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                   ABSTRACT 
 
 

This thesis reports on action research conducted by the author while teaching rate of 

change problems to first-semester Calculus students at a public university in the United States, 

with the purpose to ensure transfer of learning, and increase students’ conceptual understanding 

of rate of change and their performance on solving rate of change problems. The action research 

cycles (planning, action/implementation, evaluation) involved scaffolding to promote positive 

mathematical transferability through conceptual understanding. The result is a Lesson Guide 

consisting of a learning task designed using scaffolding and abiding by principles developed and 

supported by the research literature on the theory of transfer, an assessment task, and a self- 

evaluation tool for students. Future action research cycles may be informed by the Lesson Guide 

developed in this study. Calculus I instructors can use the Lesson Guide in the teaching of rate 

of change problems. This study contributes to the progressive perspective of the transfer of 

learning in mathematics education and adds to the growing number of theses conducted with 

action research methodology. 
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CHAPTER I: Introduction 
 

About This Study 
 
 

The result of education is knowledge that is either bound to the original setting of the 

learning or knowledge that is available for use outside of that setting. The study reported in this 

thesis refers to education that has the latter goal, or transfer of knowledge. Educators agree that 

the transfer of knowledge, or the transfer of learning across various settings, is of the utmost 

importance, perhaps the most important issue, in education. Researchers in mathematics 

education reported on the difficulties of finding ways to ensure positive transferability of prior 

learning to new learning. Only about a decade ago have they started reporting successful 

approaches (Hohensee & Lobato, 2021), like scaffolding (Anghireri, 2006; Grothérus, Jeppsson 

Samuelsson, 2019; Tanner and Jones, 2000). This thesis reports on action research conducted by 

the author with first-semester Calculus students, with the purpose of increasing their conceptual 

understanding of rate of change and their performance on solving rate of change problems. 

 
 

The Purpose of the Study 
 
 

The main purpose of this study is to examine how action research can support 

development of scaffolding rate of change problems in support of Calculus I students’ 

conceptual understanding that promotes positive knowledge transfer and enhance their 

performance on rate of change problems. A secondary goal is to design a Lesson Guide 

consisting of learning tasks using scaffolding and a set of abiding principles informed by the 

research literature on the theory of transfer, assessment task, and self-evaluation to foster 
 

positive transferability of students’ knowledge through conceptual understanding. 
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Research Questions 
 
 

The study sought to examine how action research can be employed to design educational 

lesson and assessment on rate of change that has the potential to increase Calculus I students’ 

understanding of rate of change and their performance on solving rate of change problems. 

Specifically, the study was intended to address the following two research questions: 
 

1. How can action research help scaffold rate of change problems as support of Calculus 

I students’ conceptual understanding by promoting positive transfer of knowledge and 

enhance students’ performance on rate of change problems? 

2. To what extent does a Lesson Guide consisting of learning tasks using scaffolding 

and a set of abiding principles informed by the research literature foster positive 

transferability of students’ knowledge through conceptual understanding? 

Both the lesson and the assessment focus on rate of change problems/tasks. During the 

action research cycles (planning, action/implementation, evaluation), those problems/tasks went 

through several changes, the main change being scaffolding, to promote positive transferability 

of students’ knowledge through conceptual understanding. 
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Guiding Principles 
 
 

Below are three principles, developed and supported by the research literature on the 

theory of transfer, that guided the design of the mathematical tasks in the lesson and assessment 

in this study: 

P1. Successful transfer of knowledge learned in one context to another context indicates 

the proper understanding of the concept of rate of change. 

P2. Scaffolding of instruction can support understanding (procedural and conceptual) 

necessary for transfer. 

P3. There exist different scaffolding methods intended for learners to discover and master 

mathematical concepts in a task and should be troubleshooted before and after 

instruction. 

 
 

Significance of the Study 
 
 

The curriculum materials (lesson guide and assessment tasks) developed in this study 

may be used by the Calculus I instructors from the school at which it was developed and other 

schools to improve the assessment(s) design of rate of change problems with scaffolding. 

Additionally, the study is significant from the researchers’ perspective, in the sense that: i) it 

contributes to the progressive perspective of the transfer of learning in mathematics education 

that departs from the unsuccessful traditional perspective on transfer (Hohensee and Lobato, 

2021), and ii) adds to the growing number of studies conducted with action research 

methodology as a viable alternative methodology in education research (Bragg, 2017, Lari, Rose, 

Ernst, Clark, Kelly, DeLuca, 2019). 
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Types of Understanding in Mathematics 
 
 

During the “Back-to-Basic” movement, Skemp (1976) described relational and 

instrumental understanding and pointed out that although relational (conceptual) and 

instrumental (procedural) mathematics may refer to the same subject matter, they are, in fact, 

two different kinds of understanding leading to two kinds of mathematics. Instrumental 

(procedural) understanding refers to applying “rules without reason” (Skemp, 1976, p. 152), i.e., 

the student may apply an algorithm to solve a problem or execute a task, without knowing why 

the algorithm works. The entry point and the end point to the algorithm/rule are fixed. Relational 

(conceptual) understanding means “knowing what to do and why” (Skemp, 1976, p. 152). That 

is, the student can apply the knowledge in a situation different from the one in which it was 

learned, and then justify why it works. A student with conceptual understanding has a structure 

of knowledge that can be accessed in multiple ways, from multiple entry points, to multiple end 

points, at other times, in other situations, and used to construct further mathematical knowledge. 

This makes conceptual knowledge necessary for the transfer of learning from old situations to 

new situations. 

For example, a Calculus I student with instrumental (procedural) understanding of rates 

of change as derivatives may be able to apply the differentiation rules, and correctly differentiate 

f(x) = x2 as (x2 )′ = 2x .When asked to justify the rule, the student with instrumental (procedural) 

understanding may say something like “this is the rule,” or perhaps refer to the immediate 

application of the rule (xn )′ = nxn−1 when n = 2 . A student with conceptual knowledge may be 

able to justify the rule with the definition of the derivative as a limit, 
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lim (x + h)2 − x2 = lim x2 + 2xh + h2 − x2 = lim (2x + h)h = 2x , 
h→0 h h→0 h h→0 h 

 

and conceive of the rate of change as a derivative in the following situation adapted from the 

study conducted by Mamolo and Zazkis (2012): 

Use the diagram (see Figure 1, below) to show why the derivative of the area of a circle 

yields the formula for the circumference of the circle. 

