The convective transport of active species in the tropics (contrast) experiment

dc.contributor.authorPan, L. L.
dc.contributor.authorAtlas, E. L.
dc.contributor.authorSalawitch, Ross
dc.contributor.authorHonomichl, S. B.
dc.contributor.authorBresch, J. F.
dc.contributor.authorRandel, W. J.
dc.contributor.authorApel, E. C.
dc.contributor.authorHornbrook, R. S.
dc.contributor.authorWeinheimer, A. J.
dc.contributor.authorAnderson, D. C.
dc.contributor.authorAndrews, S. J.
dc.contributor.authorBaidar, S.
dc.contributor.authorBeaton, S. P.
dc.contributor.authorCampos, T. L.
dc.contributor.authorCarpenter, L. J.
dc.contributor.authorChen, D.
dc.contributor.authorDix, B.
dc.contributor.authorDonets, V.
dc.contributor.authorHall, S. R.
dc.contributor.authorHanisco, T. F.
dc.contributor.authorHomeyer, C. R.
dc.contributor.authorHuey, L. G.
dc.contributor.authorJensen, J. B.
dc.contributor.authorKaser, L.
dc.contributor.authorKinnison, D. E.
dc.contributor.authorKoenig, T. K.
dc.contributor.authorLamarque, J.-F.
dc.contributor.authorLiu, Chuntao
dc.contributor.authorLuo, J.
dc.contributor.authorLuo, Z. J.
dc.contributor.authorMontzka, D. D.
dc.contributor.authorNicely, J. M.
dc.contributor.authorPierce, R. B.
dc.contributor.authorRiemer, D. D.
dc.contributor.authorRobinson, T.
dc.contributor.authorRomashkin, P.
dc.contributor.authorSaiz-Lopez, A.
dc.contributor.authorSchauffler, S.
dc.contributor.authorShieh, O.
dc.contributor.authorStell, M. H.
dc.contributor.authorUllmann, K.
dc.contributor.authorVaughan, G.
dc.contributor.authorVolkamer, R.
dc.contributor.authorWolfe, G.
dc.contributor.authorPan, L. L.
dc.contributor.authorAtlas, E. L.
dc.contributor.authorSalawitch, Ross
dc.contributor.authorHonomichl, S. B.
dc.contributor.authorBresch, J. F.
dc.contributor.authorRandel, W. J.
dc.contributor.authorApel, E. C.
dc.contributor.authorHornbrook, R. S.
dc.contributor.authorWeinheimer, A. J.
dc.contributor.authorAnderson, D. C.
dc.contributor.authorAndrews, S. J.
dc.contributor.authorBaidar, S.
dc.contributor.authorBeaton, S. P.
dc.contributor.authorCampos, T. L.
dc.contributor.authorCarpenter, L. J.
dc.contributor.authorChen, D.
dc.contributor.authorDix, B.
dc.contributor.authorDonets, V.
dc.contributor.authorHall, S. R.
dc.contributor.authorHanisco, T. F.
dc.contributor.authorHomeyer, C. R.
dc.contributor.authorHuey, L. G.
dc.contributor.authorJensen, J. B.
dc.contributor.authorKaser, L.
dc.contributor.authorKinnison, D. E.
dc.contributor.authorKoenig, T. K.
dc.contributor.authorLamarque, J.-F.
dc.contributor.authorLiu, Chuntao
dc.contributor.authorLuo, J.
dc.contributor.authorLuo, Z. J.
dc.contributor.authorMontzka, D. D.
dc.contributor.authorNicely, J. M.
dc.contributor.authorPierce, R. B.
dc.contributor.authorRiemer, D. D.
dc.contributor.authorRobinson, T.
dc.contributor.authorRomashkin, P.
dc.contributor.authorSaiz-Lopez, A.
dc.contributor.authorSchauffler, S.
dc.contributor.authorShieh, O.
dc.contributor.authorStell, M. H.
dc.contributor.authorUllmann, K.
dc.contributor.authorVaughan, G.
dc.contributor.authorVolkamer, R.
dc.contributor.authorWolfe, G.
dc.creator.orcidhttps://orcid.org/0000-0001-8597-5832en_US
dc.creator.orcidhttps://orcid.org/0000-0002-6914-0920en_US
dc.creator.orcidhttps://orcid.org/0000-0001-8597-5832en_US
dc.creator.orcidhttps://orcid.org/0000-0001-8597-5832
dc.creator.orcidhttps://orcid.org/0000-0002-6914-0920
dc.creator.orcidhttps://orcid.org/0000-0001-8597-5832
dc.date.accessioned2022-04-01T19:35:16Z
dc.date.available2022-04-01T19:35:16Z
dc.date.issued2017-01-01
dc.date.issued2017-01-01
dc.description.abstractThe Convective Transport of Active Species in the Tropics (CONTRAST) experiment was conducted from Guam (13.5°N, 144.8°E) during January–February 2014. Using the NSF/NCAR Gulfstream V research aircraft, the experiment investigated the photochemical environment over the tropical western Pacific (TWP) warm pool, a region of massive deep convection and the major pathway for air to enter the stratosphere during Northern Hemisphere (NH) winter. The new observations provide a wealth of information for quantifying the influence of convection on the vertical distributions of active species. The airborne in situ measurements up to 15-km altitude fill a significant gap by characterizing the abundance and altitude variation of a wide suite of trace gases. These measurements, together with observations of dynamical and microphysical parameters, provide significant new data for constraining and evaluating global chemistry–climate models. Measurements include precursor and product gas species of reactive halogen compounds that impact ozone in the upper troposphere/lower stratosphere. High-accuracy, in situ measurements of ozone obtained during CONTRAST quantify ozone concentration profiles in the upper troposphere, where previous observations from balloonborne ozonesondes were often near or below the limit of detection. CONTRAST was one of the three coordinated experiments to observe the TWP during January–February 2014. Together, CONTRAST, Airborne Tropical Tropopause Experiment (ATTREX), and Coordinated Airborne Studies in the Tropics (CAST), using complementary capabilities of the three aircraft platforms as well as ground-based instrumentation, provide a comprehensive quantification of the regional distribution and vertical structure of natural and pollutant trace gases in the TWP during NH winter, from the oceanic boundary to the lower stratosphere.en_US
dc.description.abstractThe Convective Transport of Active Species in the Tropics (CONTRAST) experiment was conducted from Guam (13.5°N, 144.8°E) during January–February 2014. Using the NSF/NCAR Gulfstream V research aircraft, the experiment investigated the photochemical environment over the tropical western Pacific (TWP) warm pool, a region of massive deep convection and the major pathway for air to enter the stratosphere during Northern Hemisphere (NH) winter. The new observations provide a wealth of information for quantifying the influence of convection on the vertical distributions of active species. The airborne in situ measurements up to 15-km altitude fill a significant gap by characterizing the abundance and altitude variation of a wide suite of trace gases. These measurements, together with observations of dynamical and microphysical parameters, provide significant new data for constraining and evaluating global chemistry–climate models. Measurements include precursor and product gas species of reactive halogen compounds that impact ozone in the upper troposphere/lower stratosphere. High-accuracy, in situ measurements of ozone obtained during CONTRAST quantify ozone concentration profiles in the upper troposphere, where previous observations from balloonborne ozonesondes were often near or below the limit of detection. CONTRAST was one of the three coordinated experiments to observe the TWP during January–February 2014. Together, CONTRAST, Airborne Tropical Tropopause Experiment (ATTREX), and Coordinated Airborne Studies in the Tropics (CAST), using complementary capabilities of the three aircraft platforms as well as ground-based instrumentation, provide a comprehensive quantification of the regional distribution and vertical structure of natural and pollutant trace gases in the TWP during NH winter, from the oceanic boundary to the lower stratosphere.
dc.description.sponsorshipFunding for this work was provided by the National Science Foundation (NSF) via its sponsorship of the National Center for Atmospheric Research (NCAR). The CONTRAST experiment was sponsored by the (NSF). We acknowledge the excellent field project support provided by NCAR/EOL during flight operations. We give special thanks to the GV pilots and mission coordinators for their knowledge, skills, and dedication; these were essential to the success of this campaign. The MACC forecasts were funded by the European Union’s Seventh Framework Programme (FP7) under Grant Agreement 283576. The views, opinions, and findings contained in this report are those of the author(s) and should not be construed as an official National Oceanic and Atmospheric Administration or U.S. government position, policy, or decision.en_US
dc.description.sponsorshipFunding for this work was provided by the National Science Foundation (NSF) via its sponsorship of the National Center for Atmospheric Research (NCAR). The CONTRAST experiment was sponsored by the (NSF). We acknowledge the excellent field project support provided by NCAR/EOL during flight operations. We give special thanks to the GV pilots and mission coordinators for their knowledge, skills, and dedication; these were essential to the success of this campaign. The MACC forecasts were funded by the European Union’s Seventh Framework Programme (FP7) under Grant Agreement 283576. The views, opinions, and findings contained in this report are those of the author(s) and should not be construed as an official National Oceanic and Atmospheric Administration or U.S. government position, policy, or decision.
dc.identifier.citationPan, L.L., Atlas, E.L., Salawitch, R.J., Honomichl, S.B., Bresch, J.F., Randel, W.J., Apel, E.C., Hornbrook, R.S., Weinheimer, A.J., Anderson, D.C. and Andrews, S.J., 2017. The convective transport of active species in the tropics (CONTRAST) experiment. Bulletin of the American Meteorological Society, 98(1), pp.106-128.en_US
dc.identifier.citationPan, L.L., Atlas, E.L., Salawitch, R.J., Honomichl, S.B., Bresch, J.F., Randel, W.J., Apel, E.C., Hornbrook, R.S., Weinheimer, A.J., Anderson, D.C. and Andrews, S.J., 2017. The convective transport of active species in the tropics (CONTRAST) experiment. Bulletin of the American Meteorological Society, 98(1), pp.106-128.
dc.identifier.doihttps://doi.org/10.1175/BAMS-D-14-00272.1
dc.identifier.doihttps://doi.org/10.1175/BAMS-D-14-00272.1
dc.identifier.doihttps://doi.org/10.1175/BAMS-D-14-00272.1
dc.identifier.urihttps://hdl.handle.net/1969.6/90398
dc.identifier.urihttps://hdl.handle.net/1969.6/90398
dc.identifier.urihttps://hdl.handle.net/1969.6/90398
dc.language.isoen_USen_US
dc.language.isoen_US
dc.publisherAmerican Meteorological Societyen_US
dc.publisherAmerican Meteorological Society
dc.titleThe convective transport of active species in the tropics (contrast) experimenten_US
dc.titleThe convective transport of active species in the tropics (contrast) experiment
dc.typeArticleen_US
dc.typeArticle

Files

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Pan_L_AMS.pdf
Size:
24.88 MB
Format:
Adobe Portable Document Format
Description:
Article

License bundle

Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
1.72 KB
Format:
Item-specific license agreed upon to submission
Description: