differential equations (PDE) subject to the varying surface

velocity conditions on the surface of the squirmer. The vector boundary-value problem (BVP)

is reduced to a scalar BVP for the fourth order PDE via Stokes stream-function formulation in

polar coordinates. Exact analytical solutions for the mathematical model are found in terms of

the modified Bessel functions of the integer order for various radial and tangential modes of

surface oscillations. We performed the calculation of the swimming speed and power for the

two-dimensional squirming motion of cylinders in heterogeneous fluids for various modes of the

surface velocity changes. It is found that the non-dimensional permeability parameter, arising

due to the heterogeneity of the fluid environment, has a significant impact on the velocity and

pressure fields as well as the speed and power of the squirming cylinder. Our results show that the

speed, which depends on the first mode only, is always less than that of the cylinder squirming

in Stokes flow. The power can increase by the use of certain normalization factors. The stream-

line plots reveal the existence of quarupolar flow patterns and saddle points in the vicinity of the

cylindrical squirmer. Another illustration of our method for the problem of a cylinder swimming

in a homogeneous fluid (Stokes fluid) surrounded by a heterogeneous fluid (Brinkman fluid) will

also be shown in this talk. We believe that the results of this thesis will be crucial in the un-
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derstanding of various biological functions including bacterial movement in mucous, motility in

reproduction, and escaping from predators.
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Nomenclature

µ , µ∗ Viscosity of the fluid and bulk viscosity of the porous, respectively

∇2 Laplace operator

σ ,k Dimensionless parameter and permeability, respectively

τrr,τrθ Normal stress and shear stress on the surface of the fluid, respectively

~u,~f Velocity and external force vector, respectively

a Radius of cylinder

an, bn, α , β , γ , δ , ε , ξ , κ Surface coefficients

An,Bn Radial and tangential modes in polar coordinate, respectively

F Total Force

I0, I1, I2 Modified Bessel function of the first kind of order 0,1,2

K0,K1,K2 Modified Bessel function of the second kind of order 0,1,2

P Rate of working per unit area (Power)

p Pressure

r, θ Radial and angular components of polar coordinate

U Swimming speed

u,v Radial (normal velocity) and tangential velocity components, respectively
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CHAPTER I: INTRODUCTION

Micro-organisms of several geometrical shapes propel themselves at small length scales in het-

erogeneous fluid environments. The locomotion of minute organisms in a highly viscous fluid

is critical in a variety of biological functions including spermatozoa reaching out to the ovum

during reproduction, bacteria escaping from predators and microbes foraging for food, among

many other processes [3, 9, 15]. Commonly observed microorganisms are covered with what are

known as the flagella or cilia whose length scales are measured in nano meters. The beating of

these flagella or cilia in coordinated fashions supply power for the microorganisms to propel in

a fluid in which they perform swimming. The Reynolds number (Re), which is the character-

ization of the inertial to viscous forces ratio, of the locomotion typically ranges from 10−5 for

swimming bacteria to 10−4 for human spermatozoa [11, 14]. Specifically, the inertial effects are

virtually negligible since the Reynolds number is small. The past years have seen tremendous

progress in understanding the propulsion mechanisms of swimming microorganisms in various

circumstances [6, 14, 25, 27] and currently, the interest in this direction is fast growing. The basic

quantities that are fundamental to the knowledge of microorganism swimming phenomenon are

the speed with which they propel, power and efficiency of swimming in the fluid environment.

Previous studies have shown theoretical calculations of these vital physical quantities for three-

dimensional problems both in homogeneous and heterogeneous fluids. While two dimensional

case has been attempted for a cylindrical swimmer in a homogeneous Stokes fluid (low Reynolds

number fluid) [4], the analysis for the corresponding problem in a heterogeneous media is lacking

in the literature. In this thesis, we address the swimming and power calculations for a squirming

cylinder in porous media.

Theoretical studies on swimming of microorganisms in inertia-less fluids evolved around

calculations for spherical bodies in three dimensions (3D). Interest to mathematical models on
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locomotion strategies with homogeneous fluids in 3D has a long record in applied mathematics

[5, 18]. In order to improve the understanding of physical quantities associated with swim-

ming, these studies developed the design of mobility of micro-organism (squirmer) in a viscous

fluid. The squirmer is a spherical model of micro-organism swimming in a fluid in which it is

suspended. It has been realized that some micro-organisms can propel themselves along with

traveling wave by bending or rotating the flagella [5, 21], while other movements are generated

by a beating of short cilia on their surface. The action of moving and motion (due to surface

oscillations) of the micro-squirmer in a fluid is called ”squirming”. Particularly, Blake [5] had

modeled the three-dimensional case of the dynamics of cilia propulsion based on the “envelope”

that covers the cilia. His method is used on the assumption of the cilia are closed to each other

and can be replaced completely by the progressive waving envelope in other to apply the no-slip

conditions in symplectic metachronal wave. In the case of the certain undulations on the surface.

Further, the two-dimensional self-propulsion of a circular cylinder at low Reynolds numbers was

also discussed by Blake [5] using a scalar function, known as the stream function, formulation

for the so called Stokes equations (equations for the low Reynolds number flow of inertial less

fluid). The results of these studies have been the center of several other investigations (see for

instance, [15] and references therein) of microorganism swimming in homogeneous fluids. In

heterogeneous fluid environments the propulsion mechanisms are modeled by more challenging

mathematical equations and therefore, the swimming characteristics can be much different.

A porous medium with a permeability parameter belongs to one of the heterogeneous fluid

categories. A schematic of a porous fluid region that can is commonly seen is shown in Figure

1.1. Generally, a porous medium is defined as a physical structure containing pores (voids)

with permeability, called matrix of skeletal portion and usually filled with fluid [32]. For low

permeability medium with no viscous shear on the boundaries, Darcy’s equation [10] has been

widely employed as a model for a flow in porous medium. However, for small to relatively large
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Figure 1.1
Fluid flow in porous media (right) [30]

permeability and in the presence of viscous shear, the Darcy’s equation is insufficient to describe

the fluid flow. To resolve this issue, Brinkman [7] proposed a model generalizing Darcy’s law that

includes viscous shear. The Brinkman’s model for describing the porous medium later became

the generalized ”Darcy-Brinkman law” and provides vector partial differential equations for the

velocity and pressure fields prevailing in the heterogeneous fluid region. The presence of the

permeability parameter characterises the heterogeneity of the fluid and modifies the flow profiles

significantly in the presence of boundaries.

Mathematical modeling of flow past boundaries in porous media are of great interest in a

wide range of other applications as well. Some of these include heat transfer analysis, chemical

catalytic reactor, spread of pollutant, geothermal energy system, and oil and gas recovery [12].

The two-dimensional flow past cylindrical boundaries have also been analyzed on various occa-

sions using homogeneous boundary conditions. For instance, Pop and Cheng [24] reported an

analytical study of the incompressible flow past a cylinder in the Brinkman medium by provid-

ing the expression of the flow separation. In addition, Wang [33] has documented comparison
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results for spheres and circular cylinders suspended in Brinkman fluid region using the parameter

σ of the porous medium. Another recent study has considered the two-dimensional flow around

the solid cylindrical inclusion embedded in the Brinkman porous medium with uniform velocity

slip [2], that is, non-homogeneous boundary conditions. In the context of swimming, however,

the squirmer problem requires the non-uniform surface variation boundary conditions. This has

been successfully included for a spherical microorganism propelling in a Brinkamn fluid [21] and

theoretical results have been reported for the swimming velocity and the efficiency for a spherical

squirmer. The results in [21] also gives a comparison of the spatial decay of flows in Brinkman

model with that in a purely viscous fluid (Stokes fluid). We remark that the corresponding re-

sults for squirming motion of cylinders in porous medium have not been discussed so far in the

literature.

In two-dimensional Stokes flow it is well-known that there is no solution for the uniform

flow past a circular cylinder (or any other 2D body profile). This is the famous Stoke-Paradox

and is in contrast to the three-dimensional case where the problem of steady uniform flow past

a sphere has a unique solution. The problems of uniform flow past an obstacle in both two-

and three-dimensions embedded in a Brinkman fluid have solutions and the flow past a cylinder

or a sphere are readily available [7, 24, 33]. When the dimensionless permeability parameter

approaches zero, the steady Brinkman flow past a sphere in a porous medium result reduces

to the Stokes flow solution [33]. However, the 2D solution in porous medium does not reduce

to the corresponding Stokes flow in the asymptotic limit as demonstrated recently in [19]. In

fact, the expressions for the velocity gives terms that grow logarithmically far from the obstacle

in the limit of vanishing permeability. Due to this undesirable situation the two-dimensional

flow problems have been avoided in most of the earlier investigations. Here we show that the

swimming speed and power expressions for the squirming motion of cylinders safely reproduce

the required results in the limit of zero dimensionless permeability.
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This thesis is organized as follows: In Chapter 2, we begin by introducing the Darcy-

Brinkman equation and the problem of squirming motion of cylindrical micro-squirmer in the

Brinkman fluid. The Lighthill-Blake type boundary conditions used on the surface of the cylin-

ders are also discussed. In Chapter 3, we present derivations of analytical solutions of the fourth

order PDE based on the imposing velocity slip boundary conditions. It then, in turn, allows us

to calculate the velocity components in terms of various parameters. The other physical quanti-

ties such as stress on the surface, force, swimming speed, and the rate of working per unit area

(power) for a squirming cylinder in porous media are also determined. In Chapter 4, we anal-

yse the two-fluid phase model (Stokes-Brinkman fluids). We state the problem of a squirming

cylinder in a viscous fluid (stokes fluid) surrounded by a porous medium modeled by Brinkman

equations. The appropriate boundary conditions for the two-fluid model are stated as well. We

also derive analytic solutions for a squirming cylinder in a viscous fluid enclosed by the Brinkman

medium. Various limiting cases of our results from the exact solutions presented here are also

given in this chapter. Finally, in Chapter 5, we document our key findings of the work reported

in this thesis.

The symbols in this paper are taken from the references and are listed in the Nomenclature.

The format of the thesis is followed by the standard from of Tamucc template.
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CHAPTER II: MATHEMATICAL FORMULATION

Better understanding of the squirming motion of objects in a fluid medium requires the knowl-

edge of analytical and numerical solutions of mathematical equations modeling the physical

problem. The fluid in our current investigation is treated as a porous medium which is a material

volume consisting of a solid matrix with interconnected voids. The ratio of void space to the

total volume of the medium is defined as the permeability of the porous medium [7, 10]. De-

pending on the low and high permeability (or porosity) situations the porous media equations

can be stated as demonstrated by Darcy and Brinkman in their study. In this chapter, we provide

the two formulations for the porous medium in two-dimensions leading to the first and second

order vector partial differential equations proposed by Darcy [10] and Brinkman [7]. We then

formulate the problem of a squirming cylinder in a porous medium using the two-dimensional

stream function formulation. We also state the surface velocity boundary conditions similar to

those proposed by Lighthill [18] and Blake [5] for a spherical squirmer in Stokes flow. This

completes the statement of the physical problem of a cylindrical squirmer in Brinkman fluid in

two-dimensions. We close this section by giving a brief derivation of the general solution of the

scalar fourth order partial differential equation satisfied by the Stokes stream function for its use

in subsequent sections.

2.1 Darcy and Brinkman equations for the porous medium

The model for the fluid flow in the porous media was initially investigated by Henry Darcy

(1856). He pointed out the relationship between the instantaneous discharge rate, the viscosity

of the fluid, and the pressure drop over the distance [10] and is famously known as Darcy law.

It actually relates the flow velocity to the pressure gradient in a linear fashion across the porous
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medium. The Darcy’s law in mathematical form can be written as

~u = −µ

k
∇p+~f, (2.1)

∇·~u = 0. (2.2)

In the above equations~u represents the filtration velocity, p is the pressure, k is permeability

of the porous medium, µ is the viscosity of the fluid and~f is the external force. Note that the

second equation is the mass balance or the incompressibility condition. The Darcy’s equations

predict the flow behavior when the permeability and pressure gradients are sufficiently small.

