The effects of opening an artificial tidal inlet on hydrography and estuarine macrofauna in Corpus Christi, Texas




Palmer, Terence A.
Montagna, Paul A.
Kalke, Richard D.


Journal Title

Journal ISSN

Volume Title


Environmental Monitoring and Assessment



Packery Channel is part of a complex of storm washover channels which, before 1912, have opened intermittently, linking the Laguna Madre and Corpus Christi Bay, Texas with the Gulf of Mexico. On 21 July 2005, with the assistance of Hurricane Emily, Packery Channel was prematurely opened to the Gulf of Mexico, months before construction of a dredged channel was scheduled to be completed. A before-versus-after, control-versus-impact (BACI) design was used to assess the effects of reopening Packery Channel on water quality and estuarine macrofauna in Mollie Beattie Coastal Habitat Community (MBCHC), Corpus Christi Bay. Two deep (approximately 1 m below m.s.l.) and two shallow (approximately 0.2 m below m.s.l.) stations were sampled monthly for physical and biological characteristics at both control and impact sites between November 2003 and March 2009. The opening of Packery Channel created a unique situation where salinities decreased after the channel opening by ameliorating hypersalinity in Laguna Madre rather than increasing salinities as would occur in most estuaries worldwide. Salinity also fluctuated in a diurnal pattern after the opening of Packery Channel. Apart from salinity, Packery Channel has caused little hydrographic change in MBCHC since opening in July 2005. There was little effect on the macrofaunal community composition. There was a greater difference in community composition between deep and shallow stations than between either before and after or control and impact sites. There have been no significant changes in abundance, biomass, or N1 diversity caused by the opening of Packery Channel.






Palmer, T.A., P.A. Montagna, and R.D. Kalke. 2013. The effects of opening an artificial tidal inlet on hydrography and estuarine macrofauna in Corpus Christi, Texas. Environmental Monitoring and Assessment. 185:5917–5935. doi:10.1007/s10661-012-2995-0