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ABSTRACT

Respiratory disease in marine mammals evokes strong public attention as well as worthwhile

scientific interest. Traditional methods for animal disease diagnosis include blood test, ultrasound,

and computed tomography scan. These methods require invasive equipment to perform, and cannot

be applied to free-swimming animals.

Breath data, the measurement of lung inflow and outflow while breathing, can be collected

from free-swimming animals in a non-invasive way, and so is less stressful for distressed animals.

However, because of new features in the data, new statistical methods are required for the breath

data analysis. In this thesis, we investigate one potential method for analyzing breath data. Our

method begins by decomposing a raw dataset containing a sequence of breath cycles into a set of

individual breath cycles. Incomplete cycles are removed from the dataset. In this research, we

consider an entire breath cycle to be one unit of observation. Starting and ending points of breath

cycles can be difficult to determine, and cause a large amount of variation in size and shape of

breath curves. To reduce cycle to cycle variability, we apply curve registration to synchronize a set

of breath cycles. Breath cycles are described using magnitude information and geometric shape

information. We propose three shape models, namely, simple oval model, quadratic spline model,

and piecewise linear model. Furthermore, principal component analysis is applied to the mag-

nitude/shape descriptors to obtain main features of breath cycles. Criteria for disease diagnosis

are developed by identifying key differences among these main features between healthy and un-

healthy animals. The proposed methods were applied to check if two testing animals are diseased

or not. The results were consistent with the status of both animals.
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CHAPTER I: INTRODUCTION

The growing number of marine mammals suffering morbidity and mortality from respiratory dis-

ease implies a growing need for diagnosing the disease [23]. In this chapter, we briefly introduce

traditional and modern methods for diagnosing respiratory disease with respect to their advantages

and disadvantages. Due to benefits from the analysis of breath data, it becomes the main focus of

this study. The use of functional data analysis with computational statistics is introduced to pro-

vide tools to analyze breath data. The chapter ends with a review of principle component analysis,

which is used to extract main features of breath cycles.

1.1 Traditional methods of respiratory disease diagnosis for dolphin

Typical medical imaging methods, including ultrasound and computed tomography (CT) scan,

enable veterinarian to visualize and determine health condition of lung system. In addition, the

analysis of blood sample, and respiration cycle help to examine the working ability and health

condition of lung system. In this section, we briefly describe each individual diagnostic approach

with respect to its advantages and disadvantages. Finally, we explain why the analysis of breath

cycles is chosen as the main method in our research.

To draw comprehensive picture of lung system, ultrasound uses high-frequency sound wave,

and CT scan uses high-energy electromagnetic wave. Veterinarian then can visualize and identify

abnormal condition that can be a sign of lung disease. Besides that, blood test is taken in medi-

cal laboratory, where technician extracts blood sample and perform multiple tests to analyze each

component included in the blood sample. Abnormal level of certain components in the blood sam-

ple can be a sign of certain diseases [4]. For example, the present of miR, an intronic microRNA,

can be a sign of lung cancer [11].

Although blood test, ultrasound, and CT scan are common methods in animal disease diagno-

sis, these methods are difficult to perform on free-swimming animals living in the aquatic envi-
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ronment. Blood test requires extracting blood sample from dolphin, which requires special care in

monitoring the health condition of the dolphin before and after taking blood. In addition, experi-

enced staff must be trained in the extraction method. As for ultrasound and CT scan, these require

dolphin to be placed in the relevant machines to take a series of pictures, which again involves

special care and the need for trained and experienced technician.

Compared to the traditional methods, the analysis of breath data is a non-invasive way for diag-

nosing respiratory disease in dolphin. Respiration cycles of dolphin are measured by a combined

flow-meter (pneumotachometer), making it easy to collect breath data. Then, functional data anal-

ysis is used to analyze breath data. The findings and results of the study will help researchers to

diagnose health status of marine mammals, which can be used in studying marine biology.

1.2 Description of breath data

Our breath data were provided by Dr. Andreas Fahlman, and were collected from different dolphins

around the world. Breath data were measured on both healthy and diseased dolphins. Our analysis

will focus on two specific measurements, volume and flow-rate. Volume, measured in liters, is the

amount of air in the lung at different times as a dolphin exhales and inhales. Flow-rate, measured

in liters per seconds, is the change in volume per unit time. Because measurements are taken at

the constant frequency rate, for convenience, we just use the temporal order to denote the time

information.

In this study, we define a breath cycle to begin with exhalation and end with inhalation. When

the dolphin begins to exhale, the flow-rate of a breath cycle starts decreasing from zero. The flow-

rate declines to a minimum value before increasing to a maximum value, and then returns to zero

again. Consequently, the sign of flow-rate changes from negative to positive as the respiration cycle

of the dolphin changes from exhalation to inhalation. Figure 1.1 shows different views of breath

cycles. In particular, Figure 1.1a shows breath cycles with respect to flow-rate versus time, which

form fluctuating curve moving in forwarding direction. The intervals of fluctuation in Figure 1.1a

represent the time intervals when the dolphin exhales and inhales. Besides that, Figure 1.1b shows
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the flow-rate of breath cycles plotted against volume, which results in closed and asymmetrical

curves. In addition, we define half-up cycles are where flow-rate is greater than or equal to zero,

and half-down cycles are where flow-rate is less than zero.

