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ABSTRACT

In the context of circular statistics, data may not behave uniformly around the circle,

exhibiting a preferred direction, thus the need to find appropriate methods to detect departures

from a uniform distribution. First, we discuss some uniformity tests for circular data. Then, a

likelihood ratio test (LRT) is proposed using standard statistical theory. The cardioid distribution

seems particularly adequate as an alternative hypothesis for the LRT when data show a smooth

transition in a unimodal preferred direction. Second, when the data are not uniformly distributed,

we apply different circular regression methods to devise the patterns of dependence on some

independent variables. When the distributional assumptions for parametric regression analysis are

violated, a bootstrap method is proposed to test the regression coefficients. Finally, we have

applied the uniformity tests and the circular regression methods to analyze wind directional data.

Numerical results are summarized in tables for comparison purposes. We observe consistent

results that the wind direction is not uniformly distributed via the uniformity tests. For the

regression methods, we notice that wind speed is not significant to predict direction while the

pattern of wind direction depends on the circular variable time of day.

v



TABLE OF CONTENTS

CONTENTS PAGE

ABSTRACT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . v

TABLE OF CONTENTS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . vi

LIST OF FIGURES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . vii

LIST OF TABLES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . viii

CHAPTER I: INTRODUCTION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.1 Circular Statistics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.2 Outline of Research . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

CHAPTER II: CIRCULAR STATISTICS . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

2.1 Von Mises Distribution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

2.2 Uniform Distribution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

2.3 Circular Beta Distribution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

2.4 The Cardioid Distribution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

2.5 The Semicircular Normal Distribution . . . . . . . . . . . . . . . . . . . . . . . . 13

CHAPTER III: METHODOLOGY . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

3.1 Tests for Uniformity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

3.2 Rayleigh Test . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

3.3 Kuiper’s Test . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

3.4 Likelihood Ratio Test . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

3.5 Bootstrap for Circular Regression Coefficients . . . . . . . . . . . . . . . . . . . . 18

CHAPTER IV: DATA ANALYSIS AND APPLICATIONS . . . . . . . . . . . . . . . . . . 20

4.1 Data Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

CHAPTER V: CONCLUSIONS AND FUTURE RESEARCH . . . . . . . . . . . . . . . . 29

REFERENCES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

vi



LIST OF FIGURES

FIGURES PAGE

1.1 Randomly generated data with a uniform distribution for n observations . . . . . . . . 5

1.2 Wind rose plot of the directions for the months of January to June of 2011 at the Nueces

Bay in Corpus Christi, Texas . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

2.3 Two directions on the unit circle, 3◦ and 357◦ . . . . . . . . . . . . . . . . . . . . . . 9

2.4 Von Mises densities . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

2.5 Uniform density . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

2.6 Cardioid densities . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

4.7 Monthly data, year 2011 and 2012 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

4.8 Monthly data, year 2013 and 2014 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

4.9 Four year data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

4.10 Yearly circular plots wind direction and wind speed . . . . . . . . . . . . . . . . . . . 25

vii



LIST OF TABLES

TABLES PAGE

4.1 Coefficient matrix and P-values . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

viii



CHAPTER I: INTRODUCTION

Circular statistics (Jammalamadaka, 2001) is an area within statistics concerned with analyzing

data being plotted on the unitary circle. In the aforementioned context, we consider statistical

inference including the detection of deviations from uniformity, von Mises distributions in an

appropriate manner and bootstrap tests for the circular regression.

1.1 Circular Statistics

A branch of statistics that studies the techniques necessary to analyze data that has circular or

cyclic origin is called circular (or directional) statistics. Circular observations can be plotted on a

circle with radius one. Circular statistics has a wide range of possibilities for analysis, connecting

both circular and linear data. There are various scientific areas that can benefit from it.

In physics, obtaining rotation measurements from circular spectral polarization data, this is

achieved using the maximum likelihood for a distribution with no fluctuation under coordinate

transformation. The von Mises distribution works for this purpose. In Medicine, the analysis and

classification of heart rhythm with electrocardiogram-waves is achieved with the readings of the

periodicity of signals, extended through out segments with no intersection and R-waves

observations on the unit circle. In chemistry, detecting uniformity of data in chemical processes

such as in a research for decreasing effectiveness of electrolysis and flow reactor with different

increased temperatures in a tank has been performed by applying three procedures for this

purpose in circular statistics, such as Rao’s spacing test, Kuiper’s V-test and Rayleigh’s test

(Mardia, 2000). In biology, commonly animal behavior has a unimodal departure from a uniform

distribution, but the multimodal case is also possible. For instance, it is known that domestic cats

are active during the night, with a null hypothesis of uniformity for the activity of cats and an

alternative hypothesis stating the opposite, because we know that cats have two peaks of activity,

in the morning and in the evening our results should be able to show a multimodal distribution.
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More recently in probabilistic machine learning, there has been going on some research trying to

connect circular statistics to machine learning, topics that traditionally have not been researched

together, for example applying models and approximate inference algorithms, using the

Multivariate Generalized von Mises distribution that is the equivalent Gaussian distribution on the

circle.

