• Login
    View Item 
    •   TAMU-CC Repository Home
    • TAMU-CC Theses, Dissertations, and Graduate Projects
    • Theses
    • View Item
    •   TAMU-CC Repository Home
    • TAMU-CC Theses, Dissertations, and Graduate Projects
    • Theses
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Estimation and comparison of the image noise levels via subsampling

    Thumbnail
    View/Open
    Le_Dung_Thesis.pdf (1.487Mb)
    Le_Dung_SupplementaryFiles.zip (3.357Mb)
    Date Issued
    2019-08
    Author
    Le, Dung Anh
    Metadata
    Show full item record
    URI
    https://hdl.handle.net/1969.6/87890
    Abstract
    As the amount of digital data has increased critically in the last decade, image data has become more and more important. Noise is a random signal which always present in an image during image acquisition, coding and, transmission. Image noise leads to pixels representing incorrectly the color or the exposure of the scene. The noise level is an important component for measuring the quality of an image. In the literature, very little work has been done in statistical inference for image noise. Most existing methods deal with the point estimation of the noise level, but the sampling distribution of these point estimates are unknown in general. In this project, we propose sub-sampling methods for image data to approximate the sampling distribution for the point estimates. Also, we develop some methods to compare the noise level of two images. First, we review different models of image noise including independent noise, dependent noise and bivariate noise models. Usually the probability models for image noise are not simple and the variance estimates are complicated. The estimates themselves require sampling distributions for statistical inference. Second, we approximate the sampling distributions via subsampling methods. In statistics, bootstrap and resampling methods are widely used to construct the sampling distributions and estimate the variances of different statistics. Here, we generalize resampling methods for one dimensional data to deal with two dimensional images. From these, confidence intervals for the noise level are constructed. Also, some methods for comparing the image variance in paired images are evaluated for different types of noise such as independent noise and dependent bivariate Gaussian noise. The results of the estimation noise level and hypothesis tests on variance comparison are provided. It seems that the proposed subsampling methods provide reasonable results while both the F-test and the Pitman t-test may not work well.
    Rights
    This material is made available for use in research, teaching, and private study, pursuant to U.S. Copyright law. The user assumes full responsibility for any use of the materials, including but not limited to, infringement of copyright and publication rights of reproduced materials. Any materials used should be fully credited with its source. All rights are reserved and retained regardless of current or future development or laws that may apply to fair use standards. Permission for publication of this material, in part or in full, must be secured with the author and/or publisher.
    Collections
    • College of Science and Engineering Theses and Dissertations
    • Theses

    DSpace software copyright © 2002-2016  DuraSpace
    Contact Us | Send Feedback
    TDL
    Theme by 
    Atmire NV
     

     

    Browse

    All of TAMU-CC RepositoryCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsDepartmentsThis CollectionBy Issue DateAuthorsTitlesSubjectsDepartments

    My Account

    Login

    Statistics

    View Usage Statistics

    DSpace software copyright © 2002-2016  DuraSpace
    Contact Us | Send Feedback
    TDL
    Theme by 
    Atmire NV