(a) Flow-rate versus time (b) Flow-rate against volume

Figure 1.1: Breath curves

1.3 Introduction to functional data analysis

Functional data appear in many forms, such as function, curve, surface, or image. In general, a

functional data can be represented as a set of independent functions xi = xi(ti) for i = 1...N [14].

The variable ti usually represents time while xi represents some other variables.

Functional data analysis (FDA) is a unified collection of statistical techniques to analyze func-

tional data [15]. The history of FDA began in 1958 when Rao studied the growing process of an

organism by observing and analyzing its growth curve [16]. He successfully constructed a sim-

ple stochastic model of the growth curves. His findings/results helped to examine different growth

curves under various conditions. Even though FDA has been involved in the statistical treatment of

data since that time, the term ”functional data analysis” has become well-known only since 1982,

when Ramsay developed a data analytic technique that was used to study the outcomes of random

variables [13]. He expressed the problem straightforwardly in the manner of functional analysis,
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in which a datum was described as a continuous function of variable time observed over a specific

interval.

The fundamental aim of FDA is to determine a relationship between the input xi and a targeted

function yi through a map f , which is described as

yi = f (xi) = f (xi(ti))

In this study, the breath data is expressed as the function of N, where volume V = V (N) and

flow-rate F = F(N). The functional analysis is performed to find a map f , which is defined as

F = F(N) = f (V ) = f (V (N))

Because original breath cycles from raw dataset contain a large amount of variation that would

interfere with any synthesis of a common pattern, the analysis of breath data without any modi-

fication may lead to certain difficulties and meaningless results. A technique to overcome these

problems is curve registration. Curve registration is a statistical technique that synchronizes a

set of functional data to create a new dataset in which each datum shares similarity in form and

magnitude [14]. The history of curve registration may be traced back to 1978, when Sakoe and

Chiba published a method named wrapping function [19]. In their research, the authors collected

voice data from different people to create a spoken word recognition model. Since the speaking

rate is varied from person to person, they applied several adjustments to convert the dataset into

a common range which was suitable for further analysis. The term ”curve registration” was first

used by Silverman in 1995 [21]. In his study, Silverman modified previously collected data with

many perturbations to functional data, and created a more general procedure to adjust Canadian

temperature data into a pre-defined interval and shape.

In 1982, Ramsay introduced one of the most common curve registration techniques, which

is mark registration [13]. According to the technique, particular points in a dataset which have

special property are detected as marks. In this paper, examples of marks include maxima/minima,

and starting/ending points of a cycle.
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1.4 Principal component analysis

To diagnose the health condition of dolphin, differences between distributions of scores for healthy

and diseased dolphins need to be revealed. Due to the nature of functional data, the breath data are

very high dimensional, so it is crucial to reduce the number of dimensions. Principle component

analysis (PCA) is a widely-used mathematical algorithm for dimension reduction [17]. The history

of PCA may be traced back to 1901, when Pearson used the principal axis theorem in mechanics

[12]. In his article, he introduced the method of fitting a vector subspace to a multivariate dataset.

His findings/results became the fundamental idea of PCA, in which an input sample data is linearly

transformed into a lower-dimensional data that still retain a large enough amount of variation [1].

PCA accomplishes the dimensional reduction process by determining directions, called compo-

nents, along which the amount of variation in sample data is at maxima [6]. Components with high

variances are called principal components, which names the method. As a result, by using prin-

cipal components, sample data can be described by a set of few numbers, which can be displayed

by plot for visualizing and examining purposes. In the study, we apply PCA to obtain principal

components of the breath data, which helps to define criteria for respiratory disease diagnosis in

dolphin.
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CHAPTER II: DECOMPOSING TIME SERIES INTO INDIVIDUAL BREATH CYCLES

In this chapter, we describe how raw breath data time series of raw breath data are decomposed

into individual breath cycles. The process is described in the flowchart shown in Figure 2.2.

Figure 2.2: Decomposing time series of raw breath data into individual breath cycles

First, original breath data contains a sequence of breath cycles connected by flat segments as

may be seen in Figure 2.3. Because respiration cycles occur when flow-rate is changing over time,

these steady segments are not connected with breath cycles and may be eliminated from the dataset.

Since breath cycles are defined to begin with exhalation and end with inhalation, the algorithm

identifies the start of a breath cycle when the flow-rate begins decreasing continuously from zero,

and the end when the flow-rate decreases from a positive value to zero. As a result, incomplete

cycles, including either exhalation or inhalation, can be removed from the dataset. Figure 2.4

shows a breath cycle, which is successfully selected from the sequence of cycles.
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Figure 2.3: A sequence of breath cycles

(a) Flow-rate versus time (b) Flow-rate against volume

Figure 2.4: A breath cycle
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CHAPTER III: METHODS

Due to the functional nature of breath cycles, we use FDA to analyze the breath data as described

in the flowchart shown in Figure 3.5. Firstly, we apply curve registration, where multiple adjust-

ments are applied to reduce variability in the breath cycles. After different geometric models are

constructed to describe magnitude/shape features of the breath cycles, PCA is used to obtain main

features from magnitude/shape descriptors. Then, distributions of scores from the breath data of

healthy animals are constructed. Finally, criteria for disease diagnosis are defined to detect health

condition of dolphin.