Circular statistics originated from the necessity to represent directions but also to obtain

meaningful statistical analysis and inference. For the two-dimensional case, directions are plotted

as points on the unitary circle, these are are called circular data. Three-dimensional unit vectors

are represented by two angles, or observations on the unit sphere, they are also known as spherical

data and even multivariate data can also be represented on the unit hypersphere. Our research will

be based on the two dimensional case.

There are different manners to represent circular data. Let us focus on the most important ones,

the compass and the clock. On the compass, circular data can be visualized as angles, either in

degrees or radians, starting at a specific point, this is our ”zero”. On the clock, we can measure

specific times in terms of the 24 hours of the day. Both types can rotate either clockwise or

anti-clockwise. Since we work in the unit circle, directions are just unit vectors, this simplifies its

representation, making it possible to allocate points around the circle, this means there is no need

take into account magnitude. The numerical representation of a given direction depends on the

choice of zero and direction of rotation.

In circular statistics, circular data is used to perform statistical analysis and inference.

Observations are located on the unitary circle and these angles can be represented in either

degrees or radians. Another type of data that can be used in circular statistics is axial data or

representations of axes, which are observations on the unit circle, any angle θ = θ +180◦, that

means there is equivalence between one observation and another one in the exact opposite

direction. One way to treat axial data is to do a transformation, from θ to 2θ and use the full

circle.

In the statistical background, there are a great amount of documentation on obtaining meaningful
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results, in order to find how variables are affected by other variables for linear models, we know

that the simplest case of a linear regression for two linear variables (Rencher, 2008) is of the form

y = β0 +β1x+ ε (1.1)

where the y is the response variable, β0 is the intercept, β1 is a coefficient or slope of the

regression and ε is the error.

Simple linear regression cannot be used on circular data directly, but the theory of linear models

and its applications have been adapted to circular statistics in order to obtain useful information

and make inference about a specific data set.

In circular statistics, when we want to obtain information about the existence of relationship

between two variables, namely the response and explanatory variables, we can define a circular

correlation and a circular regression (Lee, 2010). Correlation is a descriptive statistic about the

relationship between the variables. The circular correlation has a value of zero if the variables

have no linear relationship, and takes on values in the interval [−1,1] generally. For the circular

regression, we have the circular-linear models and the circular-circular models. The

circular-linear regression is based on an infinite cylinder. For the circular-circular regression, we

can intuitively describe two associations related in regards to the variables, a positive and a

negative toroidal associations. The first one means that when one circular variable proceeds

clockwise around the circle so does the other one, and the second one happens when we have a

anticlockwise progression of one variable, so the other variable has the same sense of rotation.

When there are violations of distribution assumptions, we need to use the bootstrap technique

(Efron, 1993). The bootstrap is a data-and-computer based simulation method for statistical

inference, assigning measures of accuracy to statistical estimates. Bootstrap samples are

generated from an original data set. Each bootstrap sample has n elements, generated by sampling

with replacement n times from the original data set. Bootstrap replicates are obtained by

calculating the value of the statistic on each bootstrap sample, these replicates contain

information that can be used to make inferences about our data.

3



Some advantages about the bootstrap is that is a simple technique, though having estimators with

certain complexity, we can obtain both their standard errors and confidence intervals. When

having limited resources/data, bootstrap is excellent. It also good for comparison purposes for

stability of our parametric results and it has asymptotic accuracy.

The simplest application of bootstrap is the bootstrap percentile method, which consists of

creating a large number of replicates of a sample statistic. Subsequently we remove a small

portion from the upper and lower part of the data, and the extremes of the remaining data define

the confidence limits of the population. In general, resampling methods let us perform the

estimation of population variables by resampling continuously, they can be used for a large

number of situations.

In the following graphs we present two examples of randomly generated data sets using a uniform

distribution. We generated 30 observations in the first one we generate 30 observations and 360

observations in the second one. When n=30, the observations on the circumference do not look

evenly distributed, we intuitively see that 30 is a small number to obtain those results despite of

the fact that the data was generated with a uniform distribution. When n = 360, there are almost

no ”empty spots” in the circle. Observations in the second graph appear uniformly distributed.

