Assessing the influence of genotypic diversity on sulfur dynamics in the seagrass halodule wrightii using stable isotope analysis

dc.contributor.advisorLarkin, Patrick
dc.contributor.authorGirard, Allyson
dc.contributor.committeeMemberAbdulla, Hussain
dc.contributor.committeeMemberFelix, Joseph
dc.date.accessioned2022-12-06T20:52:32Z
dc.date.available2022-12-06T20:52:32Z
dc.date.issued2022-07-19
dc.descriptionA thesis submitted in partial fulfillment of the requirements for the degree of Master of Science in Environmental Science from Texas A&M University-Corpus Christi in Corpus Christi, Texas.en_US
dc.description.abstractCoastal development and other mounting anthropogenic pressures are threatening valuable seagrass habitats. The greatest risks posed to seagrasses are the effects of coastal eutrophication, which stimulates primary productivity and ultimately supplies abundant organic matter to marine sediments. The decomposition of this material is initially facilitated by aerobic microorganisms, depleting dissolved oxygen and generating anoxic conditions. Under these conditions, anaerobic microorganisms such as sulfate-reducing bacteria begin to dominate the degradation process, which reduce sulfate (SO42-) to sulfide (H2S) for energy production. The accumulation of H2S in marine sediments is problematic for seagrasses, as this molecule can be highly toxic. Yet, seagrasses can withstand relatively high concentrations of H2S in their environments. Stable isotope analyses have been used to investigate sulfide intrusion in seagrass meadows, as the unique isotopic signature of sediment-derived sulfur can be used to trace the uptake of H2S and its distribution throughout the plant. This technique has allowed the study of factors that may influence sulfide production and intrusion, such as reduced light availability, organic matter enrichment, and high temperatures. However, few studies have examined the biological or biochemical features that enable seagrasses to withstand relatively high sedimentary sulfide levels. One biological feature that may help confer resistance is population genetic diversity, which has been identified as an important trait in the survival and performance of seagrass meadows under environmental stress. In general, genetic diversity is thought to play an important role in population resistance to environmental disturbance, as a wider assortment of functional traits encoded at the molecular level results in a variety of phenotypes likely to possess morphological and physiological differences that are complementary. This genotypic complementarity may extend to biochemical strategies associated with tolerance to, or detoxification of, H­2S. The purpose of this study was to determine whether sulfide intrusion differs between genotypes of the seagrass Halodule wrightii, a prominent species in the Gulf of Mexico. Further, as the sulfur isotopic composition of marine sediments and seagrass vegetation is known to exhibit high spatial variability, this study also sought to assess sulfide intrusion between populations from distinct sites along the Texas Gulf Coast. Stable isotope data was used to infer the proportion of sulfur in H. wrightii tissues that was derived from sedimentary sulfide, while total sulfur (TS) data was also considered to understand the extent of sulfur accumulation within the plant. H. wrightii genotypes were determined by screening each sample at a series of microsatellite loci previously identified for this species. Although no difference in sulfide intrusion was observed between genotypes, sulfide uptake and distribution was significantly different between the three study sites. The results offer important insight to the effect of local conditions on sulfide intrusion in seagrass meadows and may guide future investigations concerned with the influence of genotypic diversity on H2S metabolism in seagrasses.en_US
dc.description.collegeCollege of Science and Engineeringen_US
dc.description.departmentPhysical and Environmental Sciencesen_US
dc.format.extent90 pagesen_US
dc.identifier1969.6/1139
dc.identifier.urihttps://hdl.handle.net/1969.6/94537
dc.language.isoen_USen_US
dc.rightsThis material is made available for use in research, teaching, and private study, pursuant to U.S. Copyright law. The user assumes full responsibility for any use of the materials, including but not limited to, infringement of copyright and publication rights of reproduced materials. Any materials used should be fully credited with its source. All rights are reserved and retained regardless of current or future development or laws that may apply to fair use standards. Permission for publication of this material, in part or in full, must be secured with the author and/or publisher.
dc.rightsThis material is made available for use in research, teaching, and private study, pursuant to U.S. Copyright law. The user assumes full responsibility for any use of the materials, including but not limited to, infringement of copyright and publication rights of reproduced materials. Any materials used should be fully credited with its source. All rights are reserved and retained regardless of current or future development or laws that may apply to fair use standards. Permission for publication of this material, in part or in full, must be secured with the author and/or publisher.en_US
dc.subjectgenotypic diversityen_US
dc.subjectstable isotope analysisen_US
dc.subjectenvironmental scienceen_US
dc.titleAssessing the influence of genotypic diversity on sulfur dynamics in the seagrass halodule wrightii using stable isotope analysisen_US
dc.typeText
dc.typeTexten_US
dc.type.genreThesis
dc.type.genreThesisen_US
thesis.degree.disciplineEnvironmental Scienceen_US
thesis.degree.grantorTexas A & M University--Corpus Christi
thesis.degree.grantorTexas A & M University--Corpus Christien_US
thesis.degree.levelMastersen_US
thesis.degree.nameMaster of Scienceen_US

Files

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Girard_Allyson_Thesis.pdf
Size:
1.12 MB
Format:
Adobe Portable Document Format