For large values of k, Darcy law becomes in adequate due to the absence of viscous stronger

effects as pointed out later by Brinkman [7]. Indeed, Brinkman [7, 8] proposed a modified set of

equations that generalizes Darcy’s law including the viscous forces on the boundaries. Brinkman

equations can be cast in the form

∇
2~u− µ∗

µk
~u =

1
µ

∇p+~f, (2.3)

∇·~u = 0, (2.4)

where µ∗ is the bulk viscosity. The above set of Brinkman equations or the generalized Darcy-

Brinkman equations are found to be more suitable for several flow problems in porous media

[16, 24] as well as squirming motions [17, 21] and provide more accurate results. Therefore, we

use Brinkman equations in our model to represent the flow in porous medium. In the following

section, we provide the mathematical setting stating the governing equations and the relevant

boundary conditions for a cylindrical squirmer problem in a porous medium.

2.2 Circular Cylindrical Squirmer in Porous Medium using Brinkman Model

Consider an infinitely long two-dimensional cylindrical squirmer of radius a immersed in a

porous medium. We choose (x,y) as the coordinate axes in a two-dimensional Cartesian frame,

7



and let (r,θ) represent the corresponding polar coordinates (see Figure 2.2). The surface of the

squirmer is given by r = a. Let~u = (u,v) be the velocity of the fluid at any point, where u(r,θ)

and v(r,θ) are the components of~u in the radial and tangential directions, respectively. As noted

in the previous sub-section, for relatively large permeability values, Brinkman equations are more

appropriate describing the flow in a porous media. The justification of the use of Brinkman equa-

tions to model porous media has also been evident in many studies [19, 21, 24, 33]. Therefore,

in our model, we utilize the two-dimensional Brinkman equations for the flow of fluid in the

porous medium. The momentum and mass balance equations of the Brinkman equations in

Figure 2.2
Cylindrical squirmer in Brinkman medium

two dimensions in the absence of external forces can be written in the vector form as (see the

8



subsection 2.1)

µ(∇2~u− µ∗

µk
~u) = ∇p, (2.5)

∇·~u = 0, (2.6)

where the Laplace operator in polar coordinates is defined as

∇
2 ≡ ∂ 2

∂ r2 +
1
r

∂

∂ r
+

1
r2

∂ 2

∂θ 2 . (2.7)

The component form of vector equation (2.5) and (2.6) are(
∂ 2u
∂ r2 +

1
r

∂u
∂ r

+
1
r2

∂ 2u
∂θ 2 −

u
r2 −

2
r2

∂v
∂θ

)
− µ∗

µk
u =

1
µ

∂ p
∂ r

, (2.8)

(
∂ 2v
∂ r2 +

1
r

∂v
∂ r

+
1
r2

∂ 2v
∂θ 2 −

v
r2 +

2
r2

∂u
∂θ

)
− µ∗

µk
v =

1
µr

∂ p
∂θ

, (2.9)

∂

∂ r
(ru)+

∂v
∂θ

= 0. (2.10)

The continuity equation (2.10) implies the existence of the scalar function ψ(r,θ). The ve-

locity components u and v in term of ψ(r,θ) becomes:

u =
1
r

∂ψ

∂θ
v =−∂ψ

∂ r
(2.11)

Elimination of pressure between (2.8) and (2.9) by cross differentiation and using (2.10)

above, we can reduce the system in the form

∇
2(∇2−σ

2)ψ = 0 (2.12)

where σ2 = µ∗

µk represents a dimensionless permeability parameter. Thus, the vector equations

(2.5) - (2.6) for the velocity and pressure fields reduce to solving the scalar equation (2.12) for the

stream function. In the next subsection, we discuss the appropriate boundary conditions on the

cylindrical squirmer and formulate the Boundary Value Problem (BVP) in a Brinkman medium.

9



2.3 Lighthill-Blake Type Surface Velocity Slip Boundary Conditions

The squirmer problem under investigation requires a set of appropriate boundary conditions, in

addition to the governing equation of motion (discussed in the preceding subsection). In the case

of three-dimensional Stokes flow, the commonly used boundary conditions are those proposed

by Lighthill and used by Blake for a spherical squirmer. In fact, Lighthill [18] in 1952 first

introduced a model for the squirming motion of a nearly spherical body in a viscous fluid in the

zero Reynolds number limit. He discussed the mechanism of propulsion by investigating the

small oscillation on the shape. Blake [5] later developed the model of self-propulsion due to the

oscillation on the surface of the spherical squirmer using his spherical envelope approach. These

conditions have been extensively used in several settings [14, 15, 21, 22]. The corresponding

two-dimensional problem was also discussed by Blake [4] for a cylindrical geometry in Stokes

flow. In this thesis, we plan to use the conditions adopted by Blake [4] in our model consisting

of a cylindrical squirmer in Brinkman medium. On the oscillating surface of the cylindrical case

in two-dimensions, Blake used the following set of boundary conditions on the cylinder surface

(r = a):

u(a,θ) =
∞

∑
n=0

An cos(nθ) v(a,θ) =
∞

∑
n=1

Bn sin(nθ) (2.13)

The constants An and Bn are the radial and tangential modes of the velocity variations on the

cylindrical surface, respectively. The above conditions allow the surface velocity slip variations

(variable slip velocity) across the surface of the cylindrical swimmer. In our analysis we use

the boundary conditions given in (2.13) to solve the squirming problem in porous media. Note

that the above boundary conditions imply that the tangential velocity has to be an odd function

in θ , that is v(r,θ) = −v(r,−θ). This then allows the streaming flow past the cylinder that can

occur giving a finite stream at infinity, unlike the Stokes paradox. In other words, this assumption

correctly predicts that there is no solution of Stokes equations that satisfies the no-slip condition

10



[5] and producing finite velocity at infinity. Although this paradoxical behavior does not exist

in Brinkman flows [2, 19], we point out that one needs to be cautious while performing the

zero parameter limit calculations to test for the Stokes flow results. Equations (2.12) and (2.13)

provides the required boundary value problem (BVP) for the squirming motion of a cylinder in

porous media modeled by Brinkman equations.

2.4 General Solution of the Fourth Order Equation

For a later use, we provide here a brief derivation of the solution of the fourth order scalar

equation (2.12) for the stream function. First, we set ∇2ψ = ϒ. Then (2.12) becomes

(∇2−σ
2)ϒ = 0 (2.14)

Following the separation of variables method for PDE, we let ϒ = R(r)Θ(θ) where R, Θ 6= 0.