4



Figure 1.1: Randomly generated data with a uniform distribution for n observations

Another example of circular data is the wind directions for the months of January to June of 2011

at the Nueces Bay in Corpus Christi, Texas (See Figure 1.2.). We observe that the data are

clustered towards the southeast.
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Figure 1.2: Wind rose plot of the directions for the months of January to June of 2011 at the
Nueces Bay in Corpus Christi, Texas

1.2 Outline of Research

CHAPTER II: CIRCULAR STATISTICS

In this chapter we present the basic concepts about circular statistics. We emphasize the

differences for the calculation of something as simple as the mean, variance, which are not the

same for the linear statistics.

CHAPTER III: METHODOLOGY

We present the methods that will be used in our research. In particular, we introduce the

likelihood ratio test, its assumptions, and discuss why it is useful. The bootstrap method is also in

6



this chapter, how this works, and how its is applied to regressions.

CHAPTER IV: DATA ANALYSIS AND APPLICATIONS

Having a big four-year data set can sometimes be complicated. To simplify, we visualize our data

by different time periods. We then proceed to test our assumptions by performing different tests

with different hypothesis. We also perform some regressions with different variables serving as

dependent and independent, where we have the circular-circular case and the circular-linear case.

CHAPTER V: FINDINGS/RESULTS

After applying all the methods, doing some comparison and analyzing, we present our refined

results.

CHAPTER VI: CONCLUSIONS

Finally, we state the conclusions for this research, and what we can do in the future in this still

rich source for innovation in the field of circular statistics.

7



CHAPTER II: CIRCULAR STATISTICS

In this chapter we present some important concepts about circular statistics and the notation to be

used during this research document.

Mean Direction

The way to properly calculate the mean for circular data (Fisher, 1993) is as follows

C =
n

∑
i=1

cosθi,S =
n

∑
i=1

sinθi,R2 =C2 +S2(R≥ 0)

where θi for i = 1,2, ...n are circular observations as angles.

For these unitary vectors, we get the resultant vector at the component level, so we have the

following

cosθ̄ =
C
R

, sinθ̄ =
S
R

or

θ̄ =


tan−1(S/C) S > 0,C > 0

tan−1(S/C)+π C < 0

tan−1(S/C)+2π S < 0,C > 0

Estimating the reference direction of the mode cannot be done by the arithmetic mean of all the

directions. We observe in the following graph two directions 3◦ and 357◦, clearly the arithmetic

mean is 180◦ but both directions are close on the unit circle, this is a simple counterexample of

why calculating the the arithmetic mean for directions will not work as with linear data.
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Figure 2.3: Two directions on the unit circle, 3◦ and 357◦

Variance and standard deviation

According to (Fisher, 1993), the mean resultant length is R̄ = R
n ∈ (0,1), the sample circular

variance is V = 1− R̄, where 0≤V ≤ 1, and the sample circular standard deviation is

ν = [−2log(1−V )]
1
2 .

2.1 Von Mises Distribution

A remarkable fact about the von Mises distribution is that this is the circular distribution

equivalent to the Gaussian distribution on the line, its probability density function (Fisher, 1993)

is

f (θ) = [2πI0(κ)]
−1eκcos(θ−µ) (2.2)

with 0≤ θ < 2π,0≤ κ < ∞, where

I0(κ) = (2π)−1
2π∫
0

eκcos(φ−µ)dφ (2.3)

9



The cumulative distribution function is

F(θ) = [2πI0(κ)]
−1

θ∫
0

eκcos(φ−µ)dφ

In the following graph we have von Mises densities with different values for κ

κ = 0.5

0

π

2

π

3π

2

+

κ = 1

0

π

2

π

3π

2

+

κ = 5

0

π

2

π

3π

2

+

κ = 9

0

π

2

π

3π

2

+

Figure 2.4: Von Mises densities

2.2 Uniform Distribution

The probability density function for the uniform distribution (Fisher, 1993) is

f (θ) =
1

2π
,0≤ θ < 2π

The cumulative distribution function is

10



F(θ) =
θ

2π
(2.4)

with 0≤ θ < 2π

In the following graph we have the uniform density

0

π
2

π

3π
2

+

Figure 2.5: Uniform density

2.3 Circular Beta Distribution

The probability density function of the circular beta distribution (Lai, 1994) is

f (θ) =
1

2α+β B(α,β )
(1+ cos(θ))α− 1

2 (1+ cos(θ))β− 1
2 (2.5)

where B(α,β ) = Γ(α)Γ(α)
Γ(α+β ) is the Beta function and α,β > 0 and θ ∈ [0,2π]
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2.4 The Cardioid Distribution

The cardioid distribution is also called cosine distribution. It is unimodal and symmetric, with

probability density function

f (θ) =
1

2π
[1+2ρcos(θ −µ)] (2.6)

with 0≤ θ < 2π,0≤ ρ ≤ 1
2 , where ρ is the concentration parameter.