Figure 3.5: Methods in FDA
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3.1 Curve registration

Consulting Figure 1.1b, we can that the raw breath curves contain substantial imperfections that

would interfere with any synthesis of a common pattern. These imperfections include the differ-

ences in starting/ending points and sizes of the breath cycles, and the local intrasubject variability

of the breath curves. The purpose of curve registration is to remedy these imperfections without

losing any important information. To begin the registration process, we apply moving averages to

moderate the intrasubject variability of breath cycles. Moving averages replace a given dataset with

sets of averages of consecutive values in that dataset [3]. Since the half-up of the breath curve typ-

ically has less variation than the half-down cycle, two different equations are used to describe how

moving averages are applied in each half cycle. To illustrate, let {X1,X2, . . . Xn} be a set of breath

data measurements before moving averages. Then, {Y1,Y2, . . . ,Yn−1} and {Z1,Z2, . . . ,Zn−2} de-

scribe two new sets of breath data measurements after moving average, which are computed by

Yi−1 =
Xi−1 +Xi

2
,2 ≤ i≤ n (3.1)

Zi−2 =
Xi−2 +Xi−1 +Xi

3
,3 ≤ i≤ n (3.2)

where Yi−1 is used to compute the new set of breath data for the top half, and Zi−2 is used to

compute the new set of breath data for the down half. Figure 3.6 shows that after moving average,

the adjusted curve has less local intrasubject variation than the original curve.

Figure 1.1b shows that the magnitude of the breath cycles are different. Our next step is to

resize inner area of the breath cycles. Each half of the breath cycle is rescaled separately. We use

ratios r1 and r3 to rescale the half-up cycle to have maximum flow-rate at 100, and ending point at

(200,0). We use ratios r2 and r4 to rescale the half-down cycle to have minimum flow-rate at -100,

and ending point at (200,0). The equations for computing the ratios are described as

r1 =
100
Fmu

(3.3)

r2 =−
100
Fmd

(3.4)

9



(a) Before moving averages (b) After moving averages

Figure 3.6: A breath cycle before and after moving averages

r3 =
200
Vmu

(3.5)

r4 =
200
Vmd

(3.6)

where Fmu is maximum flow-rate of the half-up cycle, and Fmd is minimum flow-rate of the half-

down cycle. The quantity volume is defined in a similar fashion. After being resized, maximum

flow-rate is equal to 100, minimum flow-rate is equal to -100, and maximum volume is equal to

200. Figure 3.7 shows the breath cycles after curve registration.

3.2 Modeling size and shape information

In this section, we describe three models that provide simplified descriptions of the breath cycles.

The first, a simple oval model, uses only the magnitude information of the breath cycles. The

remaining two models, a quadratic spline model and a piecewise linear model, augment magnitude

information with mark registration of the half-up breath cycles.

10



Figure 3.7: Breath cycles after curve registration

3.2.1 Simple oval model

The first geometric model constructed in this study is a simple oval model. To represent the model,

a vector of five components is used, which includes area ae, and the ratios (r1, r2, r3, and r4). In

detail, the ratios r1, r2, r3, and r4 are used to rescale the magnitude of the breath cycles stay. After

being rescaling, the shape of the breath cycles look relatively similar to oval shape, which names

the method. Besides that, area ae, represents inner area bounded by the curve of flow-rate of the

breath cycles plotted against volume, is used to describe the magnitude of the entire breath cycles

before moving averages and rescaling. The area is calculated by using the trapezoid sum, which is

described as [8]

area =
US+LS

2
(3.7)

where the upper sum US = ∑
i=n
i=2 |Fi|δV , the lower sum LS = ∑

i=n−1
i=1 |Fi|δV , and δV =Vi+1−Vi.

Some calculation results for components of the simple oval model for a sample of 9 breath

cycles are shown in Table 3.1.

11



Cycle 1 2 3 4 5 6 7 8 9
ae 204.961 163.215 191.894 244.183 233.906 164.690 151.694 70.875 195.070
r1 4.692 4.878 4.951 4.749 4.970 6.158 6.015 6.085 4.916
r2 5.531 6.436 5.182 4.561 6.293 5.490 4.624 9.422 5.603
r3 31.107 35.327 32.678 27.387 25.078 31.321 36.282 56.925 30.077
r4 31.001 35.318 32.440 27.545 25.059 31.109 35.947 58.388 30.240