Note that ϒ(r,θ) need to be 2π periodic in θ [20]. With this substitution the separable form of

(2.14) become
r2R′′

R
+

rR′

R
−σ

2r2 =−Θ′′

Θ
= λ (2.15)

Now the separated equations are

r2R′′+ rR′− (σ2r2 +λ )r = 0, (2.16)

Θ
′′+λΘ = 0. (2.17)

Using the periodic Boundary Condition Θ(2π) = Θ(0) and for the eigenvalues λ > 0, the

nontrivial solution of (2.17) is

Θn(θ) = An cos(nθ)+Bn sin(nθ) (2.18)

Similarly, equation (2.16) has its solution in terms of the modified Bessel functions of the

first and second kind In(σr) and Kn(σr), respectively. The resulting solution reads

Rn(r) =CnIn(σr)+DnKn(σr) (2.19)

11



Then the product solution of ϒ in eigen-function form is

ϒ(r,θ) =
∞

∑
n=0

(CnIn(σr)+DnKn(σr))(An cos(nθ)+Bn sin(nθ)) . (2.20)

Since ∇2ψ = ϒ is a non-homogeneous PDE, we need to find two solutions, viz., homoge-

neous and particular solutions. For the homogeneous part, we let ψ = F(r)Θ(θ) where F , Θ 6= 0.

Due to the 2π periodic condition, the equation ∇2ψ = 0 yields

r2F ′′

F
+

rF ′

F
=−Θ′′

Θ
= λ (2.21)

Equation (2.21) can be rewritten in the form

r2F ′′+ rF ′−λF = 0 (2.22)

Θ
′′+λΘ = 0 (2.23)

Adopting a similar approach used to solve (2.16) then (2.17), the equation (2.22) yields the

Euler system written as Fn(r) =Cnrn +Dnr−n when n ≥ 1 and C0 +D0 ln(r) when n = 0. Then

the general solution of the homogeneous solution for ∇2ψ = 0 is

ψc(r,θ) =C0 +D0 ln(r)+
∞

∑
n=1

(
Cnrn +Dnr−n)(An cos(nθ)+Bn sin(nθ)) (2.24)

The particular solution is [20]

ψp(r,θ) =
1

σ2

∞

∑
n=1

(CnIn(σr)−DnKn(σr))(An cos(nθ)+Bn sin(nθ)) (2.25)

Then the general solution of the inhomogeneous PDE (2.12) is ψ(r,θ) = ψc + ψp. The

complete solution can be represented in the form [33]

ψ(r,θ) =C0 +D0 ln(r)+
∞

∑
n=1

(Cnrn +Dnr−n)(An cos(nθ)+Bn sin(nθ))

+
1

σ2

∞

∑
n=1

(EnIn(σr)−FnKn(σr))(An cos(nθ)+Bn sin(nθ)) (2.26)

As pointed out earlier, this solution is obtained by the method of separation of variables for

linear PDEs. In the next chapters, we use this general form to obtain analytical solutions of the

stream function(s) for the cylindrical squirmer problems in porous media.
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CHAPTER III: ISOLATED CYLINDRICAL SWIMMER IN POROUS MEDIA

The scalar stream function formulation of the cylindrical squirmer problem stated in (2.12) sub-

ject to the slip velocity conditions (2.13) will now be used to generate analytical solutions for

a cylindrical swimmer in a Brinkman fluid. Determination of the stream function provides a

basis for the discussion of the flow fields prevailing in the presence of a squirmer. By a direct

differentiation process, one can obtain the required velocity components via the relations given

in (2.11). These essential quantities are required for the swimming speed and power calculations

of the squirming cylinder in porous media modeled by Brinkman equations in two dimensions.

Of course, the pressure can be obtained by a direct integration using (2.8) and (2.9). The steps

involved in the calculation of speed and power due to the squirming motion of a cylinder in

Brinkman medium are given below.

• Use the general solution of (2.12) for the stream function with arbitrary constants

• Apply the surface velocity boundary conditions (2.13) to determine the arbitrary constants

in the stream function for various radial and tangential modes

• Find velocity components via direct differentiation using (2.11)

• Compute pressure and stress components

• Integrate stresses to find a force on the cylinder

• Use force-free condition to obtain the swimming speed [4, 21]

• Determine the power using integration of the product of velocity and stress components on

the surface of the squirmer

13



Below we use the aforementioned steps to determine the relevant physical quantities of inter-

est in the context of squirming motion of a circular cylinder.

3.1 Exact Solution for a Cylindrical Swimmer in Brinkman Medium

We consider the uniform flow of an incompressible viscous fluid along the y-direction with

ψ0(r,θ) = −Ur sinθ [4]. The speed U is unknown and can be calculated for a squirmer sus-

pended in the fluid. Now in the presence of a cylindrical squirmer we take the solution in the

form (see (2.26))

ψ(r,θ) = a0θ −Ur sin(θ)+
∞

∑
n=1

[an

rn +bnKn(σr)
]

sin(nθ). (3.27)

where a0, an and bn are the constants to be determined. In (3.27), the conditions of finite veloci-

ties at infinity (far away from the cylinder) is incorporated. Note that each term in the summation

is a solution of (2.12) due to the linearity of the Brinkman equations. For n = 1,2, the stream

functions extracted from (3.27) are given by

ψ1 =
[
−Ur+

a1

r
+b1K1(σr)

]
sin(θ) (3.28)

ψ2 =
[a2

r2 +b2K2(σr)
]

sin(2θ) (3.29)

Applying the surface velocity conditions (2.13), and using (3.27) and (2.11), we obtain a

system of algebraic equations for the unknown coefficients from which one can determine

a0 = A0a (3.30)

a1 =

[
A1 +U− K1(σa)

a
b1

]
a2 b1 =

B1−A1−2U
σK0(σa)

(3.31)

an =
an+1

n
An−anKn(σa)bn bn =

Bn−An

σKn−1(σa)
(3.32)

Now the velocity components can be obtained by the use of (2.11) as

u(r,θ) =
a0

r
−U cos(θ)+

∞

∑
n=1

[
n

rn+1 an +
nKn(σr)

r
bn

]
cos(nθ) (3.33)
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v(r,θ) =U sin(θ)+
∞