 

 
 

Figure 1. Diagram for the task adapted from Mamolo and Zazkis (2012) 

To solve the problem, or to execute the task, the student may conceive of the rate of change of 

the area between the two circles as a derivative, and calculate it using the definition of the 

derivative as a limit: 

A − A π (r + h)2 − π r2 (2π r + π h)h 
lim r+h r = lim = lim = lim(2π r + π h) = 2π r . 
h→0 h h→0 h h→0 h h→0 

 
 

Types of Transfer 
 
 

Transfer of mathematical knowledge, or transfer of learning, has been described in the 

literature along several dimensions. Perkins (1992) explains that the mechanisms of transfer 

influencing positive transfer include abstraction, affordances, high road and load road transfer. 
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The National Research Council (2000) also considers near transfer and far transfer. Near transfer 

refers to transfer between very similar contexts. Low road is rather reflexive and involves 

triggering “of well-practiced routines by stimulus conditions similar to those in the learning 

context” (National Research Council, 2000, p. 8). High road transfer depends “on mindful 

abstraction” and “demands time for exploration and the investment of mental effort” 

(National Research Council, 2000, p. 8). Similarly, far transfer occurs when transferring 

information to rather different contexts. Pugh and Bergin (2006) found these conditions do not 

occur as often as near transfer and low road transfer. High road and far transfer, because of their 

difficulties, may lead to negative transfer. 

Negative transfer occurs “when an experience with one set of events hurts the 

performance on related tasks” (National Research Council, 2000, p. 53). Researchers (Evans, 

1999; National Research Council, 2000; Pugh and Bergin, 2006) agree that the few ways 

transfer can be negated include: teaching in only one context leading knowledge to be context- 

bound, lack of motivation, overly contextualizing knowledge, and lack of previous experience. 

Initial learning is necessary for positive transfer. One cannot expect to transfer knowledge if their 

initial understanding is not conceptual. Even if they have a conceptual understanding of the 

given material, they cannot transfer that knowledge to something they cannot relate to their 

previous experiences. If a student has previous experiences to relate to the problem given, they 

can still be prevented from transfer if the intended content is overly contextualized. To prevent a 

failure to relate, lesson needs to present an opportunity to discover and present familiarities. A 

learner’s familiarity and relation to a concept or context has an effect on the learner's 

motivational interests; if interest or motivation doesn’t exist, then it is expected to have a lack of 

learner application and discourse. A learner who may not relate, or have any familiarity, can still 
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gain positive transfer. This is most likely achieved by having self- monitoring skills. Lobato 

(2003) reports that there should be different design cycles in which a student finds familiarities 

and actor-oriented transfer is distributed across mental, material, social, and cultural planes. 

When conducting design tasks, researchers should ask questions like “What relations of 

similarity are created? How are they supported by the environment?” (Lobato, 2003, p. 20). A 

student can also be context bound based on their previous experiences. Negative transfer happens 

most often when the student fails to relate a task to previous experiences, giving them different 

perspectives. 

To achieve positive transfer, the student must achieve low road transfer. There is some 

abstraction and affordances provided in the task that can in turn help achieve or possibly hinder 

positive transfer. To detect the abstraction between the two tasks, the intended affordances from 

the implementer should be perceived correctly by the student. These affordances can include 

analogies and metaphors (Perkins 1992). 

 
 

Definition of Terms 
 
 

This section defines the main terms used in this paper. 
 

Scaffolding. Scaffolding means the support consisting of instructional methods provided 

by the instructor to her students, with the purpose to help the students learn new content, solve a 

new problem, or perform a new mathematical task. 

Transfer of learning. Also referred as transfer of knowledge, transfer, or transferability 

means using old learning or old knowledge in new situations, similar or different than the 

situation in which old learning occurred or old knowledge was constructed. 
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Positive transfer. A positive transfer of learning or knowledge takes place when one can 

successfully use old learning in new situations, and as a result some new learning occurs. 

Conceptual understanding. A student has relational understanding or conceptual 

understanding when the student can apply the knowledge in other situations and justify why it 

works. A student with conceptual knowledge may access and use that knowledge in multiple 

ways, from multiple entry points, to multiple end points, any time, in any situation, and to 

construct further mathematical knowledge. 

Mathematical task. A mathematical task is anything, with mathematical content, that we 

ask the students to execute during the teaching and learning process (e.g., tasks for learning or 

assessment tasks). Oftentimes, a mathematical task is a problem, and will be referred to as a 

mathematical task/problem or problem. 

Rate of change (in Calculus). The rate of change of a function is the instantaneous 

measure of how the change of the values of the function varies with respect to changes in the 

independent variable. This thesis records the rate of change of f(x) as f’(x) and takes the 

computation, where it exists, f '(x) = lim 
h→0 

f (x + h) − f (x) 
h 

as that measure. 
 

Action research. Action research is a cyclical research process (planning, 

action/implementation, evaluation) used to improve instructional practice, curriculum materials, 

and student outcomes. It has a local focus, like the author’s school, and takes place in natural 

settings, like the classes taught by the author. 
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CHAPTER II: Theoretical Background 
 
 

The lesson guide and assessment task described in Chapter IV abide by the principles 

stated in Section 1.4, which have been developed using theoretical constructs by Peressini 

Peressini, Borko, Romagnano, Knuth, and Willis (2004). Peressini et al. (2004) propose that 

positive transfer is based on learning, understanding what is to be learned, then applying those 

concepts to similar and abstract contexts. If the distinct types of transfer are successfully 

completed, then it can be assumed the learner has gained conceptual understanding. But how 

abstract did the learner transfer? Can conceptual understanding be assessed or measured? 

Peressini et al. (2004) base their theoretical framework on two assertions. The first 

assertion is a learner’s level of conceptual understanding can be affected by their prior 

experiences, set of skills and knowledge, and the situation in which a person learns. As part of 

the design, the students are presented with a scaffolded lesson plan, collaborative activities, 

assessments, all to be designed for discovery and mastery. The second assertion is that the 

teacher’s knowledge and beliefs should “interact with historical, social and political contexts to 

create situations in which learning to teach occurs” (Peressini et al., 2004, p. 68). This refers to 

the importance of a student’s perspective and relation to the given task, motivating the student’s 

interest to understand its embedded concept. If the student cannot relate to a given task, it is 

expected they will have less motivation to proceed. If they relate, but do not understand, 

motivation is expected to decrease. If they discover and understand the task’s concept, they most 

likely were able to relate, and had motivation to complete the task then a level of understanding 

can be gained based on the type of transfer intended. 