Table 3.1: Components of the simple oval model for several breath cycles

3.2.2 Quadratic spline model

The second geometric model constructed in this study is a quadratic spline model. To represent

the model, a vector of ten components is used. Firstly, to summarize the magnitude of the breath

cycles, we use the inner area au of the half-up cycles before curve registration, and the ratios (r1

and r3). The fourth component of the vector is xm, the volume after curve registration at while the

maximum re-scaled flow rate of 100 occurs. Secondly, we use a1, b1, a2, and b2 to summarize

the geometric shape of half-up cycles after curve registration. The name ”quadratic spline”, itself,

represents that quadratic equation is used to construct the model. The system of equations below

describes how quadratic equation is applied to construct the model.
f1(x) = a1× x2 +b1× x+ c1,when x ≤ xm

f2(x) = a2× x2 +b2× x+ c2,when x ≥ xm

f ′1(xm) = f ′2(xm)

(3.8)

where a1 and b1 are the coefficients of the first quadratic equation, which passes through the

origin and maxima at (xm, 100) after curve registration; and a2 and b2 are the coefficients of the

second quadratic equation, which passes through the maxima and ending point at (200, 0) after

curve registration. Additionally, at the maximum rescaled flow-rate, the first derivative of the two

quadratic equations are equal to each other.

The last two components of the vector representing the quadratic spline model are R1 and R2,

which summarize deviation from the quadratic spline model. The equations for computing R1 and

R2 are described as

R1 = y2− y1 (3.9)
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R2 = y4− y3 (3.10)

where x1 is the midpoint of the interval [0, xm], y2 is the positive flow-rate at x1, and y1 is the

predicted flow-rate for the quadratic spline at x1. The quantity R2 is computed in a similar fashion

on the interval [xm, 200].

Some calculation results for components of the quadratic spline model for a sample of 9 breath

cycles are shown in Table 3.2. Figure 3.8 shows an example of quadratic spline model.

Cycle 1 2 3 4 5 6 7 8 9
au 118.421 95.891 102.516 128.721 134.847 90.893 76.869 46.454 113.084
r1 4.692 4.878 4.951 4.749 4.970 6.158 6.015 6.085 4.916
r3 31.107 35.327 32.678 27.387 25.078 31.321 36.282 56.925 30.077
xm 68.489 78.312 71.445 62.884 55.164 76.806 59.341 108.827 76.281
a1 -0.021 -0.016 -0.019 -0.025 -0.032 -0.017 -0.028 -0.008 -0.017
b1 2.891 2.505 2.683 3.091 3.559 2.573 3.288 1.828 2.565
a2 -0.006 -0.006 -0.006 -0.005 -0.005 -0.005 -0.005 -0.012 -0.006
b2 0.757 0.987 0.814 0.615 0.518 0.724 0.564 2.511 0.954
R1 20.507 23.209 19.471 19.482 20.045 22.841 18.971 26.767 19.859
R2 25.391 19.249 19.448 21.196 12.616 15.091 16.456 23.532 25.287

Table 3.2: Components of the quadratic spline model for several breath cycles

Figure 3.8: A quadratic spline model
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3.2.3 Piecewise linear model

The third geometric model constructed in this study is a pieceswise linear model. To represent the

model, a vector of twelve components is used. There are similarities and differences between the

quadratic spline model and the piecewise linear model. Regarding the similarities, three identical

marks appear in both models, which are the origin, maximum, and ending point. Thus, they share

four identical components including the area au, ratios r1 and r3, and variable xm, which are used

to summarize the magnitude of the half-up cycles in both models.

The remaining eight elements of the vector representing the piecewise linear model are x5, y5,

x6, y6, x7, y7, x8, and y8, defined as follows. x5 and x6 are the trisectors of the interval [0, xm],

and y5 and y6 are the positive rescaled flow-rates at those two points. x7, y7, x8, and y8 are defined

similarly on the interval [xm, 200].

Some calculation results for components of the piecewise linear model for a sample of 9 breath

cycles are shown in Table 3.3. Figure 3.9 shows an example of piecewise linear model.

Cycle 1 2 3 4 5 6 7 8 9
au 118.421 95.891 102.516 128.721 134.847 90.893 76.869 46.454 113.084
r1 4.692 4.878 4.951 4.749 4.970 6.158 6.015 6.085 4.916
r3 31.107 35.327 32.678 27.387 25.078 31.321 36.282 56.925 30.077
xm 68.489 78.312 71.445 62.884 55.164 76.806 59.341 108.827 76.281
x5 12.334 14.266 15.794 12.045 9.618 14.053 10.135 13.967 12.041
y5 64.349 64.353 67.841 62.814 58.202 66.070 70.695 55.883 58.372
x6 38.052 43.943 40.095 36.532 29.014 42.909 33.847 56.775 41.580
y6 88.298 93.210 91.673 84.850 88.758 93.928 91.627 90.118 90.876
x7 118.926 128.949 124.314 116.884 112.021 120.120 118.672 150.671 128.690
y7 95.101 91.230 90.812 95.317 86.163 90.714 93.023 88.000 94.297
x8 170.133 174.218 172.727 167.945 160.524 165.163 167.043 183.292 176.051
y8 89.114 73.406 74.158 82.096 82.416 93.928 76.277 68.589 73.483

Table 3.3: Components of the piecewise linear model for several breath cycles
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Figure 3.9: A piecewise linear model

3.3 Principal component analysis

Let X0 be a d× n data matrix, to begin dimension reduction process, X0 is normalized, which is

described as

X =
X0− X̄
sd(X0)

where X̂ is the mean of the column of the matrix X0, and sd(X0) is the standard deviation of the

column of the matrix X0.