∑
n=1

[
n

rn+1 an +

(
σKn−1(σr)+

nKn(σr)
r

)
bn

]
sin(nθ) (3.34)

Using (3.30) - (3.32), the above equations take the form

u =
A0a

r
+U

[
a2

r2 −1−2H1

]
cos(θ)+

∞

∑
n=1

[(
an+1

rn+1 −Hn

)
An +HnBn

]
cos(nθ) (3.35)

v =U
(

a2

r2 +1−2G1

)
sin(θ)+

∞

∑
n=1

[(
an+1

rn+1 −Gn

)
An +GnBn

]
sin(nθ) (3.36)

where

Hn =
n
r

(
Kn(σr)−anr−nKn(σa)

σKn−1(σa)

)
Gn =

(
Hn +

Kn−1(σr)
Kn−1(σa)

)
(3.37)

Note:
Kn(σr)−anr−nKn(σa)

σKn−1(σa)
∼=

an+1−an−1r2

2rn +Error (3.38)

Kn−1(σr)
Kn−1(σa)

∼=
an−1

rn−1 +Error (3.39)

We note that expressions (3.35) - (3.37) provide the velocity fields for a cylindrical squirmer

in a Brinkman fluid. In the limit σ → 0 these results produce logarithmic terms [19], as in Stokes

paradox. However, the solution forms for the velocity fields in (3.35) - (3.37) are similar to those

given by Blake [4] for a cylindrical squirmer in two-dimensional Stokes flow.

The pressure can be obtained by substituting (3.35) - (3.37) into (2.8) and (2.9). After some

algebra, one finds

p = µσ
2

[
−aA0 ln(r)+Ur cos(θ)+

∞

∑
n=1

an

rn cos(nθ)

]
. (3.40)

This completes the four steps in our procedure to determine swimming speed and power

calculations. Next we proceed to compute the stress components using

τrr = p−2µ
∂u
∂ r

(3.41)

τrθ =−µ

[
r

∂

∂ r

(v
r

)
+

1
r

∂u
∂θ

]
. (3.42)
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Substitution of (3.35), (3.36), and (3.40) in (3.41) and (3.42) yields

τrr = µ

{(
−σ

2 ln(r)+
2
r2

)
a0 +σ

2Ur cos(θ)

+
∞

∑
n=1

[(
σ2

rn +
2n(n+1)

rn+2

)
an +

(
2σn

Kn−1(σr)
r

+2n(n+1)
Kn(σr)

r2

)
bn

]
cos(nθ)

}
(3.43)

τrθ = µ

∞

∑
n=1

[
2n(n+1)

rn+2 an

+

(
(3σ −σn)

Kn−1(σr)
r

+σ
2Kn(σr)+(n2 +n+2)

Kn(σr)
r2

)
bn sin(nθ) (3.44)

Inserting the constants from (3.30) - (3.32) results in

τrr = µ

{(
2
a
−σ

2a ln(a)
)

A0 +2
(

σ
2a+

σK1(σa)
K0(σa)

)
U cos(θ)

+
∞

∑
n=1

[(
σ2a

n
+

σKn(σa)
Kn−1(σa)

+
2
a

)
An +

(
2n
a
− σKn(σa)

Kn−1(σa)

)
Bn

]
cos(nθ)

}
(3.45)

τrθ = µ

{
− 2σK1(σa)

K0(σa)
U sin(θ)

+
∞

∑
n=1

[(
2n
a
− σKn(σa)

Kn−1(σa)

)
An +

(
2
a
+

σKn(σa)
Kn−1(σa)

)
Bn

]
sin(nθ)

}
(3.46)

The crucial step now is to find the force acting on the cylinder which is calculated from [4]

F =
∫ 2π

0
a[τrr cos(θ)− τrθ sin(θ)]r=adθ (3.47)

Using (3.45) and (3.46), the force on the cylinder, after integration using orthogonality con-

ditions ∀ m,n > 0: ∫ 2π

0
sin(mθ)sin(nθ)dθ =


0, m 6= n

π, m = n
(3.48)
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and similarly,

∫ 2π

0
cos(mθ)cos(nθ)dθ =


0, m 6= n

π, m = n
(3.49)

(3.47) becomes

F = µπ

[
(σa)2(A1 +2U)−2a(B1−A1−2U)

σK1(σa)
K0(σa)

]
(3.50)

If we let A1 = B1 = 0, the equation (3.50) agrees with those given in [31, 33] for the force

acting on a no-slip cylinder in Brinkman fluid. Utilizing the force-free condition for a squirmer

[4, 21] the swimming/propulsion speed U is determined to be

U =
1
2
(B1−A1)−

(σa)B1

2
[
(σa)+2K1(σa)

K0(σa)

] . (3.51)

Note that the swimming speed depends only on the first radial and tangential modes (A1 and

B1) as in three-dimensional Brinkman flow [21]. The first term in (3.51) is the swimming speed

of a cylinder in Stokes flow [4] and the second term is the fluid resistance due to the parameter

σ . It is interesting that this last term in (3.51) does not contain A1 for a squirming cylinder in

Brinkman medium where as the swimming speed in 3D is affected by the radial mode associated

with the permeability [21]. It can be seen from (3.50) that the denominator in the second term

of (3.51) is the same as the normalizing factor appearing in the expression for the force with

A1 = B1 = 0. This result may have a significant physical meaning in the context of swimming.

Further, it can be seen from (3.51) that the speed in Brinkman flow is less than that in Stokes

flow for B1 > 0.

In Stokes flow, the swimming speed does not change whether a stationary cylinder is placed in

a uniform flow or the cylinder is moving in stationary fluid. This is because the pressure gradient

at infinity is the zero in both cases. In Brinkman flow, the pressure gradient in the uniform flow is

zero. But a moving object induces a pressure gradient far away from the boundary. This in turn

produces a difference in the hydrodynamic drag/force as noted in [13]. A similar observation
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can be made for the squirming cylinder in porous media. If the squirmer moves in a stationary

Brinkman fluid then the swimming speed, denoted by U∗, can be calculated in the same way and

is given by

U∗ =
1
2
(B1−A1)−

(σa)(B1 +A1)

2
[
(σa)+4K1(σa)

K0(σa)

] (3.52)

Notice the appearance of the A1 mode in the second term in the above equation due to the

non-zero pressure gradient.

