Impact of subsurface methane transport on shallow marine sediment geochemistry

Date

2020-08, 2020-08

Authors

Abdullajintakam, Sajjad
Abdullajintakam, Sajjad

Journal Title

Journal ISSN

Volume Title

Publisher

DOI

Abstract

Marine sediments host a vast amount of methane, a potent greenhouse gas, in the subsurface. Transport of this subsurface methane towards the seafloor creates unique biogeochemical interactions which result in important consequences for the chemical and biological composition of the oceans at present and over the Earth’s geological history. This dissertation studied the impact of subsurface methane venting to shallow marine sediment geochemistry with a goal to quantify the role of methane induced biogeochemical processes in marine carbon cycling and to recognize geochemical proxies that will enable better reconstruction of these processes from the geological record. Key results suggest the following: (i) Globally, diffusive methane charged sediments are significantly contributing to the oceanic dissolved inorganic carbon (DIC) pool (comparable to ~20% global riverine DIC flux to oceans) and sedimentary carbonate accumulation (comparable to ~15% of carbonate accumulation on continental shelves), primarily due to microbially induced carbon-sulfur (C-S) coupling. (ii) C-S coupling induced by methane seeps and crude oil seeps can be distinguished from the sediment records using a combined stable carbon (δ13C) and sulfur (δ34S) analysis of authigenic carbonate and sulfide mineral phases formed in seep settings. (iii) Molecular fossil records of methane metabolizing archaea in the sediment column involve unique isomer patterns of Isoprenoid Glycerol dialkyl glycerol tetraether (GDGT) lipids, which can serve as an important proxy to study paleo-methane flux records. These results will substantially contribute to our existing coastal and geological carbon models as well as enhance our existing inventory of geochemical proxies to characterize the methane venting systems in the geological past.

Description

Keywords

authigenic carbonate, deep carbon, cdgt, hydrocarbon seeps, marine carbon cycle, methane seep

Sponsorship

Rights:

This material is made available for use in research, teaching, and private study, pursuant to U.S. Copyright law. The user assumes full responsibility for any use of the materials, including but not limited to, infringement of copyright and publication rights of reproduced materials. Any materials used should be fully credited with its source. All rights are reserved and retained regardless of current or future development or laws that may apply to fair use standards. Permission for publication of this material, in part or in full, must be secured with the author and/or publisher.

Citation