Then, correlation matrix ΣXX = XT X is constructed to describe linear dependence between

variables in the matrix X . By diagonalizing the correlation matrix ΣXX , we obtain loading W as

eigenvectors, and variances Λ of new variables as eigenvalues, which is described as

ΣXX =WΛW T

where eigenvalues and eigenvectors are in the descending order of eigenvalues.

For each of the models described above, a model matrix X0 is formed by using the vectors from

all breath cycles as row vectors. The R function prcomp() is used to compute the singular value

decomposition for these three model matrices.

By dropping some of the least important eigenvectors, PCA reduces the number of dimensions

of the breath data. The number of dimensions can be determined by comparing the proportion of

variation remaining in the models with the total variation of the dataset. Figure 3.10 shows three
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scree plots, which displays PCA results. A scree plot is a simple line segment plot, which shows

the eigenvalues/variances of individual components in descending order [5].

(a) Scree plot from the simple oval model (b) Scree plot from the quadratic spline model

(c) Scree plot from the piecewise linear model

Figure 3.10: PCA results from different models

To interpret the principal components (PCs) from each model, we look first at correlations

between the breath data for each variable and each component, shown in Tables 3.4 to 3.6. From

the correlations between variables and PCs, mathematical equations are constructed that can be

used to calculate scores for healthy and testing animals.

According to the screen plots in Figure 3.10, the variances of PC1 and PC2 are significantly
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higher than the other PCs. Tables 3.4 to 3.6 show the correlations between original variables and

PCs from the models.

Variable PC1 PC2
au 0.495 -0.033
r1 -0.379 0.581
r2 -0.400 0.493
r3 -0.478 -0.445
r4 -0.472 -0.469

Table 3.4: PCA results from the simple oval model

Two equations for computing score1 and score2 from the simple oval model are described as

score1 = 0.495au−0.379r1−0.400r2−0.478r3−0.472r4 (3.11)

score2 =−0.033au +0.581r1 +0.493r2−0.445r3−0.469r4 (3.12)

Variable PC1 PC2
au 0.149 -0.538
r1 -0.059 0.429
r3 -0.157 0.491
xm -0.473 -0.126
a1 -0.433 0.024
b1 0.461 0.020
a2 0.352 0.296
b2 -0.342 -0.302
R1 0.088 -0.012
R2 -0.277 0.298

Table 3.5: PCA results from the quadratic spline model

Two equations for computing score1 and score2 from the quadratic spline model are described

as

score1 = 0.149au−0.059r1−0.157r3−0.473xm−0.433a1 +0.461b1 +0.352a2

−0.342b2 +0.088R1−0.277R2

(3.13)

17



score2 =−0.538au +0.429r1 +0.491r3−0.126xm +0.024a1 +0.020b1 +0.296a2

−0.302b2−0.012R1 +0.298R2

(3.14)

Variable PC1 PC2
au 0.085 -0.550
r1 0.004 0.438
r3 -0.098 0.510
xm -0.419 -0.057
x5 -0.404 -0.153
y5 -0.233 -0.333
x6 -0.417 -0.095
y6 0.031 -0.085
x7 -0.423 -0.013
y7 -0.173 0.142
x8 -0.413 0.093
y8 0.188 -0.252

Table 3.6: PCA results from the piecewise linear model

Two equations for computing score1 and score2 from the piecewise linear model are described

as

score1 = 0.085au +0.004r1−0.098r3−0.419xm−0.404x5−0.233y5−0.417x6

+0.031y6−0.423x7−0.173y7−0.413x8 +0.188y8

(3.15)

score2 =−0.550au +0.438r1 +0.510r3−0.057xm−0.153x5−0.333y5−0.095x6

−0.085y6−0.013x7 +0.142y7 +0.093x8−0.252y8

(3.16)

3.4 Distributions of scores for healthy animals

In this section, to determine scores characterizing the breath cycle of healthy animals, a set of 92

breath cycles taken from five healthy animals are combined into a training set referred to below

as animal H. Then, we construct boxplots and, quantile-quantile (Q-Q) plots, and bagplots to

describe empirical distributions of scores from the breath data of animal H. From the boxplot, we
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can visualize the level of symmetry or skewness of distribution of each score from the breath data of

healthy animals [10]. Abundant applications of boxplot are discussed in the article of Williamson,

in which his main interest is how boxplot can interpret a dataset from complex table [25]. Besides

that, Q-Q plot displays quantiles of one dataset against quantiles of a second dataset [9]. The

main purpose of Q-Q plot is to determine whether two datasets have the same distribution. The

interpretation process of Q-Q plot is described in detail by Wang, Steele, and Zhang [24]. In our

study, the first dataset is scores from the breath data of healthy animals with unknown distribution,

and the second dataset has the standard normal distribution. As a result, if the breath data of healthy

animals are from normal distribution, data points will position close to Q-Q line that is a straight

diagonal line. In addition, bivariate boxplot displays two-dimensional distributions of multivariate

dataset [18]. From the bivariate boxplot, we can visualize the spread and outlier of the breath data.

