Assessing embryonic toxicity and end fates of nanoplastics in freshwater environments using gastropod Biomphalaria Glabrata

Date

2022-07-22

Authors

Merrill, MacKenzie Leigh

Journal Title

Journal ISSN

Volume Title

Publisher

DOI

Abstract

The wide use of plastics has resulted in not only the accumulation of macroplastic pollution in the aquatic environment but also plastic particles at micro and nano levels (MPs and NPs). Accumulation of these MPs and NPs have numerous adverse effects on the morphology, behavior, and reproduction of living organisms. In this study, we investigated the effects of NPs on the embryonic development of Biomphalaria glabrata, a commonly used gastropod in toxicology studies. This study identified the adsorption of NPs by the embryos of B. glabrata and showed evidence of NP absorption by the hatched juveniles. NP bioaccumulation subsequently triggered the alteration in the expression of several stress response genes, including heat shock protein-70 (HSP70), cytochrome P450 (CYP450), and macrophage migration inhibitory factor (MIF). With the influence of NPs, the hatching rates of B. glabrata embryos varied depending on the sizes of NPs. In addition, the NPs with mean diameters of 1.0 µm or 0.03 µm led to higher embryo mortality rates than 0.5 µm NPs. This preliminary study demonstrated the impact of NPs on the development of B. glabrata embryos. Further studies on the mechanism of NP toxic effects are desired.

Description

A thesis submitted in partial fulfillment of the requirements for the degree of Master of Science in Biology from Texas A&M University-Corpus Christi in Corpus Christi, Texas.

Keywords

aquatic toxicology, bioaccumulation, biomphalaria, ecotoxicity, nanoplastic

Sponsorship

Rights:

This material is made available for use in research, teaching, and private study, pursuant to U.S. Copyright law. The user assumes full responsibility for any use of the materials, including but not limited to, infringement of copyright and publication rights of reproduced materials. Any materials used should be fully credited with its source. All rights are reserved and retained regardless of current or future development or laws that may apply to fair use standards. Permission for publication of this material, in part or in full, must be secured with the author and/or publisher., This material is made available for use in research, teaching, and private study, pursuant to U.S. Copyright law. The user assumes full responsibility for any use of the materials, including but not limited to, infringement of copyright and publication rights of reproduced materials. Any materials used should be fully credited with its source. All rights are reserved and retained regardless of current or future development or laws that may apply to fair use standards. Permission for publication of this material, in part or in full, must be secured with the author and/or publisher.

Citation