The cumulative distribution function (Fisher, 1993) is

F(θ) = (
ρ

π
)sin(θ −µ)+

θ

2π
,0≤ θ ≤ 2π

In the following graph we have cardioid densities for different values of ρ

ρ = 0

0

π

2

π

3π

2

+

ρ = 0.25

0

π

2

π

3π

2

+

ρ = 0.35

0

π

2

π

3π

2

+

ρ = 0.5

0

π

2

π

3π

2

+

Figure 2.6: Cardioid densities
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2.5 The Semicircular Normal Distribution

The probability density function of the semicircular normal distribution (Guardiola, 2006) is

f (θ) =
1√
2πφ

sec2(θ)exp[−tan2(θ)

2φ 2 ],−π

2
< θ <

π

2
,φ ∈ℜ

+

This distribution works for axial data.

The cumulative distribution function is

F(α) =

α∫
µ− π

2

1√
2πφ

sec2(θ −µ)exp[−tan2(θ −µ)

2φ 2 ]dθ =
1
2

er f [
tan(α−µ)√

2φ
]
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CHAPTER III: METHODOLOGY

3.1 Tests for Uniformity

We have defined the objective of our research to devise a parametric hypothesis test that can

detect departures from uniformity. Currently there exist methods that can be applied to solve

problems of the same nature such as the Rayleigh test and the omnibus test. We are using as the

target unimodal distribution for a hypothesis test. Possible candidate distributions include the

cardioid, the semicircular normal distribution, von Mises, the circular beta distribution or other

plausible options.

Fulfilling the goal of obtaining a parametric hypothesis test procedure, we employ the cardioid

distribution and derive a likelihood ratio test procedure. Without loss of generality, we assume

that the preferred direction or seasonality is already known, then set the null hypothesis as the

concentration parameter ρ equal to zero, and the alternative as ρ not equal to zero. Next we

obtain both likelihood functions under the null-joint distribution and the corresponding likelihood

function under the alternative hypothesis, then we are able to obtain the corresponding ratio Λ,

details are in 3.2.

3.2 Rayleigh Test

The Rayleigh test (Mardia, 2000) is a test of uniformity with a von Mises alternative. We will use

u = (λcos(θ),λ sin(θ))T as the parameter for the distribution, where λ is the concentration

parameter. The likelihood function for circular observations φ1...,φn is

l(u;φ1...,φn) = nuT x̄−n log I0(λ ) (3.7)

where

14



x̄ =
1
n

n

∑
k=1

(cos(φk),sin(φk))
T (3.8)

is the mean. Taking the partial derivative with respect to uT , we obtain

W =
∂ l(u;φ1...,φn)

∂uT = nx̄−nB(λ )(cos(θ),sin(θ))T (3.9)

When λ = 0, we have W = nx̄ and we get

var(W ) =
1

2n
I2 (3.10)

and so we obtain the statistic for the Rayleigh test

W T var(W )−1 = 2nR̄2 (3.11)

Theory says that for a uniform asymptotic distribution of a large sample 2nR̄2 (Mardia, 2000) will

behave

2nR̄2 −→ χ
2
2 (3.12)

3.3 Kuiper’s Test

Research in circular statistics has a natural inspiration from linear models. Kuiper’s test is not the

exception, similar to tests in linear models obtained by comparing the hypothesized and the

empirical cumulative distribution function. Kuiper’s test (Mardia, 2000) is obtained in a similar

way using the both cumulative distribution functions in the unit circle.

For the empirical cumulative distribution function Kn, the φ1, ...φn observations become

φ0, ...φn+1, where φ0 = 0 and φn+1 = 2π , having defined the orientation and our ”zero” or initial

point we define Kn as

Kn =
k
n
, (3.13)

15



where k = 1, ...n and φk < φ < φk+1

J+n = sup
φ

(Kn(φ)−F(φ)) (3.14)

and

J−n = sup
φ

(F(φ)−Kn(φ)) (3.15)

where F(φ) = φ

2π
is the cumulative distribution function of the uniform distribution and Kn the

empirical distribution. Finally we have Kuiper’s test statistic

Vn = J+n + J−n (3.16)

J+n and J−n are dependent on the ”zero” or initial direction, but Vn does not depend on the initial

direction. We consider a null hypothesis of uniformity. Kuiper’s test works for uniformity against

all alternatives. It is difficult to obtain an analytical form for the null distribution. The commonly

used critical values for

V ∗n = n
1
2Vn(1+

0.155√
n

+
0.24

n
) (3.17)

are given in the table below:

α 0.1 0.05 0.025 0.01
V ∗n 1.62 1.747 1.862 2.001

3.4 Likelihood Ratio Test

The likelihood ratio test (Miller, 2014) is a method for establishing test procedures, that often

produces tests with satisfactory properties. Let Ω be the parameter space, and let ω be a region

within Ω. Likelihood ratio tests are defined as follows:

Define L0 to be the maximum value of the likelihood function for θ ∈ ω , and L to be the

maximum over θ ∈Ω. Then the likelihood ratio

16



λ = maxL0
L

therefore we get the critical region

λ ≤ k

where 0 < k < 1, defines a likelihood ratio test of the null hypothesis θ ∈ ω against the alternative

hypothesis θ ∈ ω
′
.