We also use the Shapiro-Wilk test and Anderson-Darling test to test for normality [20] [2].

Figures 3.11 to 3.13 show distributions of each score from breath data of healthy animals.

Figures 3.14 show two-dimensional distributions of scores from breath data of healthy animals

from the three models. In addition, Table 3.7 shows the normality test results.

Model score Shapiro-Wilk test Anderson-Darling test
Simple oval score1 0.082 0.029

score2 0.616 0.603
Quadratic spline score1 0.836 0.934

score2 0.286 0.314
Piecewise linear score1 0.100 0.264

score2 0.970 0.950

Table 3.7: Normality test results from different models

According to Figures 3.11 to 3.14, neither plots reveal unusual qualities, such as outliers or

gaps. The boxplots show that the distributions of scores are slightly skewed. Even though there

are a few points wriggle about the Q-Q lines in the Q-Q plots, the majority lie quite close to the

Q-Q lines. Besides that, from the bivariate boxplots, their means are located approximately at the

centers of the boxplots, and the spreads of the data are small as the majority lie relatively close to

the means. In addition, according to the normality test results from Shapiro-Wilk and Anderson-
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(a) Score1 (b) Score2

(c) Score1 (d) Score2

Figure 3.11: Boxplots and Q-Q plots of the first two scores from the simple oval model for healthy
animals
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(a) Score1 (b) Score2

(c) Score1 (d) Score2

Figure 3.12: Boxplots and Q-Q plots of the first two scores from the quadratic spline model for
healthy animals
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(a) Score1 (b) Score2

(c) Score1 (d) Score2

Figure 3.13: Boxplots and Q-Q plots of the first two scores from the piecewise linear model for
healthy animals
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(a) The simple oval model (b) The quadratic spline model

(c) The piecewise linear model

Figure 3.14: Bivariate boxplots of the first two scores from different models for healthy animals
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Darling tests, all p-values are greater than the 1% significant level. These results/findings indicate

that the distributions of scores from the breath data of healthy animals are approximately normal. In

the future, we will use two-dimensional normality tests on scores of healthy animals for validating

the bivariate normality.

3.5 Criteria for disease diagnosis

In this section, based on the PCs and scores collected from PCA, we define criteria for disease di-

agnosis. Because the breath data of different animals have different numbers of breath cycles mea-

sured, we define criteria for disease diagnosis according to the number of breath cycles. Firstly, if

a dataset from a given animal contains only one breath cycle and its scores are beyond the normal

ranges of the healthy population, there are some differences between healthy and testing animals.

Secondly, if a dataset from a given animal contains a few breath cycles and its average scores are

beyond the normal ranges of the healthy population, there are some differences between healthy

and testing animals. The normal ranges of the healthy population are defined by 3 standard devia-

tions from the mean criterion or 1.5 interquartile range criterion in a modified boxplot. Finally, if a

dataset from a testing animal contains many cycles, two-sample t-test and Hotelling’s t-squared test

are used to test the difference between healthy and testing animals [22] [7]. While the two-sample

t-test is used to compare the two population means of one score from healthy and testing animals,

the Hotelling’s t-squared test is used to test the mean vector of the two sets of score values from

healthy and testing animals. The equation for computing diseased index for the two-sample t-test

is defined as

Diseased index T =
x−y√
s2

1
n1
+

s2
2

n2

(3.17)

where x is the average score of a testing animal, y is the average score of healthy animals, n1 is

the number of breath cycles from a testing dataset, n2 is the number of breath cycles from healthy

dataset, s1 is the standard deviation of scores of a testing animal, and s2 is the standard deviation

of scores of healthy animals.
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The equation for computing diseased index for the Hotelling’s t-squared test is defined as

Diseased index T 2 = (x−y)T (Σ̂(
1
n1

+
1
n2

))−1(x−y) (3.18)

where x = 1
nx

∑
nx
i=1 xi is the average score vector of a testing animal, y = 1

ny
∑

ny
i=1 yi is the av-

erage score vector of healthy animals, and Σ̂ =
nxΣ̂x+nyΣ̂y
nx+ny−2 is the covariance matric where Σ̂x =

1
nx−1 ∑

n
i=1(xi− x)(xi− x)′ is the covariance matrix of a testing animal and Σ̂y = 1

ny−1 ∑
n
i=1(yi−

y)(yi−y)′ is the covariance matrix of healthy animals. Under the null hypothesis, the statistics T 2

is related to the F-distribution with p and n− p degrees of freedom, where p = 2 for comparing

bivariate scores.
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CHAPTER IV: DISEASE DIAGNOSIS FOR ANIMALS

In this chapter, based on the scores defined in equations 3.12 to 3.16, we compute scores for testing

animals. Then we test the claim that the mean for a testing animal is the same as, or different from,

the mean for the healthy population. Results from the test will be used to detect the health condition

of two testing animals which we will refer to as animal T1 and animal T2. T1 has one breath cycle

measured, while T2 has 59 breath cycles measured. In addition, scatter plots are used to compare

the two-dimensional measurements from healthy animals with testing animals, as shown in Figure

4.16. Figure 4.15 shows breath cycles of T1 and T2 after curve registration. We also use scatter

plot to display the distribution of scores from healthy and testing animals, which is shown in figure

4.16.