To achieve positive transfer of mathematical knowledge across various rate of change 

problems/tasks, the student must have a conceptual understanding of rates of change. To 
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understand rates of change, the student should have a conceptual understanding, or familiarity, of 

rates” (Peressini et al., 2004, p. 75). Once the student has a conceptual understanding of the task, 

they are then expected to positively transfer that knowledge to a similar task. 

A way in which conceptual understanding can be enhanced is scaffolding a task 

Anghileri (2006). In Anghileri’s (2006) study, she recovers the process of scaffolding introduced 

by Wood, Bruner and Ross (1976). Anghileri (2006) identifies the various levels of scaffolding 

that teachers can use to promote mathematical learning. Scaffolding is intended to guide rather 

than “show and tell” and is “used to reflect the way adult support is adjusted as the child learns 

and is ultimately removed when the learner can stand alone” (Anghileri, 2006, p. 33). Anghileri 

(2006) reviews historic notions to support those levels she identifies. The characteristics of 

scaffolding are described by exploring the nature of adult interactions in children's learning. 

These characteristics include recruitment, reduction in degrees of freedom, direction 

maintenance, marking critical features, frustration control, and demonstration. There are different 

ways Angileri (2006) proposes to implement scaffolding, particularly for this study, I implement 

foothold scaffolding and strategic scaffolding. Foothold scaffolding relates to what is described 

to be a funnel pattern of interactions where “students are provided with leading questions in an 

attempt to guide them to a predetermined solution procedure” ( Anghileri, 2006, p. 36). 

Similarly to Anghileri (2006), Tanner and Jones (2000) compare scaffolding to adult 

intervention and also refers to funneling where the teacher “selects the thinking strategies and 

controls the decision process to lead the discourse to a predetermined solution” (p. 21). For their 

study, Tanner and Jones (2000) conduct a mathematical project “to improve pupils' performance 

in mathematics by developing their metacognitive skills” (p. 22). Learners should participate in 
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discourse to improve critical and logical thinking skills, which are induced by the instructional 

design. 

Referring to the levels of scaffolding necessary to promote transferability, Anghileri 

(2006) proposes three levels of scaffolding that “constitute a range of effective teaching 

strategies that may or may not be evident in the classroom” (p. 38). At level one, “environmental 

provisions enable learning to take place without the direct intervention of the teacher” 

(Anghileri, 2006, p. 38). These provisions would include surrounding artifacts, classroom 

organization, peer collaboration, and emotive feedback. These provisions also reflect the 

framework of Peressini et al. (2004), specifically their belief that one's learning environment is a 

major factor of positive transfer. Level two of scaffolding (Anghileri, 2006) requires explaining, 

reviewing and restructuring. At this level, the teacher explains the ideas to be learned, and this 

relates to the funnel stance concept (Wood, Bruner, Ross, 1976), “while the categories of 

reviewing and restructuring identify patterns of interaction that are more responsive to the 

learner and these expand on the idea of focusing” (Anghileri, 2006, p. 41). In turn, the student 

should explain and justify. Part of reviewing is prompting and probing. Prompting questions 

“successively lead the students towards a predetermined solution” (Anghileri, 2006, p. 42) and 

supports students’ thinking. Probing is similar but expands students' thinking. At level three of 

scaffolding (Anghileri, 2006), the student is expected to be developing conceptual thinking. At 

this level, the teaching interactions explicitly address “developing conceptual thinking by 

creating opportunities to reveal understandings to pupils and teachers together” (Anghileri, 2006, 

p. 47). With that, teachers should engage their students in conceptual discourse. This could be 

implemented during the teaching and learning process for a first task on rates of change, where 
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each group shares their perspectives in discourse, then for a second task the student has no 

support of the scaffolding or peer discourse. 

The search for evidence of transfer revealed several types of transfer, specifically of 

positive transferability. Those types include near transfer, far transfer, low road transfer, and 

high road transfer. Usually, not just one type is needed to achieve positive transferability. When 

implementing these types of transfer, a conceptual understanding is required of the implementer, 

or commonly known as a teacher. The implementer should be aware of the learning environment 

and its surroundings in order to transfer their own conceptual understanding of the mathematical 

material. The more familiar and confident the implementer is, the more likely the students will 

be able to be confident in learning the material (Pugh and Bergin, 2006). 

There exist multiple factors that affect one’s own learning environment. Among them is 

the way in which one learns is based on one’s previous experience and knowledge; therefore, 

every learner has a different perspective (Evans, 1999). It is important for the implementer to be 

aware of these perspectives, so the learner relates to the given mathematics problems/tasks and, 

of course, and improve mathematical language. There are also affordances and constraints to 

every given problem/task (Watson, 2004), differentiated based on one’s experiences and learning 

environment. 

The proposed scaffolded task must be designed with affordances, signifiers, different 

perspectives, all in intention to avoid constraints of transfer and achieve a level of conceptual 

understanding to positively transfer to a similar, maybe more abstract, task. Part of avoiding 

constraints or misinterpreted affordances, is considering some human error when developing a 

hypothesis for an experiment and when analyzing the results of the experiment. It should be 

considered that when one can relate from their previous experiences, the probability of positive 
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transfer to similar contexts is expected to be much higher than not. This is more than common 

for task designers to implement, but there is a risk that even just one student will not relate. 

Along with the environment someone has experiences in, these can constrain one from relating 

them to assumed to be similar contexts. When relation is discovered, positive mathematical 

transfer is more likely to be achieved. “The transfer of learning refers in general to the use of 

ideas and knowledge learned in one context to another.” (Evans, 1999, p. 23) 

To interpret mathematical language, most look for ‘signifiers’ or key words to signify 

what needs to be solved in any given problem/task (Evans, 1999). Although, based on one’s 

experience, the signifier could hinder translation. An example of this would be the word ‘more.’ 

Implementers encourage students to assume a word problem requires to be solved with addition 

or multiplication when the word ‘more’ is seen. But there is a chance that a student will not 

recognize this signifier like the implementer intended. For example, the phrase ‘rate of change’ 

should be a signifier to Calculus students that this task is going to refer to derivatives, but 

students may interpret it as an average rate of change, i.e., a constant ratio. 