Finally, the power P can be determined using [4]

P =
1

2π

∫ 2π

0
(uτrr + vτrθ )r=adθ . (3.53)

Substituting (3.35) - (3.37), (3.41) and (3.42) in (3.53) and after integrating one obtains

P =
µ

2

{
2
(

σ
2aA1 +(A1−B1)

σK1(σa)
K0(σa)

)
U

+
∞

∑
n=1

[
σ2a

n
An

2 +

(
2
a
+

σKn(σa)
Kn−1(σa)

)
(A2

n +B2
n)+2

(
2n
a
− σKn(σa)

Kn−1(σa)

)
AnBn

]}
. (3.54)

This last concluding step completes the speed and power calculations for a cylindrical swim-

mer in porous media modeled by Brinkman equations.

3.2 Numerical Results

Let us now turn our attention on the numerical results extracted from the analytical solutions for

the squirming problem of a cylinder derived in the preceding subsection. The parameters such

as the radial and tangential mode amplitudes An, Bn, and parameter σ can influence the velocity

field, pressure, swimming speed and power. Therefore, we choose these parameters and analyze

variations. In the following we record our findings based on the graphical illustrations produced

using the analytic expressions presented in the subsection 3.1.

Streamline Topology
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STOKES - BRINKMAN

Figure 3.3
The stream line for Stokes and Brinkman flow past circular cylinder in B mode at σ = 0.001:
(a-b) Pusher squirmer β2 =−0.2 (c-d) Puller squirmer β2 = 0.2 (e-f) Neutral squirmer β2 = 0
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First, the streamlines for the first two modes are plotted in Figure 3.3 using the stream func-

tions given in (3.28) and (3.29). Note that we have defined the parameter β2 =
B2
B1

that charac-

terizes different types of motion [21]. In the context of swimming, β2 < 0 is a pusher, β2 > 0 is

a puller and β2 = 0 is a neutral swimmer. For the sake of simplicity we consider the tangential

modes in the streamline plots. Figure 3.3 portrays the streamline topology for Stokes (a), (c), (e)

and Brinkman flows (b), (d), (f). The value of the parameter σ is taken to be small (σ = 0.001)

for the sake of comparison. In the case of Stokes flow, the presence of cylindrical swimmer in-

duces a saddle point close to the cylinder wall for the pusher. Its location is opposite for the puller

as can be seen in Figure 3.3 (a) and (c). But in Brinkman flow, quadrupolar flow lines appear

or pusher and puller and the pattern is distinct from that in Stokes flow (see Figure 3.3 (b), (d)).

It appears that the modified Bessel functions cause such flow patterns in the case of squirming

cylinder in porous media. For the neutral swimmer, however, the flow patterns are very similar

in Stokes and Brinkman flows as in Figure 3.3 (e), (f). We have tested the streamline patterns for

various other values of σ and the observed that flow topology can be quite different than shown

here.The streamline patterns for a squirming cylinder in Brinkman fluid for three parameter val-

ues, σ = 0.1, σ = 0.18 and σ = 1, are displayed in Figure 3.4. For pusher the quadrupolar lines

start to appear when σ = 0.1 as observed in Figure 3.4 (a). Increase in the value of σ changes

the quadrupolar patterns significantly and further increase in σ completely nullifies such patters

as evident from figure 3.4 (b), (c). A triplet of saddle points start appearing in the flow region as

seen in Figure 3.4 (c). Higher values of parameter may be considered depending on the practi-

cality of the squirmer model. We remark that such flow patterns are due to the permeability of

the porous medium. A similar trend can be seen for the puller (see Figure 3.4 (d), (e), (f)), but

the flow direction is opposite to that of the pusher. For the neutral swimmer, the streamlines do

not seem to be affected by the increase of σ as shown in Figure 3.4 (i), (j), (k). Flow lines can be

drawn by considering radial modes as well in a similar fashion.
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Pusher

Puller

Neutral

Figure 3.4
The stream line for Brinkman flow past circular cylinder of pusher, puller, and neutral squirmer
in B mode: (a), (d), and (g) σ = 0.1 (b), (g), and (h) σ = 0.18 (c), (f), and (i) σ = 1
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Pressure Variations

The graphical illustration of the pressure versus the radial coordinate r, plotted using (3.40),

for pusher is shown in Figure 3.5. Here we consider both radial and tangential modes separately.

As shown in Figure 3.5 (a), the pressure first decreases for all values of σ until a minimum value

is reached and then increases with r in the presence of tangential modes (B1 = 1 and B2 =−1).

It is also noted that the pressure decreases with the increase in the permeability. With radial

modes (see Figure 3.5 (b)), the behavior of pressure appears to be reversed. It increases first (up

to a maximum value) and then decreases for A1 = 1 and A2 = −1. For the puller, the pressure

increases for the tangential modes until reaching a maximum value for each σ and then becomes

a constant. For small values of the permeability, pressure increases much faster as in Figure 3.6

(a). Gain the behavior is reversed in the case of radial modes (see Figure 3.6 (b)). Finally, for

the neutral swimmer β2 = 0, the pressure increases linearly for tangential modes and decreases

(linearly) for the radial modes as seen from Figure 3.7 (a), (b).

Pusher

Figure 3.5
Variation of Pressure versus r with various σ at (a) B1 = 1,B2 =−1 and (b) A1 = 1, A2 =−1
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Puller

Figure 3.6
Variation of Pressure versus r with various σ at (a) B1 = 1,B2 = 1 and (b) A1 = 1, A2 = 1

Neutral

Figure 3.7
Variation of Pressure versus r with various σ at (a) B1 = 1,B2 = 0 and (b) A1 = 1, A2 = 0

Swimming Speed

The variation of the swimming speed of a cylindrical squirmer in Brinkman fluid is shown

in Figure 3.8. The plots are drawn using the expression given in (3.51) for various σ . It is
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observed that the speed in Brinkman fluid is always less than that of the squirmer in Stokes flow.

Further, the speed decreases with the radius of the squirmer and becomes almost zero for larger

values of a. This implies that the presence of permeability of the porous medium slows down the

swimming speed in Brinkman flows. It can be shown that using the asymptotic limit in (3.51)

our results can be reduced to those in Stokes flow.

