Simplified indoor localization using Bluetooth beacons and received signal strength fingerprinting with smartwatch


Variations in Global Positioning Systems (GPSs) have been used for tracking users’ locations. However, when location tracking is needed for an indoor space, such as a house or building, then an alternative means of precise position tracking may be required because GPS signals can be severely attenuated or completely blocked. In our approach to indoor positioning, we developed an indoor localization system that minimizes the amount of effort and cost needed by the end user to put the system to use. This indoor localization system detects the user’s room-level location within a house or indoor space in which the system has been installed. We combine the use of Bluetooth Low Energy beacons and a smartwatch Bluetooth scanner to determine which room the user is located in. Our system has been developed specifically to create a low-complexity localization system using the Nearest Neighbor algorithm and a moving average filter to improve results. We evaluated our system across a household under two different operating conditions: first, using three rooms in the house, and then using five rooms. The system was able to achieve an overall accuracy of 85.9% when testing in three rooms and 92.106% across five rooms. Accuracy also varied by region, with most of the regions performing above 96% accuracy, and most false-positive incidents occurring within transitory areas between regions. By reducing the amount of processing used by our approach, the end-user is able to use other applications and services on the smartwatch concurrently.



indoor tracking, Bluetooth Low Energy, smartwatch, mobile tracking, indoor positioning systems


The authors thank the Open Access Publication Fund provided by the Mary and Jeff Bell Library at Texas A&M University-Corpus Christi. This research was partially funded by the University Research Enhancement Grant from Texas A&M University-Corpus Christi.


CC BY 4.0 DEED Attribution 4.0 International


Bouse, L.; King, S.A.; Chu, T. Simplified Indoor Localization Using Bluetooth Beacons and Received Signal Strength Fingerprinting with Smartwatch. Sensors 2024, 24, 2088.