Neutrino interaction classification with convolutional neural network in the DUNE far detector

Date

2020-09-16

Authors

abi, babak
Acciarri, Roberto
Acero O, Mario A
Adamov, G
Adams, David
Adinolfi, M
Ahmad, Z
Szczerbinska, Barbara

Journal Title

Journal ISSN

Volume Title

Publisher

Abstract

The Deep Underground Neutrino Experiment is a next-generation neutrino oscillation experiment that aims to measure CP-violation in the neutrino sector as part of a wider physics program. A deep learning approach based on a convolutional neural network has been developed to provide highly efficient and pure selections of electron neutrino and muon neutrino charged-current interactions. The electron neutrino (antineutrino) selection efficiency peaks at 90% (94%) and exceeds 85% (90%) for reconstructed neutrino energies between 2–5 GeV. The muon neutrino (antineutrino) event selection is found to have a maximum efficiency of 96% (97%) and exceeds 90% (95%) efficiency for reconstructed neutrino energies above 2 GeV. When considering all electron neutrino and antineutrino interactions as signal, a selection purity of 90% is achieved. These event selections are critical to maximize the sensitivity of the experiment to CP-violating effects.

Description

Keywords

dune, deep underground neutrino experiment, convolutional neural networks, neutrino oscillations

Sponsorship

This document was prepared by the DUNE Collaboration using the resources of the Fermi National Accelerator Laboratory (Fermilab), a U.S. Department of Energy, Office of Science, HEP User Facility. Fermilab is managed by Fermi Research Alliance, LLC (FRA), acting under Contract No. DE-AC02-07CH11359. This work was supported by CNPq, FAPERJ, FAPEG and FAPESP, Brazil; CFI, Institute of Particle Physics and NSERC, Canada; CERN; MŠMT, Czech Republic; ERDF, H2020-EU and MSCA, European Union; CNRS/IN2P3 and CEA, France; INFN, Italy; FCT, Portugal; NRF, South Korea; Comunidad de Madrid, Fundación “La Caixa” and MICINN, Spain; State Secretariat for Education, Research and Innovation and SNSF, Switzerland; TÜBİTAK, Turkey; The Royal Society and UKRI/STFC, United Kingdom; DOE and NSF, United States of America.

Rights:

Attribution 4.0 International

Citation

B. Abi, B. Szczerbinska, et al. (DUNE Collaboration) Phys. Rev. D 102 https://doi.org/10.1103/PhysRevD.102.092003