In short, to promote positive transfer of learning, conceptual understanding is needed, and 

scaffolding may assist in the developing of conceptual understanding. As such, I derived the 

following principles to function as a theoretical framework and guide the design of the 

problems/tasks from the lesson and assessment described in Chapter 4: 

P1. Successful transfer of knowledge learned in one context to another context indicates 

the proper understanding of the concept of rate of change. 

P2. Scaffolding of instruction can support understanding (procedural and conceptual) 

necessary for transfer. 



14  

P3. There exist different scaffolding methods intended for learners to discover and master 

mathematical concepts in a task and should be troubleshooted before and after 

instruction. 
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CHAPTER III: Methods 
 

Pilot Study 
 
 

The concept of rate of change has been documented to be challenging for students 

(Orton, 1983; Tyne, 2016; White & Mitchelmore, 1996). The objective of the pilot study was to 

determine the effectiveness of the instructional method of scaffolding with respect to students’ 

performance on solving rate of change problems. Two different assignments, without and with 

scaffolding were administered to a class composed mostly of engineering majors (N=20), during 

the Spring 2019 semester. The students studied rates of change at the beginning of the semester 

(the pilot study was conducted roughly six weeks after). 

Before proctoring each assessment, I emphasized particular steps to solving a problem 

(also referred to as completing a task), described in Polya’s book “How to Solve It”. Of note, 

Polya’s approach to problem solving was emphasized that semester by the Calculus I instructors 

in our department, as part of our effort to improve our students’ critical thinking skills and 

performance. The steps described by Polya include understanding the problem, devising a plan to 

solve the problem, executing the plan, and checking the solution. The first step to understand a 

problem, or task, is to understand what is being asked to solve, to identify what kind of 

information is being given, and perhaps, to draw a diagram representing their understanding of 

the problem/task. Once the student gains an understanding of the task, the student can then 

devise a plan to complete the task. The tasks for this study is considered complete when a 

solution, or result, is presented, then should be evaluated “for formal reasoning, or by intuitive 

insight, or both ways” (Polya, 1957, p. 35), which leads to checking for correctness. 
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The following assignments were given to students, two weeks apart. After the 

administration of the first assignment there was no discussion with the students about it, or any 

feedback. 

Assessment 1 (Without Scaffolding): 
 

a) The radius of a circle is, let us say, r, and another circle exists around that circle of 

width, h. The formula π (r + h)2 − π r2 describes the difference in areas between the 

circle with the radius r + h and the circle with the radius r. The change in this 

difference approaches the circumference of the inner circle as h approaches 0. How 

would you show the derivative relationship between the area of a circle and its 

circumference? 

b) Is it possible to represent the derivative of the area of the square as the formula for its 

perimeter? If so, explain how, If not, explain why not. 

Assessment 2 (With Scaffolding): 
 

a) The radius of a circle is, let’s say, r, and another circle exists around that circle of 

width, h. How would you represent this? 

b) Can you construct a formula to describe the difference in areas between the circle 

with radius r + h and the circle with the radius r? 

c) The rate of change in that difference approaches the circumference of the inner circle 

as h approaches zero. How would you represent this rate of change? 

d) How would you show the rate of change to be a derivative relationship between the 

area of a circle and its circumference? 

e) Is it possible to represent the derivative of the area of the square as the formula for its 

perimeter? If so, explain how, if not, explain why not. 
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Students’ written responses on Assessments 1 and 2 were counted as 1 (completion) or 0 

(no answer) for each of the steps derived from Polya’s framework.: understanding the task (U), 

devising a plan to complete the task (D), executing that plan (E), and completing the task with a 

result to be checked, which does not necessarily mean correct (C). Table 1 presents those 

responses in aggregate form. 

 
 

Table 1. 
Student Performance on Assessments 1 and 2. 
 U 

(Understanding) 
D 

(Devising a 
plan) 

E 
(Executing the 

plan) 

C 
(Completion) 

Assessment 1 8 7 4 0 

Assessment 2 6 5 4 4 

 
 

Analysis of Pilot Study Data 
 

While the students who completed the assessments were all registered in the same 

Calculus 1 class, not all the students were present for both assessments. There were fewer 

students who attempted Assessment 2. So, the data cannot be used to compare performance on 

the two assessments for the individual categories and not for personal performance by students. 

When looking across the rows, Assessment 2 had a greater percentage of students who 

completed the task by including executing and completion. It can be seen in Table 1 that out of 8 

students who understood the problem, only 4 of them (50%) attempted to execute a plan and 

none (0%) completed the task. In row 2, corresponding to Assessment 2, from 6 students who 

understood the problem, 4 of them (66 %) completed it. The comparison between student 

performance on Assessments 1 and 2 shows that the drop count towards completion is 
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significantly more for Assessment 1 (8 students understood the problem, but 0 completed it), 

than that for Assessment 2 ( 6 students understood the problem and 4 of them completed it). The 

ratio of completion is 0/8 (0%) for Assessment 1 without scaffolding, compared with 4/6 (66%) 

for Assessment 2 with scaffolding. Subsequently, this data analysis of the responses does 

promote integrated scaffolding for the teaching and learning of rate of change problems. Further 

analysis by the author of student performance showed signs of potential for positive transfer, 

indicating the need for further study in an action research cycle. 

 
 

Action Research Cycles 
 
 

The Action Research Cycle used in this study is similar to the cycle described in Bragg 

(2017). Bragg’s research focused on students’ understanding and performance of an assessment 

task. The type of task chosen to put into variations, annually, is given as “problem pictures'', 

where one picture was analyzed and open-ended questions were posed, in intent to discover 

mathematical relations. Based on the students’ performance of the task, the questions developed, 

and the analysis made, the students’ understanding of the task’s concept was determined. 

Variations were made to the assessment task by addressing identified issues preventing 

understanding. Amongst the noticed issues, Bragg implements a major variation to the task’s 

instructions/ script to address them. The action research cycles of variations varied three critical 

features: 1) clarification of the task, 2) more focus on inclusive teaching instruction, and 3) 

professional seeing (p.128). These features mirror Bragg’s methodology referencing Sagor 

(2014), of which defines seven steps of action research: “selecting a focus, clarifying theories, 
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identifying research questions, collecting data, analysis of data, reporting results, and then taking 

informed action” (p.125). 

Similarly, the action research process of transfer theory mirrors those features; and this 

thesis evidently follows that seven-step methodology. Rather than a quantitative experiment, 

transfer theory promotes qualitative action research methods, given that a control group was not 

claimed, and given the type of data analysis. The objective of transfer theory would be to 

improve the quality (or effectiveness) of a task, the quality in which it is assessed, with respect to 

the quantity of an issue varied throughout that task. 

Transfer theory of learning adheres to Bragg’s variation theory of learning, given both are 

implemented as action research cycles with intent to improve the assessments for learning. This 

thesis previously described types of transfer, and the factors which prevent it, and which promote 

it. These are to be troubleshooted with more cycles, for qualitative purposes. Troubleshooting 

processes, or better yet, cycle(s) commonly consist of trial and error, where the outcome supports 

or negates a hypothesis. It is hypothesized for the previously defined scaffolding methods () to 

promote positive transferability of mathematical concepts and can be proven by merging the 

following action research cycle and transfer theory of learning. 

Action research is cyclical processes of planning, action/implementation, and evaluation. 

that can be traced back to Lewin (1946). Below is a timeline of action research cycles, and the 

processes of troubleshooting scaffolding methods implemented in the instructional methods that 

support the transfer theory of learning rate of change tasks. 
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Planning Implementation Evaluation 

Figure 2 
 

Cycle 1 Action Research Process 
 

• Scaffolded Assessments • Pilot Study • Data Analysis 
• Scaffolding to 

promote positive 
transfer 

 
 

As seen in the Figure 2 above, the first action research process started with the subject 

“mathematical transferability”. A great subject, but too broad for a research article. After 

noticing Calculus students in classes having difficulties with transferring the knowledge of rate 

of change to similar and sometimes abstract tasks, it was decided to narrow the search towards 

what is causing this negative transfer of that concept. More specifically, literature on rates of 

change, transfer of learning, conceptual understanding, and scaffolding/mastery goal 

instructional methods were consulted. Following the results of the literature review as reported in 

Section 3.1, the first action research cycle was constructed and conducted. The process began by 

creating Assessments 1 and 2 for the Pilot Study. These assessments were inspired by Mamolo 

and Zazkis study they had conducted. Assessment 1 is the original tasks distributed by Mamolo 

and Zazkis, with Task 1 and Task 2 not scaffolded (Assessment 1, Appendix 1). Given the 

previously stated literature research and theoretical background, Assessment 2 introduces the 

same tasks, but Task 1 is scaffolded into multiple sub-tasks. Then Assessments 1 and 2 were 

then administered by the author to her students during two regular class meetings with them. The 

results from Assessment 1 and 2 were evaluated and determined a scaffolding approach should 

continue to be troubleshooted, leading the author into Cycle 2 with the intent to modify 

Assessment 2 to promote its effectiveness. So, this scaffolding design was implemented again for 
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Planning Implementation Evaluation 

a Lesson Guide that consists of: i) a scaffolded task for learning, ii) a “transfer” task to assess 

students’ ability to transfer learning, and iii) a self-evaluation tool to gain insight into students’ 

perceptions of their conceptual understanding. Figure 2, below, represents the second cycle of 

the action research process. 

 
 
 

Figure 3 
Cycle 2 Action Research Process 

 

 

• Lesson Logic Model 
• Self - Monitoring Tool 

• Prevented by COVID • Prevented by COVID 

 
 

The qualitative results from the Pilot Study and the supporting research literature 

continued to inform the second cycle of the action research process (See Figure 3). For Cycle 2, 

the author developed an extremely refined scaffolded learning task based on Assessment 2 from 

the Pilot Study. The Lesson Guide, described in Chapter 4, is expected to gain more qualitative 

data to support transfer theory of learning. Research often implied self- monitoring skills as a 

factor towards understanding, towards positive transfer. For this cycle, the author created a self- 

evaluation tool so the students could monitor their own understanding during the lesson on rate 

of change and administration of a “transfer” task. This Lesson Guide is to be taught to Calculus 

students, who are expected to have a “familiar” understanding of the fundamental concepts. 

Implementation and Evaluation of this cycle could not be conducted because of the COVID-19 

pandemic. The lesson could not be taught as intended, and the “transfer” task and the self- 

assessment tool could not be administered. The addition of the assessment tool and edited 
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scaffold, is hypothesized to increase count of participants, increase count of completion, and 

increase chances of a positive transfer of the concept of rate of change and the derivative 

relationship between a shapes area and size. 
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CHAPTER IV: Lesson Guide 
 
 

As mentioned in Chapter 3, the curriculum materials developed for this thesis, the Lesson 

Guide, could not be implemented and tested because of the Covid-19 pandemic. 

This chapter describes the Lesson Guide that consists of a scaffolded task for learning 

task (Task 1), a “transfer” task (Task 2), and the self-assessment tool. 

To move to the next level of knowledge, a learner must be able to successfully transfer 

the just learned concept to similar and abstract contexts. The learning task (Task 1) used in the 

Lesson Guide is adopted from an experiment performed and analyzed in a study by Mamolo and 

Zazkis (2012). After reviewing the responses from the study reported by Mamolo and Zazkis 

(2012), the author concluded that the students lacked the conceptual understanding of the first 

task (part a) of the original task, (see Appendix B), which hindered them from transferring that 

knowledge to the next task (part b) of the original task, (see Appendix B). The design of the 

original task was not sufficient for positive transfer. The intention then, was to alter the task 

design to better retain the proposed information, by considering instructional methods like those 

described by Anghileri (2006). This way the learners discover concepts and relations to other 

similar and abstract content and will successfully transfer that knowledge to similar contexts. As 

such, Task 1 (based on the original task part (a)) focuses on scaffolding in order to promote 

positive mathematical transferability of the rate of change concept across various tasks. Since 

scaffolding generates positive transfer there must be a level of conceptual understanding. This 

scaffolded Task 1 is expected to have a higher success rate than that of the original task (part a) 

from the study conducted by Mamolo and Zazski (2012) (see Appendix B) because of how the 

leading questioning motivates discovery. 
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The scaffolded form of Task 1 is described in Table 2, which contains the scaffolding 

steps, expected students’ actions for each step, and then the referring theoretical justifications 

motivating each step. 

Table 2. 
Task 1. Scaffolded Form. 

 
Scaffolding Steps Expected Student 

 
Actions 

Theoretical 
 
Justifications 

1. Construct a circle of radius, let us say, r. 

Add a second circle of radius r + h around 

that circle with the same center, and there is a 

width, say h, between the two circles. 

Expect to see picture of 

circles of radius r and 

r + h with a common 
 
center. 

P1, P3 
Pictures and 
diagramsare a 
visual aid that 
usually help 
understand the 
task. 

2. For a better visualization, the width, h, 

between the two circles, can be seen as a 

ring. 

Student should 

acknowledge. Find 

familiarity. 

P1, P3 
Furthering 
understanding and 
beginning to 
design aplan to 
execute basedon 
experiences and 
considering 
perspectives. 

3. The area of this ring is the difference 

between the area of bigger circle and the area 

of the smaller circle. The area of a circle is 

A = π r2. The inner circle has radius, r, and 

the bigger circle has a radius r + h . Now, we 

can construct a formula to represent the 

Expect to see 
 

Ar+h − Ar = 

π (r + h)2 − π r 2 = 

2π rh + π h2 

P1, P3 
Visual 
representation of 
the derivative of 
the area of a 
circle as a limit. 
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difference between the two areas which equals 

the area of the ring. 

  

4. As this ring becomes thinner and thinner, 

or we can ask when the width, h, gets smaller, 

what happens to the area? The circumference 

of the outer circle, and the circumference of the 

inner circle approach each other. 

Expect to recognize that 

area becomes smaller, 

circumferences approach. 

P1, P3 
Visual 
representation 
of the derivative 
of the area of a 
circle as a limit 
and its 
evaluation. 

Therefore, as the area changes the 

circumferences also change, but is dependent 

on how thick the ring is, which is known as the 

width, h. 

5. Suppose the formula of a circumference is 

unknown. But what is known is the formula 

for the area of the ring, A = Ch , then C = A . 
h 

Expect to write (with 

them) 

 A = 2π rh + π h2 = 
h h 
2π r + π h → 2π r 

when h → 0 

P1, P3 
The evaluation 
of thelimit and 
the comparison 
with the 
circumference 
of a circle. 

Now, we can calculate the area of the ring 

divided by its width which is approaching 

zero to give us the circumference, of what 

was the inner circle but now the only circle. 

6. It is shown that the rate of change, or 

derivative, of the area of a circle is its 

circumference. 

Prompt to verify 

understanding of 

derivative as a limit. 

P1, P3 

7. Allow for questions. Expect students’ 

questions. 

 

Note: P1, P3 refer to the guiding principles described in Section 1.4. 
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During the administration of Task 1, some high technology like GeoGebra 3D graphing 

applications on tablets, and data collection apps like CODAP, would be extremely helpful to 

promote conceptual understanding since it provides intense visual aids. Other examples of tools 

and sources that may be used include: any common items with commonly known societal value, 

student assessment logs, mostly low technology like figure shaped materials, whiteboards, 

graphing paper, and patty paper. This task excludes the use of calculators since their use might 

make measurement of conceptual understanding more difficult. 

Task 2, used to assess the students’ ability to transfer learning, is administered without 

scaffolding, abides by principles P1, P2, P3 described in Section 1.4: 

Is it possible to apply this process to a square? That is, considering two squares, one of 

radius r and the other of radius r + h , can this process help determine a derivative 

relationship between the “circumference” or perimeter of a square and its area? (Given 

that the “radius” of a square is the distance from the center of the square to a side of the 

square.) 

The forms to be administered to instructors and students, for both Task 1 and Task 2, are found 

in Appendix A. 

The learning task and the “transfer” task, Task 1 and Task 2, respectively, are followed by a 

self-monitoring tool (see Table 3, below) which enables to assess the conceptual understanding 

of specific concepts in relation to one’s own level of familiarity with those concepts. 
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Table 3. 
Self-Evaluation Tool for Familiarity Level. 

 

Concept/Level of 
Familiarity 

Level 0 
Unfamiliar 

Level 1 
Somewhat 
Familiar 

Level 2 
Very Familiar 

Rate of Change    

Limits and Derivatives    

Geometry of a Circle    

Geometry of a Square    

 
 
 

It can be seen in Table 3 that the familiarity with mathematical concepts is assessed using 

a three-level scale: 

 Level 0 is associated with unfamiliarity with the concept, meaning that an 

understanding of a concept has not yet achieved or learned. 

 Level 1 is associated with some familiarity with the concept, meaning the concept 

has been learned and some understanding of it has been attained. 

 Level 2 is associated with familiarity with the concept, meaning a definite 

conceptual understanding. 

After claiming one of the levels of familiarity for each concept, one can find the total 

score n, where 0 ≤ n ≤ 8. The average between the minimum score (n = 0) and the maximum 

score (n = 8) is 4, and this is considered the score value above which one can claim a level of 

familiarity that may be associated to conceptual understanding and positive transfer of learning. 
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Students’ performance on the assessment Task 2 can then be analyzed and compared with the 

total score, n. The results may be used by instructors to predict the effectiveness of actor- 

oriented transfer, where the learner conceptualizes and self-monitors successfully. A student who 

can rate themselves accurately, can be given new/different goals, depending on the type of 

transfer achieved. Of course, the instructor may assess the students’ familiarity with concepts 

from the way in which they respond to questions, signifiers, and the way they use the theoretical 

discourse associated with concept. 
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CHAPTER V: Discussion and Conclusions 
 
 

Discussion 
 

Too often, has the question been asked by students “Why do we have to learn 

mathematics?” This is not exactly a research question, or a question that can be addressed with a 

simple explanation. More often, the answer to such a question would begin with “because…”. 

The phrase “we have to” seems forced. If learning mathematics is a natural development, why do 

we feel forced? Why are we dismissing concepts that our brains naturally configure? Perhaps, 

that is too opinionated. Would it be too vague to say we are/were so focused on finding the 

answer, as if there is only one, rather than figuring out how to find it or how to master it? Why 

does this particular subject not seem important, or relational, until later years in college? There 

could be one answer to all of these. Perhaps, we are not learning mathematics, not naturally, like 

the way it should be. We are being taught it. How can mathematics be appreciated, or found 

interesting, when we do not have to do the work for it, when we don’t discover it for ourselves? 

The questions above (and many others) constitute the impetus of my research study. 