A very well-known result in statistics is that the likelihood ratio test −2logΛ→ χ2
(1) under

regularity conditions, this comes from (Wilks, 1938) when he proposed the test

W =−2logΛ (3.18)

with 0≤W < ∞.

The likelihood ratio test with the uniform circular distribution as the null hypothesis and the

cardioid distribution as the alternative has hypotheses:

H0 : ρ = 0

H1 : ρ > 0

The likelihood function under the null-joint distribution is

L(ρ = 0) =
n

∏
i=1

(
1

2π
) = (

1
2π

)n

while the likelihood function under the alternative

L(ρ > 0) =
n

∏
i=1

1
2π

[1+2ρcos(θi−µ)]

= (
1

2π
)n

n

∏
i=1

[1+2ρcos(θi−µ)]

The ratio of two likelihood functions is

Λ =
L(ρ = 0)
L(ρ > 0)

17



Estimation of concentration parameter P

ρ̂ = R̄1 =
1
n ∑cos(αi) =

1
n ∑cos(θi)

Substituting into the likelihood ratio for ρ we have

Λ =
n

∏
i=1

[1+
2
n
(

n

∑
j=1

cos(θ j))cos(θi)]
−1.

The likelihood ratio test statistic is −2logΛ. According to (Self, 2012), the asymptotic

distribution of the likelihood ratio test is a 50:50 mixture of two χ2 random variables χ2
0 and χ2

1 .

3.5 Bootstrap for Circular Regression Coefficients

According to (Fisher, 1992), a circular-linear regression model is

E(y) = µ +2tan−1(βx), (3.19)

where y is the response variable and x is the independent variable. (Fisher, 1992). We will use the

bootstrap to test this model because want the verify the stability of the results we obtain from the

coefficients.

There are two different approaches for bootstrapping regressions, assuming predictors are random

or fixed. The first ones change in every sample and the second ones do not.

18



The algorithm for the bootstrap is:

• Simulation of uniform random integers with replacement, ui for i = 1...n

• Bootstrap sample sb = (yui,xui), b = 1, ...B

• Obtaining βb using the bootstrap sample

• Find a (1−α) bootstrap confidence interval for the regression coefficient. When zero is in

the confidence interval, we fail to reject the H0 and if it does not contain zero, we reject the

null hypothesis.

19



CHAPTER IV: DATA ANALYSIS AND APPLICATIONS

The data that we have used for our analysis consists of 35,064 readings taken every hour at :00

minutes, for 4 years, from January 1, 2011 to December 31, 2014. Each reading consists of wind

direction and wind speed at a station in the Nueces Bay in Corpus Christi, Texas. The data has

two different variables, wind direction and wind speed. The rotation direction is clockwise and

the ”zero” in located in the north, wind direction measurements are in [0◦,360◦], while wind

speed measurements were in m/s. Later on we use the first one as a the response variable and

wind speed as the explanatory variable. Whenever we encountered missing data, where we lack

one of the measurements, we discarded the other measurement for the same time. Our main goal

is to come up with a new test for uniformity, this data will help us verify the validity of our test.

4.1 Data Analysis

In figure 4.7, we can see that for the year 2011, the months of March, May, June, July and August

have a similar trend for the directions, in this case southeast. For other months, we cannot see a

very well defined direction, like on January, September and December. Second, for the year 2012,

the months of March, April, May, July and October have a similar trend for the directions, in this

case southeast. For other months, we cannot see a very well defined direction, like on January,

February, November and December. In figure 4.8, for the year 2013, the months of May, June and

October have a similar trend for the directions, in this case southeast. For other months, we

cannot see a very well defined direction, like on January, February, September, November and

December. Finally, for the year 2014, the months of May, June and July have a similar trend for

the directions, in this case southeast. For other months, we cannot see a very well defined

direction, like on January, February, September, October, November and December. In general,

wind directions seem to be similar though not exactly the same month by month,year by year.
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Figure 4.7: Monthly data, year 2011 and 2012

Figure 4.8: Monthly data, year 2013 and 2014
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Figure 4.9: Four year data
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In the following table we have all the mean directions in a monthly presentation for all the

four-year data. In a general way we observe that the mean direction is consistent for every month

year by year with some exceptions like February of 2011, January of 2012 and December of 2012

just to mention some.

Mean directions

Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec
2011 70.69 144.77 137.51 152.41 145.47 148.4 160.05 157.97 145.1 117.87 138.4 63.04
2012 129.82 87.49 152.48 142.51 140.12 142.72 161.58 157.98 129.14 124.07 108.2 124.23
2013 75.36 96.05 131.95 121.52 144.79 148.35 149.95 105.67 104.13 128.51 71.64 94.12
2014 78.74 85.46 105.12 136.43 154.73 156.81 153.92 149.82 104.13 128.51 71.64 78.48

Four-year data analysis summary

We perform the Rayleigh test and Kuiper’s test on the data. For the Rayleigh test we observe that

the values for the statistic are similar for the four years, the P-value< 0.0001 for the same test and

period of time, because of the significant values we reject the null hypothesis of uniformity of the

data. For Kuiper’s test we find that the values of the statistics are similar for the year 2011 and

2012 and also a similar value for the years 2013 and 2014, all of the P-values are significant with

< 0.01, therefore we reject the null hypothesis of uniformity. After performing both tests, we

obtain the same conclusion for the hypothesis test.

Rayleigh Test on the four-year data

The values for the test are:

Values 2011 2012 2013 2014
Statistic 0.5 0.49 0.45 0.44
P.value <0.0001 <0.0001 <0.0001 <0.0001

All the values for the statistic similar, all P-values are significant, so we reject the null hypothesis

of uniformity of the data.
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Kuiper’s Test on the four-year data

The values for the test are:

Values 2011 2012 2013 2014
Statistic 36.24 34.02 30.37 28.94
P-value <0.01 <0.01 <0.01 <0.01

All of the P-values are significant, therefore we reject the null hypothesis of uniformity.

Likelihood ratio test

For computational purposes and since data behave similarly for all four years, we used the wind

data for year 2011 to perform the likelihood ratio test, for the maximum likelihood estimate of the

cardioid distribution we use the function ”cardioid” in the R (R Core Team, 2018) package called

”VGAM” (Yee, 2018). We get the test statistic

Λ = 2(logL(ρ > 0)− logL(ρ = 0)) = 4028.133

The test statistics is so large that it is significant. Based on the likelihood ratio test, our conclusion

is to reject the null hypothesis of uniformity. Our conclusion for the tests in consistent with the

Rayleigh test, Kuiper’s test, with a similar significance.
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The relationship between direction and speed

Our first attempt to obtain the relationship between DIR(wind direction) and SPEED(wind speed)

uses circular-linear regression. We observe in the following graphs that wind direction and speed

are similar for all years

Figure 4.10: Yearly circular plots wind direction and wind speed
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The circular model is given below

E(DIR) = µ +2tan−1(βSPEED), (4.20)

where DIR is the circular dependent variable of the model, SPEED is the linear independent

variable, β is the regression coefficient. Both β and µ are unknown parameters. We assume that

the response has a von Mises distribution, which is the equivalent to the gaussian distribution in

circular statistics. The independent variable SPEED has the wind speed measurement

corresponding to each measurement for each wind direction contained in the circular dependent

variable DIR at each specific time. Equation(4.20) was originally proposed by (Fisher, 1992).

We have used the open source statistical programming language R (R Core Team, 2018) to run

the circular regression to estimate this relationship. We run the regression for each year for 2011,

2012, 2013 and 2014, using a data set for each year. The library ”Circular” (Agostinelli & Lund,

2017) is used, the aforementioned model is included in this library with the function called

”lm.circular”, specifying the argument type in this case that we need a circular linear regression

with type==”c-l”.

The results are shown below:

Year Estimate Std. Error t value P-value Log-likelihood µ κ

2011 -0.2846 0.2765 1.029 0.152 0.7569 2.421 0.01862
2012 0.1945 0.1885 1.032 0.151 0.6433 -0.3189 0.01712
2013 0.5446 0.4753 1.146 0.126 1.583 -2.357 0.02689
2014 -0.2142 0.223 0.961 0.168 0.5641 0.8173 0.01606

The standard error is < 0.3 for all four cases except for 2013 when it is close to 0.48. The

P-values are consistent year by year being > 0.05 each time, showing all four cases not

significant. In other words, wind speed is not useful for predicting wind direction.
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The relationship between direction and time

We attempt to obtain the relationship between DIR and TIME, by a circular-circular regression,

where DIR is wind direction and TIME is time of day. The circular model (Jammalamadaka,

2001) is given below

E(eiDIR|T IME) = ρ(T IME)eiµ(T IME) = g1(T IME)+ ig2(T IME), (4.21)

where DIR is the circular dependent variable of the model, TIME is the circular independent

variable. We have a joint probability density function f (T IME,DIR) where

0 < T IME,DIR≤ 2π . The model is conditional where µ(T IME) is the mean direction of DIR

given TIME, 0≤ ρ(T IME)≤ 1 is the conditional concentration towards this direction.