(a) Animal T1 (b) Animal T2

Figure 4.15: Breath cycles of testing animals after curve registration

For the disease diagnosis for animal T1, since it has one breath cycle measured, we plot the

single point for animal T1 against all the points for animal H, as shown in Figure 4.17. According

to Figures 4.16 and 4.17, the scores of animal T1 appear to be outliers in the plots. That indicates

some differences between healthy animals and animal T1.
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(a) The simple oval model (b) The quadratic spline model

(c) The piecewise linear model

Figure 4.16: Scatter plots of the first two scores from different models for healthy and testing
animals

For the disease diagnosis for animal T2, since it has 59 breath cycles measured, we use two-

sample t-test and Hotelling’s t-squared test to test the differences between healthy animals and

testing animal T2. Two-sample t-test is used to compare the two population means of one score

from healthy animals and animal T2. The null hypothesis H0 states that the mean for animal T2

is the same as the mean for the healthy population. The alternative hypothesis H1 states that the

mean for animal T2 is different from the mean for the healthy population. Table 4.8 shows results
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(a) The simple oval model (b) The quadratic spline model

(c) The piecewise linear model

Figure 4.17: Bivariate boxplots of the first two scores from different models for animal H and
animal T1

from the two-sample t-test.

Hotelling’s t-squared test is used to test the mean vector of the two sets of score values from

healthy animals and animal T2. The null hypothesis H0 states that the mean vector for testing

animal is the same as the mean vector for the healthy population. The alternative hypothesis

H1 states that the mean vector for animal T2 is different from the mean vector for the healthy

population. Table 4.9 shows results from the Hotelling’s t-squared test.
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Model score p-value
Simple oval score1 < 2.2e-16

score2 1.262e-13
Quadratic spline score1 2.449e-11

score2 < 2.2e-16
Piecewise linear score1 0.004

score2 < 2.2e-16

Table 4.8: Two-sample t-test results from different models

Model p-value
Simple oval <2.2e-16
Quadratic spline <2.2e-16
Piecewise linear <2.2e-16

Table 4.9: Hotelling’s t-squared test results from different models

As can be seen from Tables 4.8 and 4.9, all the p-values are less than the 1% significant level,

so we reject the null hypothesis H0 [22] [7]. In addition, according to Figure 4.16, the distributions

of scores for animal T2 are separated from the distributions of scores for healthy animals. These

findings/results indicate some differences between healthy animals and animal T2.
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CHAPTER V: CONCLUSION AND FUTURE WORK

We propose some statistical methods for disease diagnosis on dolphin by analyzing the breath data.

In the analysis, a total of 92 breath cycles of five healthy dolphins have been analyzed to build the

baseline of healthy animals.

The ratios/area are used to describe the magnitude of the breath curves. Three models are

constructed to describe the geometric shape of the breath curves. Then PCA are applied to extract

important features from the magnitude/shape descriptors. Criteria for disease diagnosis are defined

using boxplots and bivariate boxplots to display the distributions of scores for healthy and testing

animals, the two-sample t-test to compare the two population means of one score from healthy and

testing animals, and the Hotelling’s t-squared test to test the mean vector of the two sets of score

values from healthy and testing animals. The proposed methods were applied to detect the health

condition of two testing animals. The results/findings indicate that there are some differences

between healthy and testing animals.

For future work, we plan to focus on the analysis of the half-down cycles, where a large amount

of variation provides a rich source of information. In addition, we propose to continue collecting

and analyzing more breath data to check the precision of our method. Finally, more techniques

should be used to explore the potential information covered in the breath data of marine mammals.
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APPENDIX A: R CODES

#Code1: plotting original breath cycles from raw data

file_name = c() #list of file names

num_data = #the file number

dat = read.csv(paste(file_name[num_data],".csv",sep=""))

plot(dat[start.cycle:end.cycle,2], dat[start.cycle:end.cycle,1],type = "l")

#Code2: decomposing time series into individual breath cycles

attach(dat)

Min.interval.bw.two.cycles = 0.5

diff.Flowrate = c(0, diff(Flowrate))

max.Flowrate = max(Flowrate)

min.Flowrate=min(Flowrate)

max_min = max.Flowrate - min.Flowrate

#To select thresholds to determine if a value is in a breathe cycle

#or not by the size of max breathe cycle

k1 = min(max(max_min/80,0.09), 0.5)

k2 = min(max(max_min/80,0.09),0.25)

k3= min(max(max_min/40,0.2),1.25)

k4.max.min= max(max_min/20, 2)

#To identify possible values in breath cycles by its absolute values and the change

#If the difference = 0, then it is very likely not in a breathe cycle

#It the values in a consequence of several are very small, it is not in a cycle

T = length(Flowrate)

index_noneZero= ((abs(Flowrate)>k1) & (abs(diff.Flowrate)>k2) | (abs(Flowrate)>k3))
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index_noneZero.corrected = index_noneZero

#To define the i-th plausible cycle (possible false cycles )

#If there is a transition from 1 to 0 (at least a consequence of 10 0s),

#the next cycle to appear soon and icycle_value = icycle_value + 1

i_cycle = rep(0, T)

i_cycle_value = 1

max.T.Cyl = 0

T.cyl =0

DistBwCycles= 0

start.cycle=list()

end.cycle=list()

for( i in 1: (T-5))

{

if (index_noneZero.corrected[i] == TRUE)

{

if(T.cyl == 0) { start.cycle[ i_cycle_value ] = i}

i_cycle[i] = i_cycle_value

T.cyl = T.cyl + 1

if( (sum(index_noneZero.corrected[(i+1):(i+10)]) == FALSE) )

{

end.cycle[ i_cycle_value ] = i

i_cycle_value = i_cycle_value + 1

max.T.Cyl = max(max.T.Cyl, T.cyl )

T.cyl = 0

}

}

}
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#Code3: removing incomplete cycles

file_name = c() #list of file names

num_data = #the file number

dat = read.csv(paste(file_name[num_data],".csv",sep=""))

#enter estimated starting points of individual cycles,

#here the points are gradually increased until flat segments are eliminated

start.cycle = ()

#enter estimated ending points of individual cycles,

#here the points are gradually decreased until flat segments are eliminated

end.cycle = ()

#check visually by plots

plot(dat[start.cycle:end.cycle,2], dat[start.cycle:end.cycle,1],type = "l")

#Code4: moving averages

dat = read.csv(paste(file,"_dat.csv",sep=""))

max_cycle = dat$cycle[nrow(dat)]

new_dat = dat[c(),]

for(cycle in 1:max_cycle){

temp = dat[dat$cycle==cycle,]

temp1 = temp[temp$side == "up",]

temp1 = temp1[order(temp1$TidalVolume),]

temp2 = temp[temp$side == "down",]

temp2 = temp2[order(temp2$TidalVolume),]

n = nrow(temp1)

temp1$Flowrate[1:(n-1)] = (temp1$Flowrate[1:(n-1)] + temp1$Flowrate[2:n])/2

temp1$TidalVolume[1:(n-1)] = (temp1$TidalVolume[1:(n-1)] +
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temp1$TidalVolume[2:n])/2

new_dat[(nrow(new_dat)+1):(nrow(new_dat)+n-1),] = temp1[1:(n-1),]

n = nrow(temp2)

temp2$Flowrate[1:(n-2)] = (temp2$Flowrate[1:(n-2)] + temp2$Flowrate[2:(n-1)]

+ temp2$Flowrate[3:n])/3

temp2$TidalVolume[1:(n-2)] = (temp2$TidalVolume[1:(n-2)]

+ temp2$TidalVolume[2:(n-1)] + temp2$TidalVolume[3:n])/3

new_dat[(nrow(new_dat)+1):(nrow(new_dat)+n-2),] = temp2[1:(n-2),]

}

write.csv(new_dat,paste(file,"_dat2.csv",sep=""),row.names = FALSE)

#Code5: rescaling breath cycles

for(file in list_file){

if(new_name){

dat = read.csv(paste(file,"_dat2.csv",sep=""))

}else{

dat = read.csv(paste(file,"_dat.csv",sep=""))

}

n = dat$cycle[nrow(dat)]

for (i in 1:n){

temp = dat[dat$cycle==i,]

scale_dat[current,"Name"] = file

scale_dat[current,"cycle"] = i

scale_dat[current,"up_scale"] = 100/max(temp[temp$side=="up","Flowrate"])

scale_dat[current,"down_scale"] = -100/min(temp[temp$side=="down","Flowrate"])

scale_dat[current,"x_up_scale"] = 200/max(temp[temp$side=="up","TidalVolume"])

scale_dat[current,"x_down_scale"] = 200/max(temp[temp$side=="down","TidalVolume"])
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current = current+1

temp[temp$side=="up","Flowrate"] = temp[temp$side=="up","Flowrate"]

*100/max(temp[temp$side=="up","Flowrate"])

temp[temp$side=="down","Flowrate"] = -temp[temp$side=="down","Flowrate"]

*100/min(temp[temp$side=="down","Flowrate"])

temp[temp$side=="up","TidalVolume"] = temp[temp$side=="up","TidalVolume"]

*200/max(temp[temp$side=="up","TidalVolume"])

temp[temp$side=="down","TidalVolume"] = temp[temp$side=="down","TidalVolume"]

*200/max(temp[temp$side=="down","TidalVolume"])

dat[dat$cycle==i,] = temp

}

if(new_name){

write.csv(dat,paste(file,’_std2.csv’,sep=""),row.names = FALSE)

}else{

write.csv(dat,paste(file,’_std.csv’,sep=""),row.names = FALSE)

}

}
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