The primary purpose of this study, therefore, was to examine how scaffolding rate of 

change problems develop Calculus I students’ conceptual understanding that promotes positive 

knowledge transfer and enhance their performance on rate of change problems. It was also to 

design a Lesson Guide consisting of learning tasks using scaffolding and a set of abiding 
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principles informed by the research literature on the theory of transfer, assessment task, and self- 

evaluation to foster positive transferability of students’ knowledge through conceptual 

understanding. To this end, I constructed two research questions to guide my study: First, I 

wanted to investigate how scaffolding rate of change problems develop Calculus I students’ 

conceptual understanding that promotes positive transfer of knowledge that leads to enhanced 

students’ performance on rate of change problems. Second, I was interested in examining the 

effects of a researcher developed Lesson Guide and Assessment protocol consisting of learning 

tasks using scaffolding and a set of abiding principles (informed by the research literature) in 

fostering positive transfer of students’ knowledge through conceptual understanding. In order to 

effectively carry out the study, I began with a pilot study involving Calculus I students to 

determine the effectiveness of the instructional method of scaffolding on students’ achievement 

on rate of change problems. I administered two different assignments – one with scaffolding and 

the other without scaffolding to a class of students composed mostly of engineering majors (N = 

20), during the Spring 2019 semester. I used the data/information obtained from the pilot study 

to develop curriculum materials (i.e., a Lesson Guide and Assessment Tasks) intended to be used 

in the main study. 

Unfortunately, COVID-19 pandemic began (world-wide) immediately following the pilot 

study and the development of the curriculum materials. This made it challenging to adequately 

examine my research questions in this study, due to changes in institutional policies regarding 

instructional delivery formats and other educational gatherings in response to the pandemic, time 

and resource constraint, and limited access to my research participants. The mathematical tasks 

developed in this study focused on scaffolding in order to develop conceptual understanding that 
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has the potential to promote positive mathematical transferability of the rate of change concept 

across various contexts. 

As discussed earlier in the study, the concept of rate of change has been documented to 

be challenging for students (Orton, 1983; Tyne, 2016; White & Mitchelmore, 1996). One way to 

help learner overcome these challenges and many others in mathematics is to help students 

develop conceptual understanding (i.e., an integrated and functional grasp) of these concepts. As 

I posited in this study, one way of developing conceptual knowledge is through the use of 

scaffolding with meaningful mathematical tasks. The extant research literature (e.g., NCTM, 

2000, 2014; NRC, 2001) indicates that students with conceptual understanding know more than 

isolated facts and methods - that is, they understand why a mathematical idea is important and 

the kinds of contexts in which is it useful. They have organized their knowledge into a coherent 

whole, which enables them to learn new ideas by connecting those ideas to what they already 

know. Conceptual understanding also supports retention, and because facts and methods learned 

with understanding are connected, they are easier to remember and use, and they can be 

reconstructed when forgotten (NCTM, 2000, 2014; NRC, 2001). This type of understanding also 

reflects a student’s ability to reason in settings involving the careful application of concept 

definitions, relations, or representations of either of them – which are dominant elements in 

solving problems related to rates of change. 

Although it was not the focus of my study, I also recognize (and want to state) that 

helping students to develop procedural fluency is also an essential aspect of helping students gain 

a solid mathematical knowledge. Procedural fluency is more than memorizing facts or 

procedures, and it is more than understanding and being able to use one procedure for a given 

situation. Procedural fluency builds on a foundation of conceptual understanding, strategic 
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reasoning, and problem solving (NCTM, 2000, 2014). Research suggests that the development of 

students’ conceptual understanding of procedures should precede and coincide with instruction 

on procedures (NCTM, 2000, 2014). Thus, although conceptual knowledge is an essential 

foundation, procedural knowledge is also important in the development of students’ 

mathematical knowledge (NRC, 2001). 

 
 

Conclusions 
 
 

It is not evident why learners are convinced mathematics is insignificant, but a possible 

solution was troubleshooted. The problem is understood to be that learners are not learning, 

otherwise, transferability would not evidently be at risk. However, it is at risk, it is the transfer 

theory that is not being implemented, nor is it learned. If we have a goal to learn a particular 

concept, or complete a task, it takes motivation to do so, then significance can be relational, and 

a plan to complete the task can be expected. Plans should consider multiple perspectives before 

executing it. And once a plan is executed, its result can be evaluated with logical reasoning, and 

understanding can be then be expected as gained. Depending on the type of task, the way in 

which it is implemented, affects a learners’ development and improvement of procedural and 

conceptual understanding. 

This action research of tasks that require low road or high road transfer of learning the 

rate of change concept, can be promoted through scaffolding instructional methods. The 

participants of this study had taken more initiative to complete the task, provided evidence of 

understanding, and the majority of them attempted to transfer their knowledge to a similar 
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concept. So, it is evident: scaffolding instruction induces discovering the significance of a 

concept, rather than forcing the learner to find significance of a given computation. The 

scaffolding steps were to be transferred to complete the assessment, similar to the computational 

steps to be taken when depicting and applying a particular formula (that was given not 

discovered) to solve for unknown variables. The tasks that were not scaffolded from the pilot 

study, resulted in learners losing interest in the tasks, and is a perfect example of the 

computational tasks still being implemented. As long as this continues to be the case, negative 

transfer will continue to occur and relational understanding will cease, and more learners will be 

convinced of mathematical application insignificance. While scaffolding may not answer the 

question “why”, as long as instructional methods continue to be researched, discussed, and 

troubleshooted for quality improvement, it may not be asked so often. 

 
 

Limitations 
 
 

This study is only done within action research cycles. The Covid−19 pandemic prevented 

a controlled study to be conducted amongst students in the authors′ present time classes. The 

pilot study was conducted amongst students from one university with only one scaffolded rate of 

change problem. If this was to be administered to students, it would′ve had to be via online. As 

stated in the literature and theoretical background, negative transfer has many factors, and the 

students learning environment can be one. The classroom setting ensures a positive learning 

environment and is normally present with other learners to collaboratively discourse. A 

classroom where distractions can be alleviated, and instructors can monitor learners′ skills that 

can be accessed via online. Yes, these tasks can easily be administered in some online 

assessment 
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form, and have anonymous participants, but quantitative results are not the purpose, nor the 

objective of this study 

As mentioned in Chapter 3, the materials developed for this thesis could not be 

implemented and evaluated because of the COVID-19 pandemic. This Lesson Guide implements 

scaffolding towards mastery goals, specifically the rate of change tasks, in order to promote 

positive mathematical transferability of the rate of change concept. 

Since scaffolding generates positive transfer there must be a level of conceptual understanding. 

Implementing the scaffolding design also motivates the learner toincrease their skill level and 

contributes to increasing conceptual understanding. 

 
 

Further Study 
 
 

The study continues to another cycle. Depending on the outcome of this lesson guide, its 

effectiveness will show as either promoting positive transfer or negative. An incomplete task 

does not necessarily mean that the scaffolding instructional method causes negative transfer. The 

self-evaluation will help determine the familiarity level which will help the instructor evaluate 

the students’ difficulties of the task, and what needs to be assessed for the next cycle. 

While the positive approach on the transfer of learning and the theory on scaffolding 

support the design of the Lesson Guide, further research should be conducted to account for 

other methods to achieve conceptual understanding. The most successful way to achieve positive 

transfer will always be questionable but can be discovered with enough research and 

implementation of possible instructional methods that are more conceptually oriented rather than 
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procedurally taught. It has been noted, “scaffolding also presupposes that learning is hierarchical 

and built on firm foundations, while teachers know that elements of understanding can appear in 

students as an eclectic collection until connections are established” (Anghileri, 2006, p. 50).The 

researcher would also like to recommend that future researchers design mechanisms to enable 

them to conduct similar studies with participants within the online learning environment to avoid 

the interference of events such as the COVID-19 pandemic. Future research on this topic could 

explore research questions such as: Why is the concept of rate of change not being positively 

transferred to similar and abstract concepts and contexts? Why are mathematical applications, 

specifically that of the rate of change, not intriguinglearners, and hindering them from 

conceptual knowledge? What instructional methods are being used that are causing negative 

transfer of this concept, and what methods should be implemented to avoid it? Is procedural 

knowledge of rate of change formulas more likely to be gained after relational knowledge it is 

positively transferred? 
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APPENDIX A 
 

Task 1. Scaffolded Form for Instructors. 
 

Scaffolding Steps Expected Student Actions 

1. Construct a circle of radius, let us say, r. Add a 

second circle of radius r + h around that circle 

with the same center, and there is a width, say h, 

between the two 

circles. 

Expect to see picture of circles of radius 

r and r + h with a common center. 

2. For a better visualization, the width, h, between 

the two circles, which could be seen as a ring. 

Student should acknowledge, find 
 
familiarity and relativity. 

3. The area of this ring is the difference 

between the area of bigger circle and the area 

of the smaller circle.The area of a circle is 

A = π r2. The inner circle has radius, r, and the 

bigger circle has a radius r + h . Now, we can 

construct a formula to represent the difference 

between the two areas which equals the area of 

the ring. 

Expect to see and discover, 

the differential equality. 

A − A = π (r + h)2 − π r 2 = 2π rh + π h2 
r +h r 

4. As this ring becomes thinner and thinner, or 

we can ask when the width, h, gets smaller, what 

happens to thearea? The circumference of the 

outer circle, and the circumference of the inner 

circle approach each other. Therefore, as the area 

changes the circumferences also changes, but is 

dependent on how thick the ring is, 

which is known as the width, h. 

Expect to recognize that area 

becomes smaller circumferences 

approach. 
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5. Suppose the formula of a circumference 

is unknown. 

But what is known is the formula for the area of 

the ring, A = Ch . 

Then 𝐶𝐶 = 𝐴𝐴. 
ℎ 

Now, we can calculate the area of the ring divided 

by its width that is approaching zero to give us the 

circumference, of what was the innercircle but 

now the only circle. 

Expect to write (with them) 
 

A = 2π rh + π h2 = 
h h 

 
2π r + π h → 2π r 

when h → 0 

6. It is shown that the rate of change, or 

derivative, of the area of a circle is its 

circumference. 

Prompt to verify understanding 
of derivative as a limit. 

7. Allow for questions. Expect students’ questions leading 
to logical understanding and 
discovering concepts. 
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Task 1. Scaffolded Form for Students. 
 

Scaffolding Steps Students Work 

1. Construct a circle of radius, let us say, r. Add a 

second circle of radius r + h around that circle with 

the same center, and there is a width, say h, between 

the two circles. 

 

2. For a better visualization, the width, h, between 

the two circles, can be seen as a ring 

 

3. The area of this ring is the difference between the 

area of biggercircle and the area of the smaller 

circle. The area of a circle is A = π r2. The inner 

circle has radius, r, and the bigger circle has aradius 

r + h . 

Now, we can construct a formula to represent the 

difference between the two areas which equals the 

area of the ring. 

 

4. As this ring becomes thinner and thinner, or we 

can ask whenthe width, h, gets smaller, what 

happens to the area? The circumference of the 

outer circle, and the circumference of the inner 

circle approach each other. 

Therefore, as the area changesthe circumferences 

also changes, but is dependent on how thick the 

ring 

is, which is known as the width, h. 
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Task 2. Pilot Study and Original Task 1B (Appendix B). 
 
 

Is it possible to apply this process to a square? That is, considering two squares: one of radius r, 

and the other, of radius r + h , show how this process can help determine a derivative 

relationship between the “circumference”, or perimeter, of a square and its area? (Given that the 

“radius” of a square isthe perpendicular distance from the center of the square to a side of the 

square.) 
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Task 2. Expected Student Actions. 
 
 

Students are expected to show similar actions, steps, taken in the previous task. When a picture is 

drawn, it is possible students will mislabel measurements and segments. May be confused by the 

radius term, posed to be a signifier, an affordance to help the transfer of the steps taken to depict 

a visual aid. It is very likely students will execute a plan and find a solution, but they should 

check for correctness, try to detect their error, and execute another plan and check that solution. 

After administration, perhaps the instructor finds benefit from mediating collaborative discourse. 

Or perhaps, another cycle of the same tasks, should be conducted. 
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APPENDIX B 
 
 

Original Tasks from the study by Mamolo and Zazkis (2012): 
 
 

During a calculus class, one student noticed that when working with the circle, the derivative of 

dA d (π r 2 ) 
the area formula yields the formula for circumference. That is, = = 2π r . The student 

dr dr 
 

asked why this relationship held for the circle, and not in other cases such as with the square. 
 

1A. Use the diagram (below) to show why the derivative of the area of a circle yields the 

formula for the circumference. 

1B. Is it possible to represent the derivative of the area of a square as the formula for its 

perimeter? If so, explain how. If not, explain why not. 
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