E(cos(DIR)|T IME) = g1(T IME), (4.22)

E(sin(DIR)|T IME) = g1(T IME), (4.23)

we can estimate DIR by

µ(T IME) = ˆDIR = tan−1 g2(T IME)
g1(T IME)

, (4.24)

where

g1(T IME)≈
m

∑
k=0

(Akcos(kT IME)+Bksin(kT IME)) (4.25)

g2(T IME)≈
m

∑
k=0

(Ckcos(kT IME)+Dksin(kT IME)), (4.26)

So this is a general linear model:

cos(DIR)≈
m

∑
k=0

(Akcos(kT IME)+Bksin(kT IME))+ ε1 (4.27)
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sin(DIR)≈
m

∑
k=0

(Ckcos(kT IME)+Dksin(kT IME))+ ε2 (4.28)

according to (Ibrahim, 2013) (ε1,ε2) is a vector whose errors are random and normally

distributed. It has mean 0 and Σ is the variance matrix being unknown. Also according to

(Ibrahim, 2013), Ak,Bk,Ck and Dk (these are given below in table 4.1) are parameters with

k = 0, ...,m, where m is the suitable degree and both Σ and the standard errors can be estimated.

The independent variable TIME has the hourly time of the day at 00 minutes corresponding to

each measurement for each wind direction contained in the circular dependent variable DIR.

We use ”R” to run the regression for the years 2011, 2012, 2013 and 2014, using only one data set

for all four years. The library ”Circular” is again used, the aforementioned model is also included

in this library with the same function ”lm.circular”, specifying the argument type now in this case

a circular circular regression with type==”c-c”.

The results are shown below:

Table 4.1: Coefficient matrix and P-values

cos(DIR) sin(DIR)
Intercept 0.005992265 -0.0008707743
cos(T IME) 0.003933059 0.0157443501
sin(T IME) 0.008331328 -0.012337775
P-values 0.5055681 0.02068436

From the coefficient matrix, the first column are the estimated coefficients used for the prediction

the cos(DIR) and the second column are the estimates for the prediction of sin(DIR). The the

P-values are used to test the significance for the trigonometric terms being different from zero. In

this case the P-value for sin(DIR) is 0.02068436 < 0.05, resulting significant, the model can

successfully predict North-South but not East-West.
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CHAPTER V: CONCLUSIONS AND FUTURE RESEARCH

Comparing results

Some advantages and disadvantages for the tests are:

Tests Advantages Disadvantages
Rayleigh Test (Mardia, 2000) Modified is negligible when compared to the χ2

2 May not work for sample small sizes
Works for a von Mises alternative hypothesis the regular Rayleigh test is used

Kuiper’s test (Mardia, 2000) Consistent against all alternatives and distribution-free May not work for sample small sizes
Likelihood ratio test Since it is smooth, it is designed to be powerful (Feltz, 2001) May not work for sample small sizes

for alternatives with smooth changes in the null pdf

Conclusion

Having applied uniformity analysis to the four-year data such as Rayleigh test and Kuiper’s test,

we obtained significant results. For the regression models, we found that for each year wind speed

is not useful in predicting our response (wind direction) but for the circular-circular model, we

found that indeed time is useful when predicting our dependent variable. When we have

unimodality, the best test is the Rayleigh test, for bi-modality and multi-modality Kuiper’s test is

our best option and for smooth departures from uniformity, a good test would be the likelihood

ratio test based on the cardioid distribution.

Future research

According to (Feltz, 2001) the Kuiper test is based on the famous test on the line known as

Kolmogorov-Smirnoff. One possible alternative that may be worth to explore in order to improve

detection of departures from uniformity is to obtain the the average of the absolute value of J+n

and J−n instead of its sum.

29



REFERENCES

Agostinelli, C., & Lund, U. (2017). R package circular: Circular statistics (version 0.4-93)

[Computer software manual]. CA: Department of Environmental Sciences, Informatics and

Statistics, Ca’ Foscari University, Venice, Italy. UL: Department of Statistics, California

Polytechnic State University, San Luis Obispo, California, USA. Retrieved from

https://r-forge.r-project.org/projects/circular/

Efron, B., & Tibshirani, R. (1993). An introduction to the bootstrap. Chapman & Hall/CRC.

Feltz, C., & Goldin, G. A. (2001). Partition-based goodness-of-fit tests on the line and the circle.

Aust. N.Z. J. Stat.(43), 207-220.

Fisher, N. (1993). Statistical analysis of circular data. Cambridge University Press.