Figure 3.8
Variation of swimming speed U (A1 = 0,B1 = 1) versus a with various σ
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Power

The expression for power is given in (3.54) for all modes. The result for two modes can

be extracted from the general expression for the power. The extracted result is scaled by the

power in Stokes flow (with B1 and B2 modes, see [4]) which is PS = µ

a (B
2
1 +B2

2). The plots of

the scaled power P
Ps

versus parameter σ are shown in Figure 3.9 for puller and neutral cases. It is

clear that the scaled quantity (power) increases with increasing σ in both cases. For pusher, we

have observed a similar variation with the parameter. The presented results may be of interest in

modeling cylindrical squirmer in porous medium.

Figure 3.9
Power P scaled by Stokes (a) puller B1 = 1,B2 = 1 and (b) neutral B1 = 1, B2 = 0
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CHAPTER IV: TWO-FLUID MODEL WITH SQUIRMING CYLINDER

In this chapter we present mathematical results for a squirming cylinder in a viscous fluid en-

closed by a porous medium. Similar problems in three dimensions for spherical squirmers have

been discussed in [23, 26]. The geometry of this two-fluid model is depicted in Figure 4.10.

We consider a cylindrical squirmer of radius a placed in Stokes fluid which is surrounded by the

Brinkman fluid. The boundary between the two fluids is also circular and has the radius b≥ a as

shown in Figure 4.10. The model equations in the Stokes and Brinkman flow regions as in [23]

are as follows:

Stokes region:

µ∇
2~uS = ∇pS, (4.55)

∇·~uS = 0. (4.56)

Brinkman region:

µ∇
2~uB−σ

2 pB = 0, (4.57)

∇·~uB = 0. (4.58)

We use the general solution of the Stokes equations in 2D given in [4] and (2.26) in chapter

II for the Brinkman medium to derive analytic solutions for one and two modes. The boundary

conditions on the squirmer r = a and on the outer boundary r = b are assumed as follows.

• On r = a, use surface velocity conditions given in (2.13). These are the usual conditions

for a cylindrical squirmer

• On r = b, apply the continuity of two velocities and stresses.

The BVP for this problem will have more constants to be determined using the above bound-

ary conditions. The solution procedure is similar to that used for a cylindrical swimmer in
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Brinkman fluid demonstrated in Chapter III. Below we discuss the first and second mode prob-

lems separately.

Figure 4.10
The two-fluid phase model

4.1 First Mode Problem

For the one mode problem the stream functions in the Stokes and Brinkman flow regions are

taken in the form

ψS(r,θ) =−Ur sin(θ)+a0θ +
a1

r
sin(θ)+α1r sin(θ)+β1r3 sin(θ) (4.59)

ψB(r,θ) =
γ1

r
sin(θ)+δ1K1(σr)sin(θ) (4.60)

The boundary conditions become:

On r = a, using (2.13) we must have

u(a,θ) = A0 +A1 cos(θ) v(a,θ) = B1 sin(θ) (4.61)
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On r = b the boundary conditions using the continuity of velocity and stress components can

be written as 
uS = uB, vS = vB

τSrr = τBrr, τSrθ = τBrθ

(4.62)

The velocity components, using (2.11) in the Stokes and Brinkman regions become
uS =

a0
r +

[
−U + a1

r2 +α1 +β1r2
]

cos(θ)

uB =
[

γ1
r2 +

K1(σr)
r δ1

]
sin(θ)

(4.63)

and 
vS =

[
U + a1

r2 −α1−3β1r2
]

sin(θ)

vB =
[

γ1
r2 +

(
σK0(σr)+ K1(σr)

r

)
δ1

]
sin(θ)

(4.64)

The pressure for Stokes - Brinkman region are given by

pS = 8µβ1r cos(θ) pB = µ
σ2

r
γ1 cos(θ) (4.65)

From equation (3.41) - (3.42), we calculate the stress components in the two regions which

are given by 
τSrr = µ

[
2
r2 a0 +

(
4rβ1 +

4
r3 a1

)
cos(θ)

]
τBrr = µ

[(
σ2

r + 4
r3

)
γ1 +

(
2σ

K0(σr)
r +4K1(σr)

r2

)
δ1

]
cos(θ)

(4.66)

and 
τSrθ = µ

(
4
r3 a1 +4rβ1

)
sin(θ)

τBrθ = µ

[
4
r3 γ1 +

(
σ2K1(σr)+2σ

K0(σr)
r +4K1(σr)

r2

)
δ1

]
sin(θ)

(4.67)

Using the boundary conditions (4.61) and (4.62) above, we form a system of 5 equations

involving 5 unknowns. Solving the resulting system of algebraic equations yields the coefficients

as follows:

a0 = 0 (4.68)
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a1 = (A1 +B1)
a2

2
+a4

β1 (4.69)

δ1 =
B1−A1

σK0(σb)
+

4b2(δ 2−1)
σK0(σb)

β1 (4.70)

γ1 =
b(B1−A1)K1(σb)

σK0(σb)
+

4b3(δ 2−1)K1(σb)
σK0(σb)

β1 (4.71)

α1 =
A1−B1

2
+U−2a2

β1 (4.72)

where

β1 =
(B1−A1)σK1(σb)

8bK0(σb)−4σb2(δ 2−1)K1(σb)
, δ =

a
b
. (4.73)

Imposing α1 = 0 (the force-free condition), we obtain the swimming speed U of the cylin-

drical squirmer using the two-fluid model as:

U = 2a2
β1 +

(B1−A1)

2
(4.74)

The Power is then calculated, using (3.53), in the form

P1S = 4µ

(a1

a3 +β1a
)
(
a1

a2 −a2
β1). (4.75)

In the limit σ→ 0, β1→ 0 the swimming speed reduces to US which is 1
2(B1−A1). The same

procedure for power as a = b gives

PS =
µ

a
(A1 +B1)

2, (4.76)

which is the result for a cylinder in Stokes flow [4].

4.2 Second Mode Problem

Following the same approach as in the first mode problem and applying the relevant boundary

conditions we can derive analytic solutions for the two-mode problem. The stream functions in

the two fluid phases are

ψS(r,θ) =
a2

r2 sin(2θ)+α2r2 sin(2θ)+ ε2r4 sin(2θ)+κ2 sin(2θ) (4.77)
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ψB(r,θ) =
γ2

r2 sin(2θ)+δ2K2(σr)sin(2θ) (4.78)

The boundary conditions are now the following.

