• Login
    View Item 
    •   TAMU-CC Repository Home
    • TAMU-CC Theses, Dissertations, and Graduate Projects
    • Theses
    • View Item
    •   TAMU-CC Repository Home
    • TAMU-CC Theses, Dissertations, and Graduate Projects
    • Theses
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Analysis and applications of the weighted central direction method

    Thumbnail
    View/Open
    Choi, Haekyoung thesis.pdf (1.643Mb)
    Date Issued
    2016-12
    Author
    Choi, Haekyoung
    Metadata
    Show full item record
    URI
    http://hdl.handle.net/1969.6/1136
    Abstract
    Iterative methods yield an approximated solution to a given problem by producing a sequence of points that converges to the exact solution. Due to the effectiveness of these methods, they become one of the core mathematical procedures widely used in many major mathematical areas such as Differential Equations, Linear Algebra, and Matrix Analysis. The Methods of Alternating Projection, which we will use in this thesis, form a class of iterative methods based on the relevant projection algorithm introduced by John von Neumann. This outstanding algorithm received considerable attention by mathematicians which contributed to a number of different algorithms to solve several problems. Recently, two former graduate students at Texas A&M University-Corpus Christi, Melina Wijaya and Zulema Cervantes, introduced a couple of new algorithms in this area. Wijaya presented the Weighted Direction algorithm, and Cervantes introduced the Weighted Central Direction algorithm by combining the Weighted Direction and the Central Direction. The algorithm with the combination of two directions achieved a faster convergence than the algorithm with the Weighted Direction only. However, the Weighted Central Direction algorithm needs a parameter which depends on the size of the problems. This thesis carries two objectives. Firstly, study the role of the wide angle condition which guarantees the convergence in the Weighted Direction algorithm in order to analyze if this condition is necessary for the convergence of the algorithm. Secondly, improve the algorithms developed by Wijaya and Cervantes in order to obtain a faster convergence by finding an adequate ratio between the Weighted Direction and the Central Direction that is independent of the size of the problems.
    Description
    A thesis Submitted in Partial Ful llment of the Requirements for the Degree of MASTER OF SCIENCE in MATHEMATICS from Texas A&M University-Corpus Christi in Corpus Christi, Texas.
    Rights
    This material is made available for use in research, teaching, and private study, pursuant to U.S. Copyright law. The user assumes full responsibility for any use of the materials, including but not limited to, infringement of copyright and publication rights of reproduced materials. Any materials used should be fully credited with its source. All rights are reserved and retained regardless of current or future development or laws that may apply to fair use standards. Permission for publication of this material, in part or in full, must be secured with the author and/or publisher.
    Collections
    • College of Science and Engineering Theses and Dissertations
    • Theses

    DSpace software copyright © 2002-2016  DuraSpace
    Contact Us | Send Feedback
    TDL
    Theme by 
    Atmire NV
     

     

    Browse

    All of TAMU-CC RepositoryCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsDepartmentsThis CollectionBy Issue DateAuthorsTitlesSubjectsDepartments

    My Account

    Login

    Statistics

    View Usage Statistics

    DSpace software copyright © 2002-2016  DuraSpace
    Contact Us | Send Feedback
    TDL
    Theme by 
    Atmire NV