Fisher, N., & Lee, A. (1992). Regression models for an angular response. Biometrics(48),

665-677.

Guardiola,J.H., Stamey,J.D., Seaman,J.W. and Elsalloukh,H. (2006). The semicircular normal

distribution. Far East Journal of Theoretical Statistics(20), 207-216.

Ibrahim,S., Rambli,A., Hussin,A.G. and Mohamed,I. (2013). Outlier detection in a circular

regression model using covratio statistic. Communications in Statistics-Simulation and

Computing(42), 2272-2280.

Jammalamadaka, S., & SenGupta., A. (2001). Topics in circular statistics. World Scientific.

Lai, M. (1994). Some results on the statistical analysis of directional data (Unpublished master’s

thesis). The University of Hong Kong, China.

30



Lee, A. (2010). Circular data. WIREs Comp Stat.

Mardia, K., & Jupp, P. (2000). Directional statistics. Wiley.

Miller, I., & Miller, M. (2014). John e. freund’s mathematical statistics with applications.

Pearson.

R Core Team. (2018). R: A language and environment for statistical computing [Computer

software manual]. Vienna, Austria. Retrieved from https://www.R-project.org/

Rencher, A., & Schaalje, G. (2008). Linear models in statistics. Wiley.

Self, S., & Liang, K.-L. (2012). Asymptotic properties of maximum likelihood estimators and

likelihood ratio tests under nonstandard conditions. Journal of the American Statistical

Association(82), 605-610.

Wilks, S. (1938). The large-sample distribution of the likelihood ratio for testing composite

hypotheses. The Annals of Mathematical Statistics(9), 60-62.

Yee, T. W. (2018). VGAM: Vector generalized linear and additive models [Computer software

manual]. Retrieved from https://CRAN.R-project.org/package=VGAM (R package

version 1.0-6)

31



APPENDIX A: R CODE

install.packages("circular")

library(circular)

#example

plot(fisherB9c, axes=FALSE, ticks=FALSE, zero=3*pi/2, stack=TRUE)

axis.circular(at=circular(seq(0, 2*pi-pi/2, pi/2)),

labels=c("E", "N", "W", "S"))

mtext("Dance directions", side = 3, line = -2, outer = TRUE)

%mtext("Dance directions", side = 3, line = -25, outer = TRUE)%
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#Uniform density

curve.circular(dcircularuniform, join=TRUE, xlim=c(-1.2, 1.2),

ylim=c(-1.2, 1.2))

#Von Mises density plot

par(mfrow=c(2,2))

mu <- circular(pi/2) ;

kappa <- 0.5

a<-curve.circular(dvonmises(x, mu, kappa), join=TRUE, ylim=c(-1, 2), lwd=2, lty=2)

kappa <- 1

b<-curve.circular(dvonmises(x, mu, kappa), join=TRUE, ylim=c(-1, 2), lwd=2, lty=2)

kappa <- 5

c<-curve.circular(dvonmises(x, mu, kappa), join=TRUE, ylim=c(-1, 2), lwd=2, lty=2)

kappa <- 9

d<-curve.circular(dvonmises(x, mu, kappa), join=TRUE, ylim=c(-1, 2), lwd=2, lty=2)
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#Cardioid density plot

par(mfrow=c(2,2))

mu <- circular(pi/2) ;

rho <- 0

curve.circular(dcardioid(x, mu, rho), join=TRUE, ylim=c(-1.2, 1.2), lwd=2)

rho <- 0.1

curve.circular(dcardioid(x, mu, rho), join=TRUE, ylim=c(-1.2, 1.2), lwd=2)

rho <- .3

curve.circular(dcardioid(x, mu, rho), join=TRUE, ylim=c(-1.2, 1.2), lwd=2)

rho <- .5

curve.circular(dcardioid(x, mu, rho), join=TRUE, ylim=c(-1.2, 1.2), lwd=2)
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#Data:

fisherB9c #with circular format

#1. Example resulting being uniform-----

#Data:

plot(fisherB9c)

#Tests:

#Ho: data is uniform CLAIM

#H1: data is not uniform

#a. Rayleigh test

rayleigh.test(abs(2*fisherB9c-360),mu=0) #this is axial data, so we had to transform it

#Conclusion

#We fail to reject null hypothesis.

#there is enough evidence to support the claim

#b. kuiper
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kuiper.test(abs(2*fisherB9c-360))

#2. Example resulting not being uniform

#Data:

plot(fisherB5c)

plot(abs(2*fisherB5c))

#Tests:

#a. Rayleigh test

rayleigh.test(abs(2*fisherB5c-360))

#Conclusion

#We reject null hypothesis.

#there is not enough evidence to support the claim

#b. Kuiper test b

kuiper.test(abs(2*fisherB5c-360))
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