On r = a, using equation (2.13)

u(a,θ) = A2 cos(2θ) v(a,θ) = B2 sin(2θ) (4.79)

On r = b, using the continuity of velocity and stresses conditions
uS = uB, vS = vB

τSrr = τBrr, τSrθ = τBrθ

(4.80)

Using (2.11), the velocity components of the Stokes and Brinkman regions are
uS =

[
2a2
r3 +2rα2 +2r3ε2 +

2κ2
r

]
cos(2θ)

uB =
[

2γ2
r3 + 2K2(σr)

r δ2

]
sin(2θ)

(4.81)

and 
vS =

[
2a2
r3 −2rα2−4r3ε2

]
sin(2θ)

vB =
[

2γ2
r3 +

(
σK1(σr)+ 2K2(σr)

r

)
δ2

]
sin(2θ)

(4.82)

The pressure in the respective regions become

pS = µ

(
12ε2r2 +

4κ2

r2

)
cos(2θ) pB = µ

σ2

r2 γ2 cos(2θ) (4.83)

From (3.41) and (3.42), the stress components are found to be
τSrr = µ

[
12a2

r4 −4α2 +
8κ2
r2

]
cos(2θ)

τBrr = µ

[(
σ2

r2 + 12
r4

)
γ2 +

(
4σ

K1(σr)
r +12K2(σr)

r2

)
δ2

]
cos(2θ)

(4.84)

and 
τSrθ = µ

(
12
r4 a2 +4α2 +12r2ε2 +

4κ2
r2

)
sin(2θ)

τBrθ = µ

[
12
r4 γ2 +

(
2σ

K1(σr)
r +σ2K2(σr)+12K2(σr)

r2

)
δ2

]
sin(2θ)

(4.85)
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The 6 constants are determined using the boundary conditions and are given by

a2 =
a3

2
B2 +a4

α2 +2a6
ε2 (4.86)

δ2 =
(B2−A2)δ

σK1(σb)
+

4b(δ 2−1)
σK1(σb)

α2 +
6b3(δ 4−1)

σK1(σb)
ε2 (4.87)

γ2 =

[
(A2−B2)(4aK1(σb)−σabK2(σb))

σ2K1(σb)

]
+

[
−16a2K1(σb)+4σb3(δ 2−1)K2(σb)

σ2K1(σb)

]
α2

+

[
−24a4K1(σb)+6σb5(δ 4−1)K2(σb)

σ2K1(σb)

]
ε2

(4.88)

κ2 =

(
A2−B2

2

)
a−2a2

α2−3a4
ε2 (4.89)

where

α2 =

[
(A2−B2)(2aK1(σb)−σabK2(σb))
8a2K1(σb)−4σb3(δ 2−1)K2(σb)

]
−
[

6b4(δ 4 +1)K1(σb)−3σb5(δ 4−1)K2(σb)
4a2K1(σb)−2σb3(δ 2−1)K2(σb)

]
ε2

(4.90)

and

ε2 =
(Π1−2Π2)K1(σb)+(σb2Π2)K2(σb)

(Π3−2Π4−96b5)K1(σb)+(σbΠ4)K2(σb)
(4.91)

where

Π1 =−2σ
2ab3A2 (4.92)

Π2 = 12σ
5a4b4B2(A2−B2)(δ

2−1)(δ 4−1) (4.93)

Π3 = (δ 2−1)(8σ
2b7−24σ

2a2b5) (4.94)

Π4 = b(δ 2−1)[σ2b6(δ 6−1)+3σ
2a2b4(δ 2−1)+48b4] (4.95)

The swimming speed does not depend on the second mode. The power obtained using (3.53)

is

P2S = 8µ

[
3a2

2
a7 +

3a2κ2

a5 +
κ2

2
a3 −α

2
2 a−3α2ε2a3−3ε

2
2 a5
]

(4.96)
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For small argument of the Bessel functions σ → 0, the above result reduces to the one given

by Blake [4] which reads

PS =
µ

a
[2(A2

2 +B2
2)+2A2B2]. (4.97)

For general modes the calculations can be repeated by using the same approach as above.
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CHAPTER V: SUMMARY AND CONCLUSIONS

The squirming motion of a circular cylinder in porous media modeled by the Brinkman equa-

tions is addressed in this thesis. Exact analytical solutions for a cylindrical squirmer embedded

Brinkman fluid are obtained by solving the fourth order boundary value problem for the stream

function. The closed form analytic solutions are then used to calculate the swimming speed and

power due to the squirming cylinder. It is found that the dimensionless parameter σ significantly

affect the physical quantities in the model. Specifically, the following conclusions are drawn

from our mathematical analysis of the squirming cylinder problem.

• Dimensionless parameter σ induces quadrupolar streamline patterns in the flow. Saddle

points exist in the vicinity of the cylindrical squirmer for larger permeability.

• The pressure for the pusher (β2 < 0) and puller (β2 > 0) have maximum and minimum

values for various permeability values of the porous medium. For the neutral swimmer

(β2 = 0), the pressure is a linear increasing or decreasing function. Here β2 = B2
B1

, is the

ratio of the first and second modes of oscillation induced via boundary conditions.

• The swimming speed U is always less than that of a cylindrical swimmer in Stokes flow.

In fact, it is found to decrease for increasing values of σ .

• The power due to the squirming motion of the cylinder increases or decreases based on the

normalizing factor. For a specif normalization, the power could be an increasing function

of σ .

• σ→ 0 limit yields results for a squirming cylinder in Stokes flow, but the velocities contain

logarithmic functions that do not become finite at infinity [19].
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Our results for a squirming problem are compact and can be implemented in practice quite

easily. In order to demonstrate the efficacy of our approach, we solved a two-fluid model for

the squirming of a cylinder in a viscous fluid surrounded by the outside Brinkman medium.

The calculations yielded closed form solutions involving the first and second modes of surface

oscillation. The calculated swimming speed and power correctly reproduces the corresponding

results in Stokes flows. Derivation of solutions, speed and power calculations can be done in

similar fashion explained in this thesis. We believe that our results can be utilized for a better

understanding of various swimming mechanisms in porous media.
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