How are wearable activity trackers adopted in older adults? Comparison between subjective adoption attitudes and physical activity performance

Abstract

Wearable activity trackers can motivate older adults to engage in the recommended daily amount of physical activity (PA). However, individuals may not maintain their use of the trackers over a longer period. To investigate the attitudes of activity tracker adoption and their effects on actual PA performance, we conducted a three-month study. We gave activity trackers to 16 older adults and assessed attitudes on activity tracker adoption through a survey during the study period. We extracted participants’ PA measures, step counts, and moderate and vigorous physical activity (MVPA) times. We observed significant differences in adoption attitudes during the three different periods (χ2(2, 48) = 6.27, p < 0.05), and PA measures followed similar decreasing patterns (F(83, 1357) = 12.56, 13.94, p < 0.00001). However, the Pearson correlation analysis (r = 0.268, p = 0.284) and a Bland–Altman plot indicated a bias between two PA measures. Positive attitudes at the initial stage did not persist through the study period, and both step counts and length of MVPA time showed waning patterns in the study period. The longitudinal results from both measures demonstrated the patterns of old adults’ long-term use and adoption. Considering the accuracy of the activity tracker and older adults’ athletic ability, MVPA times are more likely to be a reliable measure of older adults’ long-term use and successful adoption of activity trackers than step counts. The results support the development of better activity tracker design guidelines that would facilitate long-term adoption among older adults.


Wearable activity trackers can motivate older adults to engage in the recommended daily amount of physical activity (PA). However, individuals may not maintain their use of the trackers over a longer period. To investigate the attitudes of activity tracker adoption and their effects on actual PA performance, we conducted a three-month study. We gave activity trackers to 16 older adults and assessed attitudes on activity tracker adoption through a survey during the study period. We extracted participants’ PA measures, step counts, and moderate and vigorous physical activity (MVPA) times. We observed significant differences in adoption attitudes during the three different periods (χ2(2, 48) = 6.27, p < 0.05), and PA measures followed similar decreasing patterns (F(83, 1357) = 12.56, 13.94, p < 0.00001). However, the Pearson correlation analysis (r = 0.268, p = 0.284) and a Bland–Altman plot indicated a bias between two PA measures. Positive attitudes at the initial stage did not persist through the study period, and both step counts and length of MVPA time showed waning patterns in the study period. The longitudinal results from both measures demonstrated the patterns of old adults’ long-term use and adoption. Considering the accuracy of the activity tracker and older adults’ athletic ability, MVPA times are more likely to be a reliable measure of older adults’ long-term use and successful adoption of activity trackers than step counts. The results support the development of better activity tracker design guidelines that would facilitate long-term adoption among older adults.

Description

Keywords

activity tracker, adoption attitude, step count, mvpa time, long-term use, activity tracker, adoption attitude, step count, mvpa time, long-term use

Sponsorship

Rights:

Attribution 4.0 International, Attribution 4.0 International

Citation

Lee, B.C., Xie, J., Ajisafe, T. and Kim, S.H., 2020. How are wearable activity trackers adopted in older adults? Comparison between subjective adoption attitudes and physical activity performance. International journal of environmental research and public health, 17(10), p.3461.
Lee, B.C., Xie, J., Ajisafe, T. and Kim, S.H., 2020. How are wearable activity trackers adopted in older adults? Comparison between subjective adoption attitudes and physical activity performance. International journal of environmental research and public health, 17(10), p.3461.