Impact of subsurface methane transport on shallow marine sediment geochemistry

dc.contributor.advisorCoffin, Richard B.
dc.contributor.advisorCoffin, Richard B.
dc.contributor.authorAbdullajintakam, Sajjad
dc.contributor.authorAbdullajintakam, Sajjad
dc.contributor.committeeMemberAbdulla, Hussain AN
dc.contributor.committeeMemberReese, Brandi K
dc.contributor.committeeMemberNaehr, Thomas H
dc.contributor.committeeMemberLyons, Timothy W
dc.contributor.committeeMemberAbdulla, Hussain
dc.contributor.committeeMemberReese, Brandi K.
dc.contributor.committeeMemberNaehr, Thomas H
dc.contributor.committeeMemberLyons, Timothy W
dc.creator.orcidhttps://orcid.org/0000-0002-6089-0370
dc.date.accessioned2020-10-09T21:32:21Z
dc.date.available2020-10-09T21:32:21Z
dc.date.issued2020-08
dc.date.issued2020-08
dc.description.abstractMarine sediments host a vast amount of methane, a potent greenhouse gas, in the subsurface. Transport of this subsurface methane towards the seafloor creates unique biogeochemical interactions which result in important consequences for the chemical and biological composition of the oceans at present and over the Earth’s geological history. This dissertation studied the impact of subsurface methane venting to shallow marine sediment geochemistry with a goal to quantify the role of methane induced biogeochemical processes in marine carbon cycling and to recognize geochemical proxies that will enable better reconstruction of these processes from the geological record. Key results suggest the following: (i) Globally, diffusive methane charged sediments are significantly contributing to the oceanic dissolved inorganic carbon (DIC) pool (comparable to ~20% global riverine DIC flux to oceans) and sedimentary carbonate accumulation (comparable to ~15% of carbonate accumulation on continental shelves), primarily due to microbially induced carbon-sulfur (C-S) coupling. (ii) C-S coupling induced by methane seeps and crude oil seeps can be distinguished from the sediment records using a combined stable carbon (δ13C) and sulfur (δ34S) analysis of authigenic carbonate and sulfide mineral phases formed in seep settings. (iii) Molecular fossil records of methane metabolizing archaea in the sediment column involve unique isomer patterns of Isoprenoid Glycerol dialkyl glycerol tetraether (GDGT) lipids, which can serve as an important proxy to study paleo-methane flux records. These results will substantially contribute to our existing coastal and geological carbon models as well as enhance our existing inventory of geochemical proxies to characterize the methane venting systems in the geological past.en_US
dc.description.collegeCollege of Science and Engineeringen_US
dc.description.departmentLife Sciencesen_US
dc.format.extent204 pagesen_US
dc.identifier.urihttps://hdl.handle.net/1969.6/89077
dc.identifier.urihttps://hdl.handle.net/1969.6/89077
dc.language.isoen_USen_US
dc.rightsThis material is made available for use in research, teaching, and private study, pursuant to U.S. Copyright law. The user assumes full responsibility for any use of the materials, including but not limited to, infringement of copyright and publication rights of reproduced materials. Any materials used should be fully credited with its source. All rights are reserved and retained regardless of current or future development or laws that may apply to fair use standards. Permission for publication of this material, in part or in full, must be secured with the author and/or publisher.en_US
dc.rights.holderAbdullajintakam, Sajjad
dc.rights.holderAbdullajintakam, Sajjad
dc.subjectauthigenic carbonateen_US
dc.subjectdeep carbonen_US
dc.subjectcdgten_US
dc.subjecthydrocarbon seepsen_US
dc.subjectmarine carbon cycleen_US
dc.subjectmethane seepen_US
dc.subject.lcshgeologyen_US
dc.titleImpact of subsurface methane transport on shallow marine sediment geochemistryen_US
dc.type.genreDissertationen_US
dcterms.typeText
thesis.degree.disciplineBiologyen_US
thesis.degree.grantorTexas A & M University--Corpus Christien_US
thesis.degree.levelDoctoralen_US
thesis.degree.nameDoctor of Philosophyen_US

Files

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Abdullajintakam_Sajjad_dissertation.pdf
Size:
4.71 MB
Format:
Adobe Portable Document Format
Description:
Dissertation

License bundle

Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
1.72 KB
Format:
Item-specific license agreed upon to submission
Description: