2D and 3D Mapping of a Littoral Zone with UAS and Structure from Motion Photogrammetry

dc.contributor.authorGiessel, Justin Zachary
dc.date.accessioned2015-08-05T16:11:41Z
dc.date.available2015-08-05T16:11:41Z
dc.date.issued2015-05
dc.description.abstractAdvancements in the miniaturization of sensors and their integration in light‐weight, smallscale unmanned aerial systems (UAS) have resulted in an explosion of uses for inexpensive and easily obtained remotely sensed data. This study examines the capabilities of a small‐scale UAS equipped with a consumer grade RGB camera for 2D and 3D mapping of a sandy bay shoreline using Structure from Motion (SfM) photogrammetry. Several key components are analyzed in order to assess the utility of UAS‐based SfM photogrammetry for beach and boundary surveying of the littoral zone. First, the accuracy of the 3D point cloud produced by the SfM densification process over the beach is compared to high accuracy RTK GPS transects. Results show a mean agreement of approximately 7.9 cm over the sub‐aerial beach with increased error in shallow water. Minimal effects of beach slope on vertical accuracy were observed. Secondly, bathymetric measurements extracted from the UAS/SfM point cloud are examined, and an optical inversion approach is implemented where the SfM method fails. Results show that a hybrid elevation model of the beach and littoral zone consisting of automatic SfM products, post‐processed SfM products, and optical inversion provide the most accurate results when mapping over turbid water. Finally, SfM‐derived shoreline elevation contour (boundary) is compared to a shoreline elevation contour derived using the currently accepted RTK GPS method for conducting legal littoral boundary surveys in the state of Texas. Results show mean planimetric offsets < 25 cm demonstrating the potential of UAS‐based SfM photogrammetry for conducting littoral boundary surveys along non‐occluded, sandy shorelines.en_US
dc.description.collegeCollege of Science and Engineeringen_US
dc.description.departmentComputing Sciencesen_US
dc.identifier.urihttp://hdl.handle.net/1969.6/635
dc.language.isoen_USen_US
dc.rightsThis material is made available for use in research, teaching, and private study, pursuant to U.S. Copyright law. The user assumes full responsibility for any use of the materials, including but not limited to, infringement of copyright and publication rights of reproduced materials. Any materials used should be fully credited with its source. All rights are reserved and retained regardless of current or future development or laws that may apply to fair use standards. Permission for publication of this material, in part or in full, must be secured with the author and/or publisher.en_US
dc.subjectUASen_US
dc.subjectstructure from motionen_US
dc.subjectSHORELINE MAPPINGen_US
dc.subjectLITTORAL ZONEen_US
dc.subjectphotogrammetryen_US
dc.title2D and 3D Mapping of a Littoral Zone with UAS and Structure from Motion Photogrammetryen_US
dc.typeTexten_US
dc.type.genreThesisen_US
thesis.degree.disciplineGeospatial Surveying Engineeringen_US
thesis.degree.grantorTexas A & M University--Corpus Christien_US
thesis.degree.levelMastersen_US
thesis.degree.nameMaster of Scienceen_US

Files

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Justin Giessel thesis.pdf
Size:
3.16 MB
Format:
Adobe Portable Document Format
Description:

License bundle

Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
1.71 KB
Format:
Item-specific license agreed